SOME PROPERTIES ON (t_1, t_2) – INTUITIONISTIC MULTI FUZZY SUBRING OF A RING

Dr.B.Anitha,

Assistant Professor, Department of Mathematics, Annamalai University, Annamalainagar, Chidambaram, India (Deputed to Government Arts College, Chidambaram, India)

P. Seethalakshmi,

Research Scholar, Department of Mathematics, Annamalai University, Annamalainagar, Chidambaram, India.

ABSTRACT

In this paper, we have characterized (t_1, t_2) - Intuitionistic Multi fuzzy subring of a ring R and talked about a portion of its properties by utilizing (α, β) - cuts. Additionally, we have characterized (t_1, t_2) - intuitionistic multi fuzzy cosets of a ring and demonstrated a few related theorems with examples.

Keywords:

 $(\mathbf{t}_1, \mathbf{t}_2)$ -Intuitionistic Fuzzy Set $((\mathbf{t}_1, \mathbf{t}_2)$ -IFS), $(\mathbf{t}_1, \mathbf{t}_2)$ -Intuitionistic Multi Fuzzy Set $((\mathbf{t}_1, \mathbf{t}_2)$ -IMFS), $(\mathbf{t}_1, \mathbf{t}_2)$ -Intuitionistic Multi Fuzzy Subring $((\mathbf{t}_1, \mathbf{t}_2)$ -IMFSR), $(\mathbf{t}_1, \mathbf{t}_2)$ -Intuitionistic Multi Fuzzy Normal Subring(IMFNSR), (α, β) - cuts, Homomorphism(_homo).

1. Introduction

The fuzzy set speculation introduced by L. A Zadeh [19] has shown huge application in many fields of study. The chance of a fuzzy set is welcome since it handles weakness and lack of definition that ordinary sets couldn't address. In fuzzy set theory membership function of an element in a single value between 0 and 1, therefore, a generalization of the fuzzy set was introduced by Atanassov[1] called intuitionistic fuzzy set which deals with the degree of non-membership function and the degree of membership. Following quite a while S.Sabu [14] presented the hypothesis of multi fuzzy sets as far as multi-dimensional membership function. The idea of fuzzy subgroups was presented by Rosenfeld [13]. Biswas [5] applied the idea of intuitionistic fuzzy sets to the hypothesis of groups and considered intuitionistic fuzzy subgroups of a group.Marashdeh and Salleh [20] presented the idea of intuitionistic fuzzy rings in view of the thought of fuzzy space. The idea of t-intuitionistic fuzzy subgroups and t-intuitionistic fuzzy subring of a ring. P.Dheena and B.Anitha [21] presented the possibility of (t_1, t_2) . Intuitionistic fuzzy set and talked about a portion of its properties. In this paper, we introduced the possibility of (t_1, t_2) intuitionistic multi fuzzy subring and their properties.

2. Preliminaries

Definition 2.1[19] Let $X \neq \emptyset$. A fuzzy subset A of x is characterized by a function $A: x \to [0,1]$

Definition 2.2 [1] An IFS A of a non empty set X of the structure $A = \{x, u(x), v(x)\}$ Where $u(x): x \to [0,1]$ and $v(x): x \to [0,1]$ are membership and non membership functions \exists for each $x \in X$ and we've $0 \le u(x) + v(x) \le 1$

Volume 13, No. 3, 2022, p. 2953 - 2965 https://publishoa.com ISSN: 1309-3452

Definition 2.3[12] Let $X \neq \emptyset$. A MFS A in X is characterized by the set of ordered sequence as

follows $A = \{(x_1, u_1(x_1), u_2(x_1), u_3(x_1), \dots, u_k(x_1), \dots,): x \in X\}$ Where $u_i(x_1): x \to [0,1] \forall i$

Definition 2.4 [22] Let $X \neq \emptyset$. A IMFS A in X is characterized by the set

 $\mathbf{A} = \left\{ \left(\mathbf{x}, (\mathbf{u}_1(\mathbf{x}), \mathbf{u}_2(\mathbf{x}), \mathbf{u}_3(\mathbf{x}), \dots, \mathbf{u}_k(\mathbf{x}), \dots, \right), (\mathbf{v}_1(\mathbf{x}), \mathbf{v}_2(\mathbf{x}), \mathbf{v}_3(\mathbf{x}), \dots, \mathbf{v}_k(\mathbf{x}), \cdot) : \mathbf{x} \in \mathbf{X} \right\}$

Where $\mathbf{u}_i(\mathbf{x}): \mathbf{x} \to [0,1]$, $\forall_i(\mathbf{x}): \mathbf{x} \to [0,1]$ and we have $0 \le \mathbf{u}_i(\mathbf{x}) + \forall_i(\mathbf{x}) \le 1 \forall i = 1, 2, ..., k$

Definition 2.5[22] Let $X \neq \emptyset$. A k-dimensional IMFS A in X is characterized by the set $A = \{ (x_1, u_1(x_1), u_2(x_1), u_3(x_1), \dots, u_k(x_1)), (\vee_1(x_1), \vee_2(x_2), \vee_3(x_2), \dots, \vee_k(x_l)) : x \in X \}$

Where $\mathbf{u}_i(\mathbf{x}): \mathbf{x} \to [0,1]$, $\forall_i(\mathbf{x}): \mathbf{x} \to [0,1]$ and we have $0 \le \mathbf{u}_i(\mathbf{x}) + \forall_i(\mathbf{x}) \le 1 \forall i = 1, 2, \dots, k$

Definition 2.6[17] Let A be a IFS of a Ring R. Let $t \in [0,1]$ then t - IFS of R with respect to IFS A and is characterized by $A_{t}^{t} = (u^{t}(x), v^{t}(x))$ where $u^{t}(x) = \min\{u(x), t\}$ and $v^{t}(x) = \max\{v(x), 1 - t\} \forall x \in \mathbb{R}$

Definition 2.7[23] Let \mathcal{A} be a IMFS in \mathfrak{X} with dimension k. let $\mathfrak{f} \in [0,1]$ then the IMFS $\mathcal{A}^{\mathfrak{t}}$ of \mathfrak{X} is known as $\mathcal{A}^{\mathfrak{t}}$ -IMFS (\mathfrak{t} -IFMS) of \mathfrak{X} w.r.to IMFS \mathcal{A} and if characterized by

$$\begin{split} A_{i}^{t} &= \{ g, \mathfrak{u}(g_{1}), \vee(g) \colon g \in X \} \text{ where } \mathfrak{u}^{t} = \left(\mathfrak{u}_{1}^{t}(g_{1}), \mathfrak{u}_{2}^{t}(g_{2}), \mathfrak{u}_{3}^{t}(g_{2}) \dots \mathfrak{u}_{k}^{t}(g_{2}) \right) \text{ and } \\ & \vee^{t} = (\vee_{1}^{t}(g_{2}), \vee_{2}^{t}(g_{2}), \vee_{3}^{t}(g_{2}) \dots \vee_{k}^{t}(g_{2})) \ni 0 \leq \mathfrak{u}_{i}^{t}(g_{2}) + \vee_{i}^{t}(g_{2}) \leq 1 \forall \ g \in X \text{ and } i=1,2,\dots k \text{ where } \\ \mathfrak{u}_{i}^{t}(g_{2}) &= \min \{ \mathfrak{u}_{i}^{t}(g_{2}), \mathfrak{e}\} \text{ and } \vee_{i}^{t}(g_{2}) = \max \{ \vee_{i}^{t}(g_{2}), 1-\mathfrak{e}\} \text{ and } \mathfrak{u}_{1}^{t}(g_{2}) \geq \mathfrak{u}_{2}^{t}(g_{2}) \geq \mathfrak{u}_{3}^{t}(g_{2}) \dots \geq \mathfrak{u}_{k}^{t}(g_{2}) \text{ for all } g \text{ in } X \end{split}$$

Definition 2.8 [17] An # IFS of R, let $\mathbf{t} \in [0,1]$ then the $\mathbf{A}_{\mathbf{t}}^{\mathbf{t}}$ of R is known as $\mathbf{t} - \text{IFSR}$ of R, if $\mathbf{A}_{\mathbf{t}}^{\mathbf{t}}$ is IFSR that is (i) $\mathbf{u}^{\mathbf{t}}(\mathbf{x} - \mathbf{y}) \ge \min \{\mathbf{u}^{\mathbf{t}}(\mathbf{x}), \mathbf{u}^{\mathbf{t}}(\mathbf{y})\}$ and $\bigvee^{\mathbf{t}}(\mathbf{x} - \mathbf{y}) \le \max \{\bigvee^{\mathbf{t}}(\mathbf{x}), \bigvee^{\mathbf{t}}(\mathbf{y})\}$

 $(ii) \mathfrak{u}^{\mathfrak{t}}(x_{y}, y) \geq \min\left\{\mathfrak{u}^{\mathfrak{t}}(x_{y}), \mathfrak{u}^{\mathfrak{t}}(y_{y})\right\} \text{ and } \mathbb{v}^{\mathfrak{t}}(x_{y}, y) \leq \max\left\{\mathbb{v}^{\mathfrak{t}}(x_{y}), \mathbb{v}^{\mathfrak{t}}(y_{y})\right\} \text{ where } \mathbb{A}^{\mathfrak{t}}_{t} = \left(\mathfrak{u}^{\mathfrak{t}}(x_{y}), \mathbb{v}^{\mathfrak{t}}(x_{y})\right)$

and $u^{t}(x) = \min\{u(x), t\}, \forall^{t}(x) = \max\{\forall(x), t\}$ for every $x, y, y^{-1} \in \mathbb{R}$

Definition 2.9[23] An \mathfrak{t} – IMFS $A_{\mathfrak{t}}^{\mathfrak{t}} = \{(\mathfrak{x}, \mathfrak{u}^{\mathfrak{t}}(\mathfrak{x}), \vee^{\mathfrak{t}}(\mathfrak{x})) : \mathfrak{x} \in \mathfrak{x}\}$ of a Ring R is known as $A_{\mathfrak{t}}^{\mathfrak{t}}$ – IMFSR of R if it fulfills the accompanying $\forall \mathfrak{x}, \mathfrak{y} \in \mathbb{R} \& \mathfrak{t} \in [0,1]$

(i)
$$\mathfrak{l}^{\mathfrak{t}}(\mathfrak{x} - \mathfrak{y}) \geq \min \{\mathfrak{l}^{\mathfrak{t}}(\mathfrak{x}), \mathfrak{l}^{\mathfrak{t}}(\mathfrak{y})\} \text{ and } \bigvee^{\mathfrak{t}}(\mathfrak{x} - \mathfrak{y}) \leq \max \{\bigvee^{\mathfrak{t}}(\mathfrak{x}), \bigvee^{\mathfrak{t}}(\mathfrak{y})\}$$

 $(ii) L^{\sharp}(xy) \geq \min\{L^{\sharp}(x), L^{\sharp}(y)\} \text{ and } \vee^{\sharp}(xy) \leq \max\{\vee^{\sharp}(x), \vee^{\sharp}(y)\} \text{ where }$

Volume 13, No. 3, 2022, p. 2953 - 2965 https://publishoa.com ISSN: 1309-3452

$$\mathbf{h}^{\mathbf{t}} = (\mathbf{h}^{\mathbf{t}}_{1}(\mathbf{x}_{\mathbf{y}}), \mathbf{h}^{\mathbf{t}}_{2}(\mathbf{x}_{\mathbf{y}}), \mathbf{h}^{\mathbf{t}}_{3}(\mathbf{x}_{\mathbf{y}}) \dots \mathbf{h}^{\mathbf{t}}_{k}(\mathbf{x}_{\mathbf{y}})) \text{ and } \mathbf{v}^{\mathbf{t}} = (\mathbf{v}^{\mathbf{t}}_{1}(\mathbf{x}_{\mathbf{y}}), \mathbf{v}^{\mathbf{t}}_{2}(\mathbf{x}_{\mathbf{y}}), \mathbf{v}^{\mathbf{t}}_{3}(\mathbf{x}_{\mathbf{y}}) \dots \mathbf{v}^{\mathbf{t}}_{k}(\mathbf{x}_{\mathbf{y}})) \text{ such that}$$

 $0 \le h_i^t(x_i) + v_i^t(x_i) \le 1$ for all $x_i \in \mathbb{R}$ and i=1,2,... k where

$$u_{i}^{t}(x_{2}) = \min \{u_{i}^{t}(x_{2}), t\} \text{ and } \bigvee_{i}^{t}(x_{i}) = \max \{\bigvee_{i}^{t}(x_{2}), 1-t\} \text{ and } i \in \mathbb{N} \}$$

$$\mathfrak{t}_{1}^{t}(y_{\mathfrak{P}}) \ge \mathfrak{t}_{2}^{t}(y_{\mathfrak{P}}) \ge \mathfrak{t}_{3}^{t}(y_{\mathfrak{P}}) \dots \ge \mathfrak{t}_{k}^{t}(y_{\mathfrak{P}})$$
 for all $y_{\mathfrak{P}} \in \mathbb{R}$

Definition 2.10[21] Let A be a IFS of a Ring R. Let $(\mathbf{t}_1, \mathbf{t}_2) \in [0, 1]$ and $\mathbf{t}_2 \leq 1 - \mathbf{t}_1$ then the IFS A' of are R is known as $(\mathbf{t}_1, \mathbf{t}_2) - \text{IFS}$ of R with respect to IFS A and is characterized by $\mathbf{A}'_1 = (\mathbf{u}'(\mathbf{x}), \mathbf{v}'(\mathbf{x}))$ where $\mathbf{u}'(\mathbf{x}) = \max\{\mathbf{u}(\mathbf{x}), \mathbf{t}_1\}$ and $\mathbf{v}'(\mathbf{x}) = \max\{\mathbf{v}(\mathbf{x}), \mathbf{t}_2\}$ for all $\mathbf{x} \in \mathbb{R}$

3. Properties of $(\alpha, \beta) - cuts$ of the (t_1, t_2) – Intuitionistic Multi Fuzzy Subring of a Ring

Definition 3.1 Let \mathcal{A} be a IMFS in X with dimension k. let $(\mathfrak{t}_1, \mathfrak{t}_2) \in [0,1]$ then the IMFS A_i' of \mathfrak{x} is known as $(\mathfrak{t}_1, \mathfrak{t}_2)$ -IMFS of X w.r.to IMFS \mathcal{A} and if characterized by $A_i' = \{(\mathfrak{x}, \mathfrak{u}'(\mathfrak{x}), \mathfrak{v}'(\mathfrak{x})) : \mathfrak{x} \in \mathfrak{x}\}$ where $\mathfrak{u}'(\mathfrak{x}) = (\mathfrak{u}'_1(\mathfrak{x}), \mathfrak{u}'_2(\mathfrak{x}), \mathfrak{u}'_2(\mathfrak{x}), \mathfrak{u}'_3(\mathfrak{x}), \ldots, \mathfrak{u}'_k(\mathfrak{x}))$ and $\mathfrak{v}'(\mathfrak{x}) = (\mathfrak{v}'_1(\mathfrak{x}), \mathfrak{v}'_2(\mathfrak{x}), \mathfrak{v}'_3(\mathfrak{x}), \ldots, \mathfrak{v}'_k(\mathfrak{x}))$ $\ni 0 \le \mathfrak{u}'_1(\mathfrak{x}) + \mathfrak{v}'_1(\mathfrak{x}) \le 1 \forall \mathfrak{x} \in \mathfrak{x}$ and $i=1,2,\ldots$ k where $\mathfrak{u}'_1(\mathfrak{x}) = \min{\{\mathfrak{u}'_1(\mathfrak{x}), \mathfrak{t}_1\}}$ and $\mathfrak{v}'_1(\mathfrak{x}) = \max{\{\mathfrak{v}'_1(\mathfrak{x}), 1-\mathfrak{t}_1\}}$ and $\mathfrak{u}'_1(\mathfrak{x}) \ge \mathfrak{u}'_2(\mathfrak{x}) \ge \mathfrak{u}'_3(\mathfrak{x}), \ldots \ge \mathfrak{u}'_k(\mathfrak{x}) \forall \mathfrak{x}$ in \mathfrak{X}

Definition 3.2 Let $A' = \{(x, u'(x), v'(x)) : x \in X\}$ be an $(t_1, t_2) - IFMS$ and let $\alpha = (\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_k) \in [0, 1]^k$ and $\beta = (\beta_1, \beta_2, \beta_3, \dots, \beta_k) \in [0, 1]^k$ where each $\alpha_i, \beta_i \in [0, 1]$ with $0 \le \alpha_i + \beta_i \le 1 \forall i$ then the $(\alpha, \beta) - cut$ of A'_i is the set of all X such that $u'_i(x_i) \ge \alpha_i$ with the relating $v'_i(x_i) \le \beta_i \forall i$ and is meant by $[A'_i]_{(\alpha,\beta)}$ obviously it's a crisp set

Definition 3.3 Let $\mathbf{A}' = \{(\mathbf{x}, \mathbf{u}'(\mathbf{x}), \mathbf{v}'(\mathbf{x})) : \mathbf{x} \in \mathbf{X}\}$ be an $(\mathbf{t}_1, \mathbf{t}_2) - IFMS$ and let $\alpha = (\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_k) \in [0, 1]^k$ and $\beta = (\beta_1, \beta_2, \beta_3, \dots, \beta_k) \in [0, 1]^k$ where $\alpha_i, \beta_i \in [0, 1]$ with $0 \le \alpha_i + \beta_i \le 1 \forall i$ then the strong $(\alpha, \beta) - cut$ of \mathbf{A}'_i is the set of all \mathbf{X} such that $\mathbf{u}'_i(\mathbf{x}) > \alpha_i$ with the comparing $\mathbf{v}'_i(\mathbf{x}) < \beta_i \forall i$ and is indicated by $[\mathbf{A}'_i]^*_{(\alpha,\beta)}$ obviously it's likewise a crisp set

Definition 3.4 An $(\mathbf{t}_1, \mathbf{t}_2) - IFMS$ A' = { $(\mathbf{x}, \mathbf{u}'(\mathbf{x}), \mathbf{v}'(\mathbf{x})): \mathbf{x} \in \mathbf{X}$ } of a Ring R is supposed to be a $(\mathbf{t}_1, \mathbf{t}_2) - IMFSR$ of R $((\mathbf{t}_1, \mathbf{t}_2) - IFMSR)$ in the event that it fulfills the accompanying $\forall \mathbf{x}, \mathbf{y} \in \mathbf{R}$ and $(\mathbf{t}_1, \mathbf{t}_2) \in [0, 1]$

 $(i) \mathfrak{l}'(y - y) \geq \min \{ \mathfrak{l}'(y), \mathfrak{l}'(y) \} \text{ and } ^{\vee'}(y - y) \leq \max \{ ^{\vee'}(y), ^{\vee'}(y) \}$

(ii) $\mathfrak{l}'(xy) \ge \min{\mathfrak{l}'(x), \mathfrak{l}'(y)}$ and $\vee'(xy) \le \max{\{\vee'(x), \vee'(y)\}}$

Volume 13, No. 3, 2022, p. 2953 - 2965 https://publishoa.com ISSN: 1309-3452

where $\mathbf{L}' = (\mathbf{L}'_{1}(x_{3}^{c}, \mathbf{h}'_{2}(x_{3}^{c}, \mathbf{h}'_{3}(x_{3}^{c}, \mathbf{h}'_{3}(x_{$

Theorem 3.5 Let \mathbf{A}'_i and \mathbf{B}' are any two $(\mathbf{t}_1, \mathbf{t}_2) - IFMS$ of dimension k taken from a nonempty set X then $\mathbf{A}' \subseteq \mathbf{B}'$ iff $[\mathbf{A}'_i]_{(\alpha,\beta)} \subseteq [\mathbf{B}']_{(\alpha,\beta)}$ for every $\alpha, \beta \in [0,1]^k$ with $0 \le \alpha_i + \beta_i \le 1 \forall i$

Example 3.6 Consider the Ring $\{z_5, +_5, \times_5\}$ where $Z_5 = \{0, 1, 2, 3, 4\}$ define IMFS A of dimension two Z_5 by

$$\mathfrak{u}_{A_{i}}(\mathbf{x}) = \left(\mathfrak{u}_{A_{1}}(\mathbf{x}), \mathfrak{u}_{A_{2}}(\mathbf{x})\right) = \begin{cases} (0.6, 0.7) & \text{if } x = 0\\ (0.5, 0.3) & \text{if } x = 1, 3 \\ (0.4, 0.3) & \text{if } x = 2, 4 \end{cases}$$

$$\mathbb{V}_{A_{i}}(\mathbf{x}) = \left(\mathbb{V}_{A_{1}}(\mathbf{x}), \mathbb{V}_{A_{2}}(\mathbf{x})\right) = \begin{cases} (0.2, 0.1) \, if \, x = 0\\ (0.6, 0.4) \, if \, x = 1, 2\\ (0.7, 0.5) \, if \, x = 3, 4 \end{cases}$$

It is easy to verify that is A not IFMSR of Z_5 , if we take $t_1 = 0.3$ then $\mathfrak{l}_{A'_i}(\mathfrak{x}) = (0.3, 0.3 \text{ if } \mathfrak{x} = 0, 1, 2, 3, 4)$ and $t_2 = 0.7$ then $\bigvee_{A'_i}(\mathfrak{x}) = (0.7, 0.7 \text{ if } \mathfrak{x} = 0, 1, 2, 3, 4)$ A' is IMFSR. let $(\alpha, \beta) - cut$ of A' and strong $(\alpha, \beta) - cut$ of A', $\alpha_i, \beta_i \in [0,1]$ if we take $\alpha_1 = 0.1, \alpha_2 = 0.3, \beta_1 = 0.7$ and $\beta_2 = 0.6$ $\mathfrak{l}_{A'_i}(\mathfrak{x}) \ge \alpha_i, \bigvee_{A'_i}(\mathfrak{x}) \le \beta_i$ and $\mathfrak{l}_{A'_i}(\mathfrak{x}) > \alpha_i, \bigvee_{A'_i}(\mathfrak{x}) > \beta_i$ also satisfied

Definition 3.7 An $(\mathbf{t}_1, \mathbf{t}_2) - IMFSR$ of \mathbb{R} , $\mathbb{A}' = \{(\mathbf{x}, \mathbf{u}'(\mathbf{x}), \mathbf{v}'(\mathbf{x})) : \mathbf{x} \in \mathbb{R}\}$ of a Ring \mathbb{R} is defined as $(\mathbf{t}_1, \mathbf{t}_2) - IMFNSR$ of \mathbb{R} is satisfies (i) $\mathbf{u}'(\mathbf{x}\mathbf{y}) = \mathbf{u}'(\mathbf{y}\mathbf{x})$ and (ii) $\mathbf{v}'(\mathbf{x}\mathbf{y}) = \mathbf{v}'(\mathbf{y}\mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}$ and $(\mathbf{t}_1, \mathbf{t}_2) \in [0, 1]$

Definition 3.8 Let $(\mathbf{R}, +, \cdot)$ be Ring \mathbf{A}' , \mathbf{B}' be any two $(\mathbf{t}_1, \mathbf{t}_2) - IMFS$ having a similar dimension k of \mathbf{R} , then the multiple of $\mathbf{A}' \& \mathbf{B}'$ signified by $\mathbf{L}' \circ \mathbf{V}'$ is defined as

 $\mathfrak{t}' \circ \vee '(\mathfrak{x}) = \mathfrak{t}'_{\mathfrak{u} \circ \mathfrak{v}}(\mathfrak{x}), \vee_{\mathfrak{u} \circ \mathfrak{v}}'(\mathfrak{x}) \, \forall \mathfrak{x} \in \mathbb{R} \text{ where }$

 $\mathfrak{l}_{\mathfrak{u}\circ \sigma'}'(x) = \begin{cases} \max \left[\min \left\{\mathfrak{l}_{\mathfrak{u}}'(y), \mathfrak{l}_{\mathfrak{u}}'(z)\right\}: yz = x \forall y, z \in \mathbb{R} \right] \\ \text{and} \quad \mathfrak{0}_{\mathbb{R}} = (0, 0, 0, \dots \mathfrak{0}_{\mathbb{R}-\text{times}}) \text{ if } x \text{ is not expressible as } x = yz \end{cases}$

$$v'_{u \circ v'}(x) = \begin{cases} \min \left[\max \left\{ v'(y), v'(z) \right\} : yz = x \forall y, z \in \mathbb{R} \right] \\ \text{and } 0_k = (0, 0, 0, \dots 0_{k-\text{times}}) \text{ if } x \text{ is not expressible as } x = yz \end{cases}$$

$$\mathbf{t}' \circ \mathbf{v}'(\mathbf{x}) = \begin{cases} \max [\min \{\mathbf{t}'(\mathbf{y}), \mathbf{t}'(\mathbf{z})\}; \mathbf{y}_{\mathcal{Z}} = \mathbf{x} \forall \mathbf{y}, \mathbf{z} \in \mathbf{R}] \\ \min [\max \{\mathbf{v}'(\mathbf{y}), \mathbf{v}'(\mathbf{z})\}; \mathbf{y}_{\mathcal{Z}} = \mathbf{x} \forall \mathbf{y}, \mathbf{z} \in \mathbf{R}] \\ \text{and } (\mathbf{0}_{\mathbf{k}}, \mathbf{1}_{\mathbf{k}}) \text{ if } \mathbf{x} \text{ isn't expressible as } \mathbf{x} = \mathbf{y}_{\mathcal{Z}} \end{cases}$$
 That is $\mathbf{x} \in \mathbf{R}$

Volume 13, No. 3, 2022, p. 2953 - 2965 https://publishoa.com ISSN: 1309-3452

$$\mathbf{u}' \circ \mathbf{v}'(\mathbf{x}) = \begin{cases} \max [\min \{\mathbf{u}'(\mathbf{y}), \mathbf{u}'(\mathbf{z})\} : \mathbf{y}_{\mathcal{Z}} = \mathbf{x}_{\mathcal{V}} \mathbf{y}, \mathbf{z} \in \mathbb{R}] \\ \min [\max \{\mathbf{v}'(\mathbf{y}), \mathbf{v}'(\mathbf{z})\} : \mathbf{y}_{\mathcal{Z}} = \mathbf{x}_{\mathcal{V}} \mathbf{y}, \mathbf{z} \in \mathbb{R}] \\ \operatorname{and} (0,1)_{\mathbb{R}} \text{ if } \mathbf{y} \text{ isn't expressible as } \mathbf{x} = \mathbf{y}_{\mathcal{Z}} \end{cases} \text{ Where } (0,1)_{\mathbb{R}} = ((0,1), (0,1), \dots, \mathbb{R} \text{ times})$$

Definition 3.9 Let x and y be any two nonempty sets and $f: y \to y$ be a mapping. Let A' and B' any two $(t_1, t_2) - IMFS$ of X and Y separately having a similar dimension k then the image(_img) of $A' (\subseteq x)$ under the map f is meant by f(h') as $\forall y \in Y$

 $f(\mathbf{L}')(\mathbf{y}) = (\mathbf{A}'_{f(\mathbf{L}')}(\mathbf{y}), \mathbf{B}'_{f(\mathbf{L}')}(\mathbf{y}))$ Where

 $A_{f(\underline{u}')}'(\underline{v}) = \begin{cases} \max \left\{ \underline{u}'(\underline{x}) \colon \underline{x} \in f^{-1}(\underline{v}) \\ 0_{\underline{k}}, \text{ otherwise} \end{cases} \quad \text{and} \quad$

 $\mathcal{B}_{f(L)}^{'}(\mathfrak{Y}) = \begin{cases} \min \left\{ \bigvee^{'}(\mathfrak{X}) \colon \mathfrak{X} \in f^{-1}(\mathfrak{Y}) \\ 1_{k}, \text{ otherwise} \end{cases} \text{ that is } \end{cases}$

 $f(\mathtt{L}')(\mathtt{V}) = \begin{cases} \left(\max\left\{ A_{\mathtt{L}_{1}}^{'}(\mathtt{V}) : \mathtt{V} \in f^{-1}(\mathtt{V}), \min\left\{ \mathcal{B}_{\mathtt{L}_{1}}^{'}(\mathtt{V}) : \mathtt{V} \in f^{-1}(\mathtt{V}) \right\}_{\mathtt{I}=1}^{\mathtt{R}} \\ \text{and } (0,1)_{\mathtt{R}} \text{, in any case where } (0,1)_{\mathtt{R}} = (0,1), (0,1) \dots ... \mathtt{k times} \end{cases} \end{cases}$

Likewise pre_img of $\mathcal{B}'(\subseteq \mathfrak{P})$ under the map \mathfrak{f} is indicated by $\mathfrak{f}^{-1}(\mathfrak{v}')$ and it is characterized as $\mathfrak{f}^{-1}(\mathfrak{v}')(\mathfrak{x}) = (\mathbf{A}'_{\mathfrak{f}(\mathfrak{u}')}(\mathfrak{P}), \mathcal{B}'_{\mathfrak{f}(\mathfrak{u}')}(\mathfrak{P}))$, forevery $\mathfrak{x} \in X$

Proposition 3.10 If $A_1 \& B'$ are any two $(t_1, t_2) - IMFS$ of a universal set X then coming up next are hold

(i) $[A_t']_{(\alpha,\beta)} \subseteq [B']_{(\delta,\theta)}$ if $\alpha \ge \delta$ and $\beta \le \theta$

- (ii) $\mathbf{A}' \subseteq \mathbf{B}'$ Implies $[\mathbf{A}']_{(\alpha,\beta)} \subseteq [\mathbf{B}']_{(\delta,\theta)}$
- (iii) $[\mathbf{A}' \cup \mathbf{B}']_{(\alpha,\beta)} = [\mathbf{A}']_{(\alpha,\beta)} \cup [\mathbf{B}']_{(\alpha,\beta)}$ (Here equality holds if $\alpha_i + \beta_i = 1 \forall i$)
- (iv) $[A' \cap \mathcal{B}']_{(\alpha,\beta)} = [A']_{(\alpha,\beta)} \cap [\mathcal{B}']_{(\alpha,\beta)}$
- $(v) \left[\cap \mathbb{A}_{i}^{\prime} \right]_{(\alpha,\beta)} = \cap \left[\mathbb{A}_{i}^{\prime} \right]_{(\alpha,\beta)} \text{Where } \alpha, \beta \in [0,1]^{\Bbbk}$

Proposition 3.11 Let $(\mathbb{R}, +, \cdot)$ be Ring \mathbb{A}'_i , \mathbb{B}' be any two $(\mathfrak{t}_1, \mathfrak{t}_2) - IMFSR$ of \mathbb{R} and $\alpha, \beta \in [0,1]^k$ then $[\mathbb{A}'_i]_{(\alpha,\beta)}$ is a Subring of \mathbb{R} where $\mathfrak{l}'_i(e) \ge \alpha$, $\forall'_i(e) \le \beta$ and e' is the identity component of \mathbb{R}

Proof Since $\mathfrak{l}'_{i}(e) \geq \alpha \& \bigvee_{i}^{\prime}(e) \leq \beta$, $e \in [A'_{i}]_{(\alpha,\beta)}$ therefore $[A'_{i}]_{(\alpha,\beta)} \neq \emptyset$

Let $x_i, y \in [A'_i]_{(\alpha,\beta)}$ then $u'_i(x_i) \ge \alpha$, $v'_i(x_i) \le \beta$ and $u'_i(y) \ge \alpha$, $v'_i(y) \le \beta$

Volume 13, No. 3, 2022, p. 2953 - 2965 https://publishoa.com ISSN: 1309-3452

Then $\forall i \mathbf{u}'_{i}(\mathbf{x}) \geq \alpha_{i}, \mathbf{u}'_{i}(\mathbf{x}) \leq \beta_{i} \text{ and } \forall'_{i}(\mathbf{x}) \geq \alpha_{i}, \forall'_{i}(\mathbf{x}) \leq \beta_{i}$ $\Rightarrow \min\{\mathbf{u}'_{i}(\mathbf{x}), \mathbf{u}'_{i}(\mathbf{x})\} \geq \alpha_{i} \text{ and } \max\{\forall'_{i}(\mathbf{x}), \forall'_{i}(\mathbf{x})\} \leq \beta_{i} \forall i - - - - - - - - (1)$ $\Rightarrow \mathbf{u}'_{i}(\mathbf{x} - \mathbf{x}) \geq \min\{\mathbf{u}'_{i}(\mathbf{x}), \mathbf{u}'_{i}(\mathbf{x})\} \geq \alpha_{i} \text{ and } \forall'_{i}(\mathbf{x} - \mathbf{x}) \leq \max\{\forall'_{i}(\mathbf{x}), \forall'_{i}(\mathbf{x})\} \leq \beta_{i} \forall i$ And we have $\mathbf{u}'_{i}(\mathbf{x}\mathbf{x}) \geq \min\{\mathbf{u}'_{i}(\mathbf{x}), \mathbf{u}'_{i}(\mathbf{x})\} \geq \alpha_{i} \text{ and } \forall'_{i}(\mathbf{x}\mathbf{x}) \leq \max\{\forall'_{i}(\mathbf{x}), \forall'_{i}(\mathbf{x})\} \leq \beta_{i} \forall i$ Since \mathbf{A}' is an $(\mathbf{t}_{1}, \mathbf{t}_{2}) - IMFSR$ of a Ring R and by (1) $\Rightarrow \mathbf{u}'_{i}(\mathbf{x} - \mathbf{y}) \geq \alpha_{i} \text{ and } \forall'_{i}(\mathbf{x} - \mathbf{y}) \leq \beta_{i} \forall i \Rightarrow \mathbf{x} - \mathbf{y} \in [\mathbf{A}'_{i}]_{(\alpha,\beta)} \text{ and }$

$$\Rightarrow \mathbf{h}'_{i}(\mathbf{x},\mathbf{y}) \geq \alpha_{i} \text{ and } \forall'_{i}(\mathbf{x},\mathbf{y}) \leq \beta_{i} \forall i$$

 $\Rightarrow [A']_{(\alpha,\beta)}$ is a subring of R

Theorem 3.12 If A_i is a $(t_1, t_2) - IMFS$ of a Ring R, then A_i is an $(t_1, t_2) - IMFSR$ of $R \Leftrightarrow each [A_i']_{(\alpha,\beta)}$ is a subring of R for all $\alpha, \beta \in [0,1]^k$ with $0 \le \alpha_i + \beta_i \le 1 \forall i$

Proof (\Rightarrow) Let A_i be a $(t_1, t_2) - IMFSR$ of Ring R then each $[A']_{(\alpha,\beta)}$ is a subring of R for all $\alpha, \beta \in [0,1]^k$ with $0 \le \alpha_i + \beta_i \le 1 \forall i$

(\Leftarrow) Conversely, let A_1 be a $(t_1, t_2) - IMFS$ of R we must prove

(i)
$$L'(y - y) \ge \min \{L'(y), L'(y)\}$$
 and $V'(y - y) \le \max \{V'(y), V'(y)\}$

(ii) $\mathfrak{l}'(xy) \ge \min{\mathfrak{l}'(x), \mathfrak{l}'(y)}$ and $\sqrt[]{}(xy) \le \max{\sqrt[]{}(x), \sqrt[]{}(y)}$ for all $x, y \in \mathbb{R}$

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}$ and $\forall i$, let $\alpha_i = \min \{\mathbf{u}'_i(\mathbf{x}), \mathbf{u}'_i(\mathbf{y})\}$ and $\beta_i = \max \{\mathbf{v}'_i(\mathbf{x}), \mathbf{v}'_i(\mathbf{y})\}$ then $\forall i$

We have $\mathbf{u}'_{i}(\mathbf{x}) \geq \alpha_{i}, \mathbf{u}'_{i}(\mathbf{x}) \geq \alpha_{i}$ and $\mathbf{v}'_{i}(\mathbf{x}) \leq \beta_{i}, \mathbf{v}'_{i}(\mathbf{x}) \leq \beta_{i}$ that is $\forall i$

we have $\mathbf{u}'_{i}(\mathbf{x}) \geq \alpha_{i}$, $\mathbf{v}'_{i}(\mathbf{x}) \leq \beta_{i}$ and, $\mathbf{u}'_{i}(\mathbf{x}) \geq \alpha_{i}$, $\mathbf{v}'_{i}(\mathbf{x}) \leq \beta_{i}$ then $\mathbf{u}'(\mathbf{x}) \geq \alpha$, $\mathbf{v}'(\mathbf{x}) \leq \beta$ and $\mathbf{u}'(\mathbf{x}) \geq \alpha$, $\mathbf{v}'(\mathbf{x}) \leq \beta$ ie., $\mathbf{x} \in [\mathbf{A}']_{(\alpha,\beta)}$ and $\mathbf{x} \in [\mathbf{A}']_{(\alpha,\beta)}$ therefore $\mathbf{x} - \mathbf{y}$, $\mathbf{x} \in [\mathbf{A}']_{(\alpha,\beta)}$ since each $[\mathbf{A}']_{(\alpha,\beta)}$ is a Subring by hypothesis, therefore $\forall i$ we have $\mathbf{u}'_{i}(\mathbf{x} - \mathbf{y}) \geq \alpha_{i} = \min \{\mathbf{u}'_{i}(\mathbf{x}), \mathbf{u}'_{i}(\mathbf{y})\}$ and $\mathbf{v}'_{i}(\mathbf{x} - \mathbf{y}) \leq \beta_{i} = \max \{\mathbf{v}'_{i}(\mathbf{x}), \mathbf{v}'_{i}(\mathbf{x})\} \forall i$ i.e., $\mathbf{u}'(\mathbf{x} - \mathbf{y}) \geq \min \{\mathbf{u}'(\mathbf{x}), \mathbf{u}'(\mathbf{y})\}$ and $\mathbf{v}'(\mathbf{x} - \mathbf{y}) \leq \max \{\mathbf{v}'(\mathbf{x}), \mathbf{v}'_{i}(\mathbf{y})\}$

hence (i) is true

Volume 13, No. 3, 2022, p. 2953 - 2965 https://publishoa.com ISSN: 1309-3452

Now let $x_i \in \mathbb{R}$ and $\forall i$, let $\mathbf{u'}_i(x_i) = \alpha_i$ and $\mathbf{v'}_i(x_i) = \beta_i$ then $\mathbf{u'}_i(x_i) \ge \alpha_i$ and $\mathbf{v'}_i(x_i) \le \beta_i$ is true $\forall i$ then $\mathbf{u'}_i(x_i) \ge \alpha_i$ and $\mathbf{v'}_i(x_i) \le \beta_i$ thus $x_i \in [A_i']_{(\alpha,\beta)}$ also we have $\mathbf{u'}_i(x_i, \gamma) \ge \alpha_i = \min \{\mathbf{u'}_i(x_i), \mathbf{u'}_i(\gamma)\}$ and $\mathbf{v'}_i(x_i) \le \beta_i = \max \{\mathbf{v'}_i(x_i), \mathbf{v'}_i(\gamma)\} \forall i$ i.e., $\mathbf{u'}_i(x_i, \gamma) \ge \min \{\mathbf{u'}_i(x_i), \mathbf{u'}_i(\gamma)\}$ and $\mathbf{v'}_i(x_i) \le \beta_i = \max \{\mathbf{v'}_i(x_i), \mathbf{v'}_i(\gamma)\} \forall i$ i.e., $\mathbf{u'}_i(x_i, \gamma) \ge \min \{\mathbf{u'}_i(x_i), \mathbf{u'}_i(\gamma)\}$ and $\mathbf{v'}_i(\gamma) \le \max \{\mathbf{v'}_i(\gamma), \mathbf{v'}_i(\gamma)\}$

hence (ii) is true.

Now let $\mathbf{x} \in \mathbb{R} \& \forall i$ let let $\mathbf{u}'_i(\mathbf{x}) = \alpha_i \& \forall'_i(\mathbf{x}) = \beta_i$ then $\mathbf{u}'_i(\mathbf{x}) \ge \alpha_i \& \forall'_i(\mathbf{x}) \le \beta_i$ is true $\forall i$ then $\mathbf{u}'(\mathbf{x}) \ge \alpha \& \forall'_i(\mathbf{x}) \le \beta$ thus $\mathbf{x} \in [\mathbf{A}']_{(\alpha,\beta)}$ hence \mathbf{A}' is an $(\mathbf{t}_1, \mathbf{t}_2) - IMFSR$ of \mathbb{R}

Theorem 3.13 If A' and B' be any two $(t_1, t_2) - IMFSR$ of a Ring R, then $[A' \cap B']$ is also an $(t_1, t_2) - IMFSR$ of R

Proof By above theorem A_i' is an $(\mathbf{t}_1, \mathbf{t}_2) - IMFSR$ of a Ring $R \Leftrightarrow each [A']_{(\alpha,\beta)}$ is a subring of R for all $\alpha, \beta \in [0,1]^k$ with $0 \le \alpha_i + \beta_i \le 1 \forall i$ But since $[A' \cap B']_{(\alpha,\beta)} = [A']_{(\alpha,\beta)} \cap [B']_{(\alpha,\beta)}$ and both $[A']_{(\alpha,\beta)}$ and $[B']_{(\alpha,\beta)}$ are subring of R(as A' and B' are $(\mathbf{t}_1, \mathbf{t}_2) - IMFSR$) and the intersection of any two subrings is also a subring of R which implies that $[A' \cap B']_{(\alpha,\beta)}$ is a subring of R and hence $[A' \cap B']$ is an $(\mathbf{t}_1, \mathbf{t}_2) - IMFSR$ of R

Remark 3.14 The union of $(t_1, t_2) - IMFSR$ of a Ring R need not be an $(t_1, t_2) - IMFSR$ of the Ring R

Theorem 3.15 If A' and B' be any two $(t_1, t_2) - IMFSR$ of a Ring R, then $A' \circ B'$ is a $(t_1, t_2) - IMFSR$ of R $\Leftrightarrow A' \circ B' = B' \circ A'$

Proof Since A' and B' be any two $(\mathbf{t}_1, \mathbf{t}_2) - IMFSR$ of R each $[A'_{\alpha,\beta}]$ and $[B']_{(\alpha,\beta)}$ are subring of R for all $\alpha, \beta \in [0,1]^k$ With $0 \le \alpha_i + \beta_i \le 1 \forall i$ ------(1)

Suppose $\mathbf{A}' \circ \mathbf{B}'$ is a $(\mathbf{t}_1, \mathbf{t}_2) - IMFSR$ of $\mathbf{R} \Leftrightarrow$ each $[\mathbf{A}' \circ \mathbf{B}']_{(\alpha,\beta)}$ are subring of $\mathbf{R} \forall \alpha, \beta \in [0,1]^k$ with $0 \le \alpha_i + \beta_i \le 1 \forall i$. Now from (1) $[\mathbf{A}']_{(\alpha,\beta)} \circ [\mathbf{B}']_{(\alpha,\beta)}$ is a subring of \mathbf{R}

 $\Leftrightarrow [\mathbb{A}']_{(\alpha,\beta)} \circ \ [\mathbb{B}']_{(\alpha,\beta)} = \ [\mathbb{B}']_{(\alpha,\beta)} \circ [\mathbb{A}']_{(\alpha,\beta)}$

if H and K are any two subring then HK is a subring of $R \Leftrightarrow HK = KH$

$$\Leftrightarrow [A' \circ B']_{(\alpha,\beta)} = [B' \circ A']_{(\alpha,\beta)} \forall \alpha, \beta \in [0,1]^{k} \text{ with } 0 \le \alpha_{i} + \beta_{i} \le 1 \forall i \Leftrightarrow A' \circ B' = B' \circ A'$$

Theorem 3.16 If A' is any $(t_1, t_2) - IMFSR$ of a Ring R then $A' \cdot A' = A'$

Proof Since A' is a $(t_1, t_2) - IMFSR$ of a Ring R each $[A']_{(\alpha,\beta)}$ is a subring of R $\forall \alpha, \beta \in [0,1]^k$

with $0 \le \alpha_i + \beta_i \le 1 \forall i$

 $\Rightarrow [A']_{(\alpha,\beta)} \cdot [A']_{(\alpha,\beta)} = [A']_{(\alpha,\beta)} \text{ since H is a subring of } \mathbb{R} \Rightarrow \mathbb{H} \mathbb{H} = \mathbb{H}$

 $\Rightarrow [A'_i, A''_i]_{(\alpha,\beta)} = [A'_i]_{(\alpha,\beta)} \forall \alpha, \beta \in [0,1]^k \text{ with } 0 \le \alpha_i + \beta_i \le 1 \forall i$

$$\Rightarrow A' \cdot A' = A'$$

4. (t1, t2) - Intuitionistic Multi Fuzzy Cosets of a Ring

Definition 4.1 Let R be Ring and A' be a $(\mathfrak{t}_1, \mathfrak{t}_2) - IMFSR$ of a Ring R. Let $\mathfrak{x} \in \mathbb{R}$ be a fixed element then the set $\mathfrak{x} \mathfrak{A}' = \{\gamma, \mathfrak{u}_{\mathfrak{X}\mathfrak{A}'}(\mathfrak{x}), \lor_{\mathfrak{x}\mathfrak{A}'}(\mathfrak{x}); \gamma \in \mathbb{R}\}$ Where $\mathfrak{u}_{\mathfrak{X}\mathfrak{A}'}(\gamma) = \mathfrak{u}_{\mathfrak{A}'}(\mathfrak{x}^{-1}\gamma)$ and $\lor_{\mathfrak{x}\mathfrak{A}'}(\gamma) = \lor_{\mathfrak{A}'}(\mathfrak{x}^{-1}\gamma) \forall \gamma \in \mathbb{R}$ is known as the $(\mathfrak{t}_1, \mathfrak{t}_2) - Intuitionistic multi fuzzy \ coset \ of \ \mathbb{R}$ characterized by \mathfrak{A}' and \mathfrak{x} likewise the set $\mathfrak{A}'\mathfrak{x} = \{\gamma, \mathfrak{u}_{\mathfrak{A}'\mathfrak{x}}(\mathfrak{x}), : \gamma \in \mathbb{R}\}$ where $\mathfrak{u}_{\mathfrak{X}\mathfrak{A}'}(\gamma) = \mathfrak{u}_{\mathfrak{A}'}(\gamma \mathfrak{x}^{-1})$ and $\lor_{\mathfrak{x}\mathfrak{A}'}(\gamma) = \lor_{\mathfrak{A}'}(\gamma \mathfrak{x}^{-1}) \forall \gamma \in \mathbb{R}$ is known the $(\mathfrak{t}_1, \mathfrak{t}_2) - Intuitionistic multi fuzzy \ coset \ of \ \mathbb{R}$ characterized by \mathfrak{A}' and \mathfrak{x}

Remark 4.2 It clear that if \mathbf{A}' is a $(\mathbf{t}_1, \mathbf{t}_2)$ – IMFNSR of \mathbf{R} , then the $(\mathbf{t}_1, \mathbf{t}_2)$ – IMF right coset and $(\mathbf{t}_1, \mathbf{t}_2)$ – IMF left coset of \mathbf{A}' on \mathbf{R} matches and this case, we just call it as $(\mathbf{t}_1, \mathbf{t}_2)$ – IMFCS(intuitionistic multi fuzzy coset)

Example 4.3 Let R be a ring then $A'_{t} = \left\{ \mathfrak{l}_{A'}(\mathfrak{z}), \mathbb{v}_{A'}(\mathfrak{z}) : \mathfrak{z} \in \mathbb{R} | \mathfrak{l}_{A'}(\mathfrak{z}) = \mathfrak{l}_{A'}(\mathfrak{o}) \text{ and } \mathbb{v}_{A'}(\mathfrak{z}) = \mathbb{v}_{A'}(\mathfrak{o}) \right\}$ is a $(\mathfrak{t}_{1}, \mathfrak{t}_{2}) = \mathbb{I}_{A}$ IMFNSR of R

Theorem 4.4 Let \mathbf{A}' be a $(\mathbf{t}_1, \mathbf{t}_2) - IMFSR$ of a Ring R. furthermore, \mathbf{x} be any proper component of R then, at that point, the accompanying hold

(i) $x_{\lambda} [A']_{(\alpha,\beta)} = [x_{\lambda}A']_{(\alpha,\beta)}$

(ii) $[A'_{(\alpha,\beta)} x = [A'_{\alpha,\beta}] \forall \alpha, \beta \in [0,1]^k$ with $0 \le \alpha_i + \beta_i \le 1 \forall i$

 $\mathbf{Proof}\ (i)\ \mathtt{x}\ [\mathtt{A}']_{(\alpha,\beta)} = \{ \gamma \epsilon \ \mathtt{R} : \mathtt{u}_{\mathtt{A}'\mathtt{x}}(\gamma) \geq \alpha \ \text{ and } \lor_{\mathtt{A}'\mathtt{x}}(\gamma) \leq \beta \ \text{ with } 0 \leq \alpha_i + \beta_i \leq 1 \forall i$

Also $x_{\mathbf{x}}[\mathbf{A}'_{\mathbf{x}}]_{(\alpha,\beta)} = x_{\mathbf{x}} \left\{ \{ \mathbf{y} \in \mathbf{R} : \mathbf{u}_{\mathbf{A}'}(\mathbf{y}) \ge \alpha \text{ and } \mathbf{v}_{\mathbf{A}'}(\mathbf{y}) \le \beta \right\}$ ------(1)

$$= \left\{ x \mathfrak{P} \epsilon \ R \ ; \mathfrak{l}_{A'}(\mathfrak{P}) \geq \alpha \ \text{ and } \lor_{A'}(\mathfrak{P}) \leq \beta \right\}$$

Put $x_{\mathcal{F}} = \gamma \Rightarrow y = (x_{\mathcal{F}}^{-1}\gamma)$ then (1) can be written as

$$\begin{split} & x_{\lambda}[A']_{(\alpha,\beta)} = & \left\{ x_{\lambda} \in \mathbb{R} : u_{A'}(y) \ge \alpha \text{ and } \vee_{A'}(y) \le \beta \right\} \\ & = & \left\{ x_{\lambda} \in \mathbb{R} : u_{yA'}(yy) \ge \alpha \text{ and } \vee_{yA'}(yy) \le \beta \right\} \\ & = & \left[x_{\lambda}A' \right]_{(\alpha,\beta)} \end{split}$$

Therefore, $x_i [A']_{(\alpha,\beta)} = [x_i A']_{(\alpha,\beta)} \forall \alpha, \beta \in [0,1]^k$ with $0 \le \alpha_i + \beta_i \le 1 \forall i$

Volume 13, No. 3, 2022, p. 2953 - 2965 https://publishoa.com ISSN: 1309-3452

(ii) Now $[A'x]_{(\alpha,\beta)} = \{xy \in \mathbb{R} : u_{yA'}(xy) \ge \alpha \text{ and } \bigvee_{yA'}(xy) \le \beta \}$ with $0 \le \alpha_i + \beta_i \le 1 \forall i$ Also $[A']_{(\alpha,\beta)}x = \{y \in \mathbb{R} : u_{A'}(y) \ge \alpha \text{ and } \bigvee_{A'}(y) \le \beta \}$ $= \{yx \in \mathbb{R} : u_{A'}(y) \ge \alpha \text{ and } \bigvee_{yA'}(y) \le \beta \}$ ------(2)

Also (2) can be written as,

$$\begin{split} [A']_{(\alpha,\beta)} &\chi = \left\{ \chi \mathfrak{P} \epsilon \ R \ ; \mathfrak{l}_{A'}(\mathfrak{P}) \geq \alpha \ \text{ and } \lor_{A'}(\mathfrak{P}) \leq \beta \right\} \\ &= \left\{ \chi \mathfrak{P} \epsilon \ R \ ; \mathfrak{l}_{A'\chi}(\chi \mathfrak{P}) \geq \alpha \ \text{ and } \lor_{A'\chi}(\chi \mathfrak{P}) \leq \beta \right\} \\ &= [A'\chi]_{(\alpha,\beta)} \end{split}$$

Therefore, $[A']_{(\alpha,\beta)} x = [A'x]_{(\alpha,\beta)} \forall \alpha, \beta \in [0,1]^k$ with $0 \le \alpha_i + \beta_i \le 1 \forall i$

Theorem 4.5 Let A' be a $(\mathbf{t}_1, \mathbf{t}_2) - IMFSR$ of a Ring R.let \mathbf{x} , \mathbf{y} be any two elements of \mathbf{R} such that $\alpha = min\{\mathbf{u}_{A'}(\mathbf{x}), \mathbf{u}_{A'}(\mathbf{y})\} \& \beta = max\{\mathbf{v}_{A'}(\mathbf{x}), \mathbf{v}_{A'}(\mathbf{y})\}$ then the accompanying hold

- $(\mathbf{i}) \mathbf{x} \mathbf{A}' = \mathbf{y} \mathbf{A}' \Leftrightarrow \mathbf{x} \mathbf{y} \boldsymbol{\epsilon} [\mathbf{A}']_{(\alpha,\beta)}$
- (ii) $A' x = A' y \Leftrightarrow y x \in [A']_{(\alpha,\beta)}$

Proof (i) If
$$x_i A_i' = x_i A_i' \Leftrightarrow [x_i A_i']_{(\alpha,\beta)} = [x_i A_i']_{(\alpha,\beta)} \forall \alpha, \beta \in [0,1]^k$$
 with $0 \le \alpha_i + \beta_i \le 1 \forall i$

$$\Leftrightarrow x_{\delta}[A'_{\alpha,\beta}) = y_{\delta}[A'_{\alpha,\beta}]$$

 $\Leftrightarrow \ \mathfrak{X} \mathfrak{P} \mathfrak{E} [\mathfrak{A}']_{(\alpha,\beta)} \text{ Since each } [\mathfrak{A}']_{(\alpha,\beta)} \text{ is a subring of } \mathbb{R}$

(ii) If
$$A'_{x} = A'_{y} \Leftrightarrow [A'_{x}]_{(\alpha,\beta)} = [A'_{y}]_{(\alpha,\beta)} \forall \alpha, \beta \in [0,1]^{k}$$
 with $0 \le \alpha_{i} + \beta_{i} \le 1 \forall i$

 $\Leftrightarrow [\operatorname{A}']_{(\alpha,\beta)} \mathfrak{X} = [\operatorname{A}']_{(\alpha,\beta)} \mathfrak{Y}$

 $\Leftrightarrow \ {\tt X} {\tt Y} {\tt \epsilon} \ [{\tt A}']_{(\alpha,\beta)} \ {\tt Since \ each} \ [{\tt A}']_{(\alpha,\beta)} \ {\tt is \ a \ subring \ of \ R}$

5.Homomorphism of (t_1, t_2) – Intuitionistic Multi Fuzzy subring

Proposition 5.1 Let $f: \mathfrak{X} \to \mathfrak{Y}$ be an onto map if A' and \mathcal{B}' are $(\mathfrak{t}_1, \mathfrak{t}_2) - IMFS$ with dimensions k of $\mathfrak{X} \& \mathfrak{Y}$ respectively hold

(i) $f[A']_{(\alpha,\beta)} \subseteq [f(A')]_{(\alpha,\beta)}$

Volume 13, No. 3, 2022, p. 2953 - 2965 https://publishoa.com ISSN: 1309-3452

(ii) $f^{-1}([\mathcal{B}']_{(\alpha,\beta)}) = [f^{-1}(\mathcal{B}')_{(\alpha,\beta)}] \forall \alpha, \beta \in [0,1]^k \text{ with } 0 \le \alpha_i + \beta_i \le 1 \forall i$

Theorem 5.2 Let $f: \mathbb{R}_1 \to \mathbb{R}_2$ be an onto _homo and if \mathbb{A}'_1 is an $(\mathfrak{t}_1, \mathfrak{t}_2) - IMFS\mathbb{R}$ of \mathbb{R}_1 then $f(\mathbb{A}'_1)$ is an $(\mathfrak{t}_1, \mathfrak{t}_2) - IMFS\mathbb{R}$ of \mathbb{R}_2

Proof By theorem demonstrating that each is sufficient $[f(A')]_{(\alpha,\beta)}$ is a Subring of $\mathbb{R}_2 \forall \alpha, \beta \in [0,1]^k$ with $0 \le \alpha_i + \beta_i \le 1 \forall i$

Let $\Psi_1, \Psi_2 \in [f(\mathbb{A}')]_{(\alpha,\beta)}$ then,

$$\mathfrak{u}_{\mathfrak{f}(\mathbb{A}')}(\mathfrak{x}_1) \geq \alpha \ , \ \lor_{\mathfrak{f}(\mathbb{A}')}(\mathfrak{x}_1) \leq \beta \text{ and } \mathfrak{u}_{\mathfrak{f}(\mathbb{A}')}(\mathfrak{x}_2) \geq \alpha \ , \ \lor_{\mathfrak{f}(\mathbb{A}')}(\mathfrak{x}_2) \leq \beta$$

By proposition we have $f[A']_{(\alpha,\beta)} \subseteq [f(A')]_{(\alpha,\beta)} \forall A' \epsilon(t_1,t_2) - IMFSR \text{ of } R_1 \text{ , since } f \text{ is onto } \exists \& x_2 \text{ in } R_1$

such that $f(x_1) = y_1, f(x_2) = y_2$ therefore (1) can be written

as
$$\operatorname{lr}_{\mathfrak{l}(A_{i}')} \mathfrak{f}(\mathfrak{X}_{1}) \geq \alpha_{i}$$
, $\operatorname{v}_{\mathfrak{l}(A_{i}')} \mathfrak{f}(\mathfrak{X}_{1}) \leq \beta_{i} \& \operatorname{lr}_{\mathfrak{l}(A_{i}')} \mathfrak{f}(\mathfrak{X}_{2}) \geq \alpha_{i}$, $\operatorname{v}_{\mathfrak{l}(A_{i}')} \mathfrak{f}(\mathfrak{X}_{2}) \leq \beta_{i} \lor i$
 $\Rightarrow \operatorname{ln}_{A_{i}'_{i}} \mathfrak{f}(\mathfrak{X}_{1}) \geq \operatorname{ln}_{\mathfrak{l}(A_{i}'_{i})} \mathfrak{f}(\mathfrak{X}_{1}) \geq \alpha_{i}$, $\operatorname{v}_{A_{i}'_{i}} \mathfrak{f}(\mathfrak{X}_{1}) \leq \operatorname{v}_{\mathfrak{l}(A_{i}'_{i})} \mathfrak{f}(\mathfrak{X}_{2}) \leq \beta_{i} \lor i$
 $\stackrel{i}{\cong} \operatorname{ln}_{A_{i}'_{i}} \mathfrak{f}(\mathfrak{X}_{2}) \geq \operatorname{ln}_{\mathfrak{l}(A_{i}'_{i})} \mathfrak{f}(\mathfrak{X}_{2}) \geq \alpha_{i}$, $\operatorname{v}_{A_{i}'_{i}} \mathfrak{f}(\mathfrak{X}_{2}) \leq \operatorname{v}_{\mathfrak{l}(A_{i}'_{i})} \mathfrak{f}(\mathfrak{X}_{2}) \leq \beta_{i} \lor i$
 $\Rightarrow \operatorname{ln}_{A_{i}'_{i}} \mathfrak{f}(\mathfrak{X}_{1}) \geq \alpha_{i}$, $\operatorname{v}_{A_{i}'_{i}} \mathfrak{f}(\mathfrak{X}_{1}) \leq \beta_{i}$ and $\operatorname{ln}_{A_{i}'_{i}} \mathfrak{f}(\mathfrak{X}_{2}) \geq \alpha_{i}$, $\operatorname{v}_{A_{i}'_{i}} \mathfrak{f}(\mathfrak{X}_{2}) \leq \beta_{i} \lor i$
 $\Rightarrow \operatorname{ln}_{A_{i}'_{i}} \mathfrak{f}(\mathfrak{X}_{1}) \geq \alpha_{i}$, $\operatorname{v}_{A_{i}'_{i}} \mathfrak{f}(\mathfrak{X}_{1}) \leq \beta_{i}$ and $\operatorname{ln}_{A_{i}'_{i}} \mathfrak{f}(\mathfrak{X}_{2}) \geq \alpha_{i}$, $\operatorname{v}_{A_{i}'_{i}} \mathfrak{f}(\mathfrak{X}_{2}) \leq \beta_{i} \lor i$
 $\Rightarrow \operatorname{ln}_{A_{i}'(\mathfrak{X}_{1}) \geq \alpha_{i}$, $\operatorname{v}_{A_{i}'_{i}} \mathfrak{f}(\mathfrak{X}_{1}) \leq \beta_{i}$ and $\operatorname{ln}_{A_{i}'_{i}} \mathfrak{f}(\mathfrak{X}_{2}) \leq \alpha_{i}$, $\operatorname{v}_{A_{i}'_{i}} \mathfrak{f}(\mathfrak{X}_{2}) \leq \beta_{i} \lor i$
 $\Rightarrow \operatorname{ln}_{A_{i}'(\mathfrak{X}_{1}), \operatorname{ln}_{A_{i}'(\mathfrak{X}_{2}) \leq \beta$ and $\operatorname{ln}_{A_{i}'(\mathfrak{X}_{2}) \geq \alpha_{i}$, $\operatorname{v}_{A_{i}'(\mathfrak{X}_{2}) \leq \beta$
 $\Rightarrow \operatorname{ln}_{A_{i}'(\mathfrak{X}_{1}), \operatorname{ln}_{A_{i}'(\mathfrak{X}_{2}) \geq \alpha_{i}$ and $\operatorname{ln}_{A_{i}'(\mathfrak{X}_{2}) \geq \alpha_{i}$ and
 $\operatorname{v}_{A_{i}'(\mathfrak{X}_{1}, \mathfrak{X}_{2}) \geq \min \{\operatorname{ln}_{A_{i}'(\mathfrak{X}_{1}), \operatorname{ln}_{A_{i}'(\mathfrak{X}_{2})\} \geq \alpha_{i}$ and
 $\operatorname{v}_{A_{i}'(\mathfrak{X}_{1}, \mathfrak{X}_{2}) \geq \min \{\operatorname{ln}_{A_{i}'(\mathfrak{X}_{1}), \operatorname{ln}_{A_{i}'(\mathfrak{X}_{2})\} \leq \beta$
Since $A_{i}' (\mathfrak{t}_{1}, \mathfrak{t}_{2}) - IMFSR$ of \mathbb{R}_{1}
 $\Rightarrow \operatorname{ln}_{A_{i}'(\mathfrak{X}_{1}, \mathfrak{X}_{2}) \geq \alpha$ and $\operatorname{v}_{A_{i}'(\mathfrak{X}_{1}, \mathfrak{X}_{2}) \leq \beta$
 $\Rightarrow \mathfrak{X}_{1}, \mathfrak{X}_{2} \mathfrak{e}[A_{i}']_{(\alpha,\beta)} \Rightarrow \mathfrak{f}(\mathfrak{X}_{1}, \mathfrak{X}_{2}) \mathfrak{e}[\mathfrak{f}(A_{i}')]_{(\alpha,\beta)} \Rightarrow \mathfrak{s}$ subring of $\mathbb{R}_{2} \lor \alpha, \beta \mathfrak{e}[0,1]^{\mathbb{R}}$

Volume 13, No. 3, 2022, p. 2953 - 2965 https://publishoa.com ISSN: 1309-3452

 $\Rightarrow f(A')\epsilon(t_1,t_2) - IMFSR \text{ of } R_2$

Corollary 5.3 If $f: \mathbb{R}_1 \to \mathbb{R}_2$ be a _homo of a ring \mathbb{R}_1 onto a ring \mathbb{R}_2 and $\{A'_i : i \in I\}$ be a group of $(\mathfrak{t}_1, \mathfrak{t}_2) - IMFS\mathbb{R}$ of \mathbb{R}_1 then $\mathfrak{f}(\cap A'_i)$ is a $(\mathfrak{t}_1, \mathfrak{t}_2) - IMFS\mathbb{R}$ of \mathbb{R}_2

Theorem 5.4 If $f: \mathbb{R}_1 \to \mathbb{R}_2$ be _homo of a ring \mathbb{R}_1 into a ring \mathbb{R}_2 . If \mathcal{B}' is an $(\mathfrak{t}_1, \mathfrak{t}_2) - IMFS\mathbb{R}$ of \mathbb{R}_2 then $\mathfrak{f}^{-1}(\mathcal{B}')$ is also a $(\mathfrak{t}_1, \mathfrak{t}_2) - IMFS\mathbb{R}$ of \mathbb{R}_1

Proof By hypothesis, it is sufficient to demonstrate that $[f^{-1}(\mathcal{B}')]_{(\alpha,\beta)}$ is a subring of \mathbb{R}_1 with $0 \le \alpha_i + \beta_i \le 1 \forall i$ let $x_1, x_2 \ge \alpha, u_{f^{-1}(\mathcal{B}')}(x_1) \ge \alpha, \forall_{f^{-1}(\mathcal{B}')}(x_1) \le \beta$ and

 $\mathfrak{l}_{\mathfrak{f}^{-1}(\mathfrak{G}')}(\mathfrak{X}_2) \geq \alpha$, $\mathbb{V}_{\mathfrak{f}^{-1}(\mathfrak{G}')}(\mathfrak{X}_2) \leq \beta$

$$\Rightarrow \mathfrak{l}_{(\mathfrak{G}')}(\mathfrak{f}(\mathfrak{X}_2)) \ge \alpha, \vee_{(\mathfrak{G}')}(\mathfrak{f}(\mathfrak{X}_2)) \le \beta$$

 $\Rightarrow \min\{\mathfrak{u}_{\mathcal{B}'}\mathfrak{f}(\mathfrak{X}_1),\mathfrak{u}_{\mathcal{B}'}\mathfrak{f}(\mathfrak{X}_2)\} \ge \alpha \& \max\{\mathsf{v}_{\mathcal{B}'}\mathfrak{f}(\mathfrak{X}_1),\mathsf{v}_{\mathcal{B}'}\mathfrak{f}(\mathfrak{X}_2)\} \le \beta$

$$\Rightarrow \mathfrak{u}_{\mathcal{B}'}(\mathfrak{f}(\mathfrak{X}_1)\mathfrak{f}(\mathfrak{X}_2)) \geq \min \{\mathfrak{u}_{\mathcal{B}'}\mathfrak{f}(\mathfrak{X}_1), \mathfrak{u}_{\mathcal{B}'}\mathfrak{f}(\mathfrak{X}_2)\} \geq \alpha \&$$

$$\forall_{\beta'}(f(x_1) f(x_2)) \le max\{u_{\beta'}f(x_1), u_{\beta'}f(x_2)\} \le \beta$$

Since
$$\mathcal{B}' \epsilon(\mathbf{t}_1, \mathbf{t}_2) - IMFS \mathbf{R}$$
 of \mathbf{R}

$$\Rightarrow (f(x_{1}) f(x_{2})) \epsilon[\mathcal{B}']_{(\alpha,\beta)} \Rightarrow f(x_{1}x_{2}) \epsilon[\mathcal{B}']_{(\alpha,\beta)} \text{ since } f \text{ is_homo}$$

$$\Rightarrow \chi_1 \chi_2 \in \mathfrak{f}^{-1}[[\mathcal{B}']_{(\alpha,\beta)}] = [\mathfrak{f}^{-1}[\mathcal{B}']_{(\alpha,\beta)}]$$

 $\Rightarrow \chi_1 \chi_2 \ \epsilon \ [\mathfrak{f}^{-1}[\mathcal{B}']_{(\alpha,\beta)}] \Rightarrow \ \mathfrak{f}^{-1}[\mathcal{B}']_{(\alpha,\beta)} \text{ is a subring } \mathbb{R}_1$

$$\Rightarrow f^{-1}[B']_{(\alpha,\beta)}$$
 is a $(t_1, t_2) - IMFSR$ of R_1

Theorem 5.5 If $f: \mathbb{R}_1 \to \mathbb{R}_2$ be a Surjective ring _homo and if \mathbb{A}' is a $(\mathfrak{t}_1, \mathfrak{t}_2) - IMFNS\mathbb{R}$ of a ring \mathbb{R}_1 then $f(\mathbb{A}')$ is also $(\mathfrak{t}_1, \mathfrak{t}_2) - IMFNS\mathbb{R}$ of a ring \mathbb{R}_2

Proof Since A_1^{\prime} is a $(t_1, t_2) - IMFNSR$ of a ring R_1 , let $y_1, y_2 \in R_2$ be any element then there exist

same $x_1, x_2 \in \mathbb{R}_1$ such that $f(x_1) = y_1 \& f(x_2) = y_2$.

Now $(f(A'))(\Psi_1\Psi_2) = (\mathfrak{l}_{A'}(\Psi_1\Psi_2), \ \vee_{A'}(\Psi_1\Psi_2))$ then prove that

 $u_{\mathfrak{f}(A')}(\mathfrak{Y}_{1}\mathfrak{Y}_{2}) = u_{\mathfrak{f}(A')}(\mathfrak{Y}_{2}\mathfrak{Y}_{1}) \text{ and } \lor_{\mathfrak{f}(A')}(\mathfrak{Y}_{1}\mathfrak{Y}_{2}) = \lor_{\mathfrak{f}(A')}(\mathfrak{Y}_{2}\mathfrak{Y}_{1})$

Volume 13, No. 3, 2022, p. 2953 - 2965 https://publishoa.com ISSN: 1309-3452

$$\begin{split} & u_{\uparrow(A'_{i})}(\psi_{1}\psi_{2}) = u_{\uparrow(A'_{i})}(f(x_{1})f(x_{2})) = u_{\uparrow(A'_{i})}(f(x_{1}x_{2})) = u_{A'_{i}}(x_{1}x_{2}) \geq \min\{u_{A'}(x_{1}), u_{A'}(x_{2})\} \forall x_{1}, x_{2} \in \mathbb{R}_{1} \text{ Such that} \\ & f(x_{1}) = \psi_{1} \text{ and } f(x_{2}) = \psi_{2} \text{ hence } u_{\uparrow(A'_{i})}(\psi_{1} - \psi_{2}) \text{ is an upperbound for all } \min\{u_{A'_{i}}(x_{1}), u_{A'_{i}}(x_{2})\} \forall x_{1}, x_{2} \in \mathbb{R}_{1} \text{ since} \\ & \max\{\min\{u_{A'_{i}}(x_{1}), u_{A'_{i}}(x_{2})\}\} \text{ is least upper bound } u_{A'_{i}}(x_{1}x_{2}) \geq \max\{\min\{u_{A'_{i}}(x_{1}), u_{A'_{i}}(x_{2})\}\} \end{split}$$

$$= \min\left\{\max\left\{u_{A'_{i}}(y_{1}):f(y_{1}) = y_{1}\right\}, \max\left\{u_{A'_{i}}(y_{2}):f(y_{2}) = y_{2}\right\}\right\}$$

 $= \min \{ \mathfrak{lu}_{\mathfrak{f}(A_{i})}(\mathfrak{y}_{1}), \mathfrak{lu}_{\mathfrak{f}(A_{i})}(\mathfrak{y}_{2}) \}$

$$\operatorname{tu}_{\mathfrak{f}(A_{i}')}(\mathfrak{X}_{1}\mathfrak{X}_{2}) \geq \min\{\operatorname{tu}_{\mathfrak{f}(A_{i}')}(\mathfrak{f}_{1}),\operatorname{tu}_{\mathfrak{f}(A_{i}')}(\mathfrak{f}_{2})\}$$

$$u_{\mathfrak{f}(A_{i}'_{i})}\mathfrak{f}(X_{2}X_{1}) = u_{\mathfrak{f}(A_{i}'_{i})}(\mathfrak{f}(X_{2})\mathfrak{f}(X_{1})) = u_{\mathfrak{f}(A_{i}'_{i})}(\mathfrak{I}_{2}\mathfrak{I}_{1})$$

Likewise we can prove $\vee_{\mathfrak{f}(A'_i)}(\mathfrak{q}_1\mathfrak{q}_2) = \vee_{\mathfrak{f}(A'_i)}(\mathfrak{q}_2\mathfrak{q}_1)$

Hence the theorem

References

[1] Atanassov. K.T., "Intuitionistic fuzzy sets,"Fuzzy sets and fuzzy systems, 20(1), 87-96(1986)

[2] Atanassov. K.T., "New operation defined Over the intuitionistic fuzzy sets,"Fuzzy sets and fuzzy systems,61(2),137-142(1994)

[3] Basnet.D.K. & Sarma.N.K,"A note on Intuitionistic Fuzzy Equivalence Relation", International Mathematical Forum, Vol.5, No.67, 3301-3307 (2010).

[4] Beaula.T. & Christinal Gunaseeli.S(2014),"On Intuitionistic Fuzzy Metric Spaces", International Journal Of Applications of Fuzzy Sets and Artificial Intelligence,4,83-93(2014)

- [5] Biswas.R, Intuitionistic fuzzy subgroups, Math. Forum 10 (1989) 37-46.
- [6] Das.P.S,"Fuzzy groups and level subgroups,"Journal Pf Mathematical Analysis and

Applications, 84, 262-269 (1981)

[7] J.A.Goguen, L-fuzzy set, Journal of Mathematical analysis and Applications, 18 (1967), 145-174.

[8] Hur.K, Jang.S.Y and Kang.H.W,"Intuitionistic Fuzzy Subgroups and Fuzzy subrings", Honam Math J,25(1):19-41(2003)

[9] Kul.H, and Su Youn.J,"The Lattice of Intuitionistic Fuzzy Congruences ",International

Mathematical Forem, Vol.1, No.5, 211-236 (2006).

[10] Mukharjee.N.P, and Bhattacharya.P,"Fuzzy Normal Subgroups and Fuzzy Cosets", Information Sciences, 34, 225-239

[11] Muthuraj.R, and Balamurugan.S", A Study on Intuitionistic Multi-Fuzzy Subgroups",

International Journal of Applications of Fuzzy sets and Artificial Intelligence, Vol.4, 153-172

(2014)

[12] Muthuraj.R, and Balamurugan.S", Multi-Fuzzy Group and its level Subgroup,

Gen.Math.Notes,Vol.17,No.1,pp.74-81 (2013)

[13] Rosenfeld.A,"Fuzzy Group", Journal Of Mathematical Analysis and Applications, 3, 12-17 (1971).

Volume 13, No. 3, 2022, p. 2953 - 2965 https://publishoa.com ISSN: 1309-3452

[14] Sabu.S,Ramakrishnan.T.V,"MultiFuzzy Sets",International Mathematical Forum,50,2471-2476(2010)

[15] Sabu.S and Ramakrishnan.T.V,"Multi-Fuzzy Topology", International Journal of Applied

Mathematics, Vol.24, No.1, 117-129, (2011)

[16]Sabu.S,Ramakrishnan.TV,"MultiFuzzySubGroups",Int.J.Contemp.Math.Sciences,Vol.6,No.8,365-372(2011)

[17]Sharma.P.K, "t-intuitionistic fuzzy subrings", International journal of Mathematical

Sciences, Vol.11, No.3-4, pp-265-272, July-December 2012

[18]Sharma.P.K, "t-intuitionistic fuzzy Quotient group", Advances in Fuzzy Mathematics, 7(1):1-9(2012)

[19] L. A. Zadeh, Fuzzy Set, Information and Control 8 (1965) 338-353

[20] M. F. Marshdeh and A. R. Salleh, Intuitionistic fuzzy rings, Int. J. Math. Algebra 5 (1) (2011) 37-47.

[21] P.Dheena and B. Anitha "Generalization of t-intuitionistic fuzzy subring" Annals of Fuzzy Mathematics and Informatics Volume 11, No. 6, (June 2016), pp. 905-921

[22] Sinoj.T.K, and Sunil.J.J.,"Intuitionistic Fuzzy Multi-Sets",International Journal Of EngineeringSciences and Innovaive Technology,Vol.2,No.6,1-24 (2013)

[23] Dr.KR.Balasubramanian, and K.Sakthivel.," t-Intuitionistic Multi-Fuzzy Subring Of A Ring" Journal of Applied Science and Computations Volume VI, Issue III, March/2019

[24]P. K. Sharma, t-Intuitionistic fuzzy subgroups, Int. J. Fuzzy Mathematics and Systems 2 (3)(2012) 233-243.