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ABSTRACT 

Titanium's enhanced mechanical properties, corrosion resistance, and biocompatibility have expanded its usage in 

biomedical applications. Using the response surface approach, the present study optimizes the process parameters during 

the machining of titanium alloys: Ti-6Al-7Nb utilized in dental implantation by wire electrical discharge machining 

(WEDM) (RSM).  WEDM parameters such as servo voltage, pulse-on time, pulse-off time, and wire feed rate were 

modified to determine their influence on the cut quality of Ti-6Al-7Nb utilizing surface roughness and material removal 

rate as response parameters. 
 

I.  INTRODUCTION  

Titanium alloys are one of the most used materials for biocompatibility. Because of their high mechanical and corrosion 

resistance, titanium and titanium alloys have been used as implant materials [1]. Commercially in the early stage, pure 

titanium (CP-Ti) was the most commonly used in dental as biomaterial, despite its low strength, refining issues, and poor 

abrasion resistance. That's why long-term use of titanium in dental implants and detachable partial dentures is out of the 

question [4]. Ti-6Al-4V alloy, first designed as an aeronautical material, has been evaluated as a substitute for CP-Ti due 

to its good mechanical qualities and adequate corrosion resistance [5]; nevertheless, the cytotoxicity of elemental 

Vanadium remains debatable [6]. Consequently, several studies have demonstrated that the Vanadium and Aluminum 

ions produced by this ternary alloy might generate cytotoxic effects and neurological problems, respectively [7]. In 

addition, this alloy has transferred adequate strain to neighboring bones over time, resulting in bone resorption and, 

ultimately, implant loosening [8]. Vanadium-free β-alloys, particularly Ti-6Al-7Nb alloy [9], were also employed as 

implants due to their enhanced mechanical properties, corrosion resistance, and biocompatibility. It has been studied as a 

novel alloy for complete hip prosthesis, designed for orthopedic applications as a wrought material. Niobium was 

replaced with Vanadiums, as it has similarly sustained the transition in the binary system, which is essential for forming 

the two-phase structure. As a result, Niobium was chosen as the third component of the titanium, aluminum, and niobium 

alloy [10] to generate the desired microstructure. WEDM is an unconventional machining technique used to cut any 

conductive material. Elect thermal machining can generate intricate forms in a single setup while maintaining incredible 

precision and accuracy. During this process, the material will deteriorate by using successive sparks. Discharges occur 

between the workpiece and a moving wire electrode immersed in a fluid that acts as dielectric media.  

A Computer Numerical Control is used to alter the mobility of the wire (CNC). Because it does not leave a blemish on 

the workpiece, wire electrical discharge machining (WEDM) is suitable for cutting both thin and thick components. 

Consequently, WEDM is recognized as a robust machining process and is widely utilized in numerous industries, 

including the tool and die, aircraft, automobile, and medical sectors [11]. Because WEDM is a complex stochastic 

process mechanism, even a slight variation in one of the process parameters can affect the responses, including material 

removal rate, kerf width, surface roughness, and other characteristics. Therefore, it is vital to pick the optimal process 

parameter combinations. Response Surface Methodology (RSM) [12] predominantly utilizes the statistical regression 

technique since it is practical, inexpensive, and relatively straightforward. It is required to construct experimental designs 

for many parameters to represent and evaluate each parameter's influence on the strategy function (or functions). George 

E. P. Box and Donald Behnken created the box-Behnken design (BBD) in 1990 [13], which requires three levels for each 

element, and has fewer total runs than Central Composite Design (CCD). Face-centered CCD is the most widely 

employed RSM in existing research [14]. The benefit of RSM is its ability to minimize prediction error and enhance 

estimates utilizing polynomial equations. RSM is used to build first and second-order polynomial equations. Typically, 

this polynomial model is referred to as a regression model. Equations 1 and 2 express the first and second-order models, 

respectively. 

𝑧 = 𝛽𝑜 + ∑ 𝛽𝑢𝑚𝑢
𝑘
𝑢=𝑖 + 𝛿             1 

𝑧 = 𝛽𝑜 + ∑ 𝛽𝑢𝑚𝑢
𝑘
𝑢=𝑖 + ∑ 𝛽𝑢𝑢𝑚𝑢

2𝑘
𝑢=1 + ∑ ∑ 𝛽𝑢𝑣𝑚𝑢𝑚𝑣

𝑘
𝑣𝑢 + 𝛿         2 
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In the above equation,  𝛽𝑢 , 𝛽𝑢𝑢, 𝛽𝑢𝑣  are the linear, quadratic, and interaction terms' coefficients, respectively, where z is 

the response function. The terms 𝑚𝑢
 and 𝑚𝑣

 are independent variables. Most research employed quadratic equations to 

create models [15] because a polynomial or quadratic equation of the second order is adequate for the optimal zone, and 

the value is near the response region. Many research works are carried out on modeling, and optimization studies in 

machining have applied the response surface technique and forecasted the chip-tool contact temperature using RSM. 

Montgome [16] improved power consumption in their study using Taguchi and central composite design (CCD). They 

used the first-order model to determine the significant factors and the second-order model to illustrate the effect of the 

interaction between variables. Various studies [17] by scholars have used RSM regression models to predict responses 

from non-conventional approaches like neural networks. When four components at three levels are studied, they conclude 

RSM is the superior method for predicting and optimizing the effect of parameters compared to the Taguchi method. The 

RSM presents statistically planned experiments for concluding data. In RSM, the second-order model is the most 

commonly employed approximation polynomial model. Common second-order model structures include the 3k factorial, 

Boehlert, Box-Behnken, and CCD. The survey finds that the second-order model is the most commonly used 

approximating polynomial model in RSM; hence, the Box-Behnken is the optimal design for data optimization in the 

manufacture of dental implants. Box and Behnken created and developed the Box-Behnken Design [18]. The Box-

Behnken design gives three evenly spaced levels (1, 0, +1) for each variable). The required number of experiments is 

based on the equation x = 2l(l1) + p, where l is the number of variables and p is the number of points at the center. The 

design is shown as a cube; all points are located on a 2-radius sphere. In addition, this design has no points at the vertices 

of the zone formed by the top and lower bounds of each variable [19]. With 13 experimental points, the Box-Behnken 

design for three variables optimizes through experimentation. 

Regarding the number of necessary runs, this design is more inexpensive and efficient than 3k designs with 27 trials. 

Therefore, this strategy is advantageous for avoiding tests conducted under severe conditions, which may provide 

undesirable findings. However, it is unhelpful in cases where we want to know the extreme reactions. The Box-Behnken 

design has been utilized to determine the appropriate experimental settings, optimizing many processes' performance. 

II. MATERIALS  

The performance characteristics for Ti-6Al-7Nb were evaluated utilizing wire cut EDM with a 10mm thickness and six 

distinct process settings. Brass wire with a wire diameter of 0.25mm was employed as the electrode. Distilled Water was 

used as a coolant. Proper selection of machining variables plays a significant role in material removal and surface finish. 

The RSM methodology was utilized in the present work, an effective technique for designing performance parameters. 

RSM was used to evaluate the optimum machining settings for minimal surface roughness and maximum material 

removal rate using six process variables, including peak current, pulse on time, the pulse of time, peak current pulse on 

time, and servo voltage. The selected three levels as shown in the table 1. According to the RSM quality designing 

concept for the BBD method, 52 experiments are selected and presented in the table 2. The extents of these process 

variables were chosen based on reviewing the relevant literature, machine capabilities, and preliminary testing. 

Experiments utilizing the one variable at a time method. Table 1 lists the stages of several processes of the parameters 

and their respective labels. Using a scanning probe microscope, the surface roughness was evaluated. 

 

Table 1 Levels of process parameters 

 

S.No Symbols Input factors Level- I Level - II Level -III Units 

1 A Pulse on Time (Ton) 114 118 122 μs 

2 B Pulse on Time (Toff) 42 48 54 μs 

3 C Peak current (IP) 140 180 220 Ampere 

4 D Servo voltage(SV) 45 55 65 Volt 

5 E Wire feed rate (WF) 5 8 12 m/min 

6 F Wire Tension(WT) 550 1000 1350 gram 
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Table 2: BBD with six parameters, as well as experimental MRR and SR 

 

 
Factor Response 

Std A:Ton 

μs 

B:Toff 

μs 

C:IP 

Ampere 

D:SV 

Volt 

E:WF 

m/min 

F:WT 

gram 

MRR 

mm3/min 

SR 

μm 
 

1 118 59 210 55 6 550 0.588 2.98 

2 118 47 210 55 12 550 1.024 3.29 

3 118 59 210 55 6 1450 0.604 2.99 

4 118 59 170 55 12 1000 0.547 2.81 

5 118 53 210 55 9 1000 0.707 3.15 

6 114 53 170 55 9 1450 0.437 3.01 

7 118 53 250 45 9 1450 0.837 3.39 

8 122 47 210 65 9 1000 1.012 3.5 

9 122 53 170 55 9 550 0.842 3.27 

10 114 59 210 65 9 1000 0.407 2.65 

11 122 53 210 65 12 1000 0.822 3.32 

12 118 59 250 55 12 1000 0.804 3.07 

13 118 59 170 55 6 1000 0.553 2.79 

14 118 53 250 45 9 550 0.841 3.34 

15 118 47 170 55 6 1000 0.971 3.25 

16 114 59 210 45 9 1000 0.492 2.82 

17 122 59 210 65 9 1000 0.804 3.16 

18 118 53 210 55 9 1000 0.668 3.15 

19 118 59 210 55 12 550 0.601 3 

20 114 53 250 55 9 1450 0.552 3.01 

21 122 47 210 45 9 1000 1.292 3.78 

22 118 53 210 55 9 1000 0.585 3.11 

23 114 53 210 45 12 1000 0.533 2.85 

24 118 53 250 65 9 1450 0.79 3.18 

25 118 59 250 55 6 1000 0.811 3.06 

26 118 53 210 55 9 1000 0.671 3.19 

27 122 59 210 45 9 1000 1.007 3.41 

28 118 47 250 55 6 1000 1.032 3.38 

29 118 53 210 55 9 1000 0.67 3.15 

30 122 53 250 55 9 1450 1.064 3.62 

31 118 47 210 55 12 1450 0.974 3.32 

32 118 53 170 65 9 550 0.556 2.97 

33 114 47 210 65 9 1000 0.507 3.1 
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34 114 53 250 55 9 550 0.547 2.98 

35 114 53 170 55 9 550 0.418 2.99 

36 118 59 210 55 12 1450 0.598 2.98 

37 114 47 210 45 9 1000 0.87 3.2 

38 118 53 170 45 9 550 0.647 3.28 

39 114 53 210 65 12 1000 0.441 2.78 

40 122 53 210 45 6 1000 1.087 3.43 

41 118 47 250 55 12 1000 1.042 3.48 

42 118 47 170 55 12 1000 0.966 3.25 

43 122 53 250 55 9 550 1.152 3.72 

44 122 53 210 65 6 1000 0.821 3.33 

45 114 53 210 65 6 1000 0.432 2.73 

46 118 53 210 55 9 1000 0.709 3.18 

47 118 47 210 55 6 1450 0.993 3.35 

48 122 53 210 45 12 1000 1.087 3.44 

49 118 47 210 55 6 550 1.026 3.31 

50 118 53 170 45 9 1450 0.637 3.21 

51 114 53 210 45 6 1000 0.541 2.83 

52 122 53 170 55 9 1450 0.835 3.25 

53 118 53 250 65 9 550 0.785 3.19 

54 118 53 170 65 9 1450 0.55 2.99 

 

III. RESULTS  

The actual observations, predicted values, and various calculated parameters for adequacy, response surface equations, 

and correlation coefficient values are presented in the proper sequence.  

The variance analysis findings for the introduced models are displayed in Table 3. The corresponding P-value for the 

model is statistically significant.  

 

Table 3: The effect of Process parameters on MRR 

 

Source Sum of Squares df Mean Square F-value p-value 
 

Model 2.57 27 0.0951 30.72 < 0.0001 significant 

A-Ton 0.2182 1 0.2182 70.53 < 0.0001 
 

B-Toff 0.3666 1 0.3666 118.50 < 0.0001 
 

C-IP 5.217E-06 1 5.217E-06 0.0017 0.9676 
 

D-SV 0.0774 1 0.0774 25.00 < 0.0001 
 

E-WF 0.0008 1 0.0008 0.2503 0.6210 
 

F-WT 0.0008 1 0.0008 0.2640 0.6117 
 

AB 0.0000 1 0.0000 0.0091 0.9248 
 

AC 0.0109 1 0.0109 3.52 0.0721 
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AD 0.0083 1 0.0083 2.69 0.1130 
 

AE 0.0000 1 0.0000 0.0000 1.0000 
 

AF 0.0018 1 0.0018 0.5721 0.4562 
 

BC 0.0179 1 0.0179 5.77 0.0237 
 

BD 0.0158 1 0.0158 5.09 0.0327 
 

BE 6.250E-06 1 6.250E-06 0.0020 0.9645 
 

BF 0.0012 1 0.0012 0.3723 0.5470 
 

CD 0.0007 1 0.0007 0.2272 0.6376 
 

CE 0.0000 1 0.0000 0.0079 0.9298 
 

CF 0.0004 1 0.0004 0.1229 0.7287 
 

DE 0.0000 1 0.0000 0.0131 0.9098 
 

DF 0.0000 1 0.0000 0.0068 0.9348 
 

EF 0.0002 1 0.0002 0.0524 0.8208 
 

A² 0.0064 1 0.0064 2.08 0.1616 
 

B² 0.1157 1 0.1157 37.40 < 0.0001 
 

C² 0.0154 1 0.0154 4.97 0.0347 
 

D² 2.716E-06 1 2.716E-06 0.0009 0.9766 
 

E² 0.0079 1 0.0079 2.55 0.1224 
 

F² 0.0000 1 0.0000 0.0040 0.9500 
 

Residual 0.0804 26 0.0031 
   

Lack of Fit 0.0703 21 0.0033 1.66 0.3019 
not 

significant 

Pure Error 0.0101 5 0.0020 
   

Cor Total 2.65 53 
    

 

It also displays in table 4, the R2-statistic value and the corrected R2-statistic value. R2-statistic is defined as the 

proportion of variance. 

 

Table 4: R2 values on MRR 

 

Source Std. Dev. R² Adjusted R² Predicted R² PRESS 
 

Linear 0.0809 0.8838 0.8689 0.8484 0.4013 
 

2FI 0.0885 0.9053 0.8432 0.7292 0.7166 
 

Quadratic 0.0556 0.9696 0.9380 0.8557 0.3821 Suggested 

Cubic 0.0454 0.9938 0.9588 0.3798 1.64 Aliased 

 

The variance analysis findings for the introduced models are displayed in Table 5. The corresponding P-value for the 

model is statistically significant. 

 

 

 

 

Table 5: The effect of Process parameters on SR 
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Source Sum of Squares df Mean Square F-value p-value 
 

Model 3.11 27 0.1152 49.64 < 0.0001 significant 

A-Ton 0.1506 1 0.1506 64.88 < 0.0001 
 

B-Toff 0.1832 1 0.1832 78.95 < 0.0001 
 

C-IP 0.0073 1 0.0073 3.15 0.0876 
 

D-SV 0.0482 1 0.0482 20.75 0.0001 
 

E-WF 0.0036 1 0.0036 1.54 0.2264 
 

F-WT 4.870E-07 1 4.870E-07 0.0002 0.9886 
 

AB 0.0018 1 0.0018 0.7756 0.3865 
 

AC 0.0861 1 0.0861 37.11 < 0.0001 
 

AD 0.0060 1 0.0060 2.59 0.1197 
 

AE 0.0006 1 0.0006 0.2639 0.6118 
 

AF 0.0036 1 0.0036 1.56 0.2233 
 

BC 0.0036 1 0.0036 1.56 0.2233 
 

BD 0.0002 1 0.0002 0.0862 0.7714 
 

BE 6.250E-06 1 6.250E-06 0.0027 0.9590 
 

BF 0.0008 1 0.0008 0.3447 0.5622 
 

CD 0.0036 1 0.0036 1.56 0.2233 
 

CE 0.0010 1 0.0010 0.4363 0.5147 
 

CF 0.0000 1 0.0000 0.0108 0.9181 
 

DE 0.0000 1 0.0000 0.0054 0.9421 
 

DF 0.0001 1 0.0001 0.0485 0.8275 
 

EF 0.0002 1 0.0002 0.0862 0.7714 
 

A² 0.0056 1 0.0056 2.41 0.1324 
 

B² 0.0151 1 0.0151 6.51 0.0169 
 

C² 0.0035 1 0.0035 1.49 0.2332 
 

D² 0.0021 1 0.0021 0.8895 0.3543 
 

E² 0.0585 1 0.0585 25.21 < 0.0001 
 

F² 0.0123 1 0.0123 5.30 0.0296 
 

Residual 0.0603 26 0.0023 
   

Lack of Fit 0.0564 21 0.0027 3.40 0.0893 not significant 

Pure Error 0.0040 5 0.0008 
   

Cor Total 3.17 53 
    

 

It also displays in table 6, the R2-statistic value and the corrected R2-statistic value. R2-statistic is defined as the 

proportion of variance. 

 

 

Table 6: R2 values on SR 
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Source Std. Dev. R² Adjusted R² Predicted R² PRESS 
 

Linear 0.0766 0.9130 0.9019 0.8818 0.3747 
 

2FI 0.0725 0.9469 0.9121 0.8242 0.5575 
 

Quadratic 0.0482 0.9810 0.9612 0.9053 0.3003 Suggested 

Cubic 0.0342 0.9970 0.9804 0.5612 1.39 Aliased 

 

The fact that the Model F-value was calculated to be 30.72 indicates that the model is significant. A noise level of this 

magnitude would only have a 0.01 percent chance of producing an F-value of this magnitude. 

P-values that are lower than 0.0500 denote the significance of the model terms. In this particular scenario, the relevant 

model terms are A, B, D, BC, BD, B2, and C2. When the model terms are insignificant, values greater than 0.1000 show 

this. Your model could be improved by using model reduction if it has many terms that are not significant (not counting 

those that are required to support hierarchy). The lack of Fit F-value is 1.66 suggests that it is not statistically significant 

compared to the pure error. There is a 30.19 percent probability that the F-value for lack of fit might be this high owing 

to noise. A lack of fit that is not large is considered good because we want the model to be accurate. 

The ratio of the variability described by the model to the overall variability of the actual data serves as a measure of 

model fit. The closer R2 is to 1, the better a model matches the experimental data. The calculated value of  R2 of  0.9696 

for material removal rate indicates that the model explains about 96.9% of the variance. The calculated value of  R2 of 

0.9612 for surface roughness indicates that the model explains about 96.1% of the variance. Hence the regression 

equation for MRR and SR is given in table 7.   

 

Table 7: Equation for MRR &SR 

 

 

The standard probability curve for the MRR and SR residuals is depicted in Figures 1 a and b respectively. The fact that 
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the residuals are oriented around a straight line provides evidence that the model assumptions are correct and suggests 

that the errors follow a normal distribution. 

 

 

Fig 1: Normal plot of residuals for the MRR and SR 

 

Figure 2 shows the curve that represents the MRR and SR  residuals. The fact that the residuals are lower than the red 

straight line shows that the model assumptions are accurate and that the experimental runs are consistent with the 

residual. 

 

Fig 2: Residuals for the MRR and SR with Run 

 

The response surface plot of the Ton and Toff parameter against surface roughness and material removal rate is displayed 

in Figure 3. The gradient for pulse-on time and pulse-off time improves from the lowest to the maximum levels when 

considering material removal rate and surface roughness. This suggests that an increase in either the pulse-on time or the 

pulse-off time will lead to a rise in both the surface roughness and the material is removal rate. 
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Fig 3: Response surface plot for the MRR and SR with Ton and Toff 

 

Figure 4 compares the predicted values to the actual values obtained through experimentation. The difference between 

the predicted and actual values of the experiment is less than 0.1 for both MRR and SR, demonstrating that the model is 

dependable and can make accurate predictions. 

 

 

Fig: 4 Normal plot of residuals for material removal rate and Surface roughness 
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Run Order Material Removal Rate Surface Roughness 

 Actual Value Predicted Value Actual Value Predicted Value 

1 1.15 1.13 3.72 3.72 

2 0.5880 0.6290 2.98 2.97 

3 0.4320 0.4256 2.73 2.74 

4 0.9660 0.9512 3.25 3.24 

5 0.5560 0.5192 2.97 2.99 

6 1.09 1.06 3.43 3.46 

7 0.5980 0.6396 2.98 2.96 

8 0.7070 0.6683 3.15 3.16 

9 1.03 0.9787 3.31 3.32 

10 1.09 1.06 3.44 3.45 

11 1.01 0.9296 3.41 3.40 

12 0.8210 0.8506 3.33 3.25 

13 1.02 0.9847 3.29 3.34 

14 0.5850 0.6683 3.11 3.16 

15 0.4180 0.4234 2.99 2.96 

16 0.7090 0.6683 3.18 3.16 

17 0.5500 0.5192 2.99 2.99 

18 0.4920 0.4170 2.82 2.81 

19 0.5470 0.5336 2.81 2.82 

20 0.8370 0.8597 3.39 3.35 

21 0.7850 0.7392 3.19 3.22 

22 0.8040 0.8231 3.07 3.09 

23 0.6370 0.6967 3.21 3.20 

24 0.4370 0.4499 3.01 2.99 

25 0.8110 0.8200 3.06 3.05 

26 0.8220 0.8534 3.32 3.24 

27 0.8420 0.8501 3.27 3.31 

28 0.5330 0.5403 2.85 2.91 

29 0.5470 0.5509 2.98 2.94 

30 0.8700 0.8264 3.20 3.21 

31 0.5520 0.5579 3.01 2.99 

32 0.6700 0.6683 3.15 3.16 

33 1.03 1.05 3.38 3.38 

34 0.6680 0.6683 3.15 3.16 

35 1.29 1.35 3.78 3.74 

36 1.04 1.05 3.48 3.42 

37 0.8410 0.8857 3.34 3.36 

38 0.5410 0.5464 2.83 2.88 

39 0.6010 0.6376 3.00 2.99 

40 0.6710 0.6683 3.19 3.16 

41 0.8040 0.8107 3.16 3.18 

42 0.5070 0.6213 3.10 3.08 

43 0.7900 0.7197 3.18 3.23 

44 0.9710 0.9577 3.25 3.25 

45 0.4410 0.4284 2.78 2.78 

46 0.8350 0.8171 3.25 3.27 

47 0.4070 0.3894 2.65 2.67 

48 0.9930 0.9507 3.35 3.35 

49 0.6470 0.7032 3.28 3.21 

50 1.01 1.05 3.50 3.54 

51 0.5530 0.5375 2.79 2.84 

52 1.06 1.07 3.62 3.67 

53 0.9740 0.9388 3.32 3.35 

54 0.6040 0.6490 2.99 2.95 
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IV. CONCLUSION 

Using BBD of RSM, the influence of WEDM process parameters, namely Ton, Toff, WE, WT, SV, and IP, on MRR and 

SR responses was empirically examined in the current study. In addition, individual reaction and multi-

objective/response optimizations were performed to determine the ideal WEDM process parameter settings for each 

process. Analysis of variance (ANOVA) was utilized to assess the importance of process parameters. From this 

investigation, the following inferences may be made: 

1. The MRR is significantly impacted by the dynamic interaction between the pulse off time, denoted by Toff, and 

the peak current, denoted by Ip. In contrast, the SR is significantly impacted by the interactions between Ton 

and Toff and between Ton and Ip. 

2. The duration of effort that the pulse on, pulse off, and the peak current significantly impact the material removal 

rate (MRR) and surface roughness (SR). Pulse on time is the factor that has the most significant impact on MRR 

and SR. 

3. The MRR and SR rise when Ton and IP are both increased, but the MRR and SR fall when Toff is decreased. 

4. The three-dimensional response surface and graphical representations provided by RSM may help observe and 

analyze the influence that changes in process parameters have on the responses. 
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