[1,2]-Complementary connected domination number for total graphs

Renuka Kolandasamy

Assistant Professor, Department of Engineering Mathematics, College of Engineering,
Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
Email ID: math.renuka@kluniversity.in
Received 2022 April 02; Revised 2022 May 20; Accepted 2022 June 18.

Abstract

A set $S \subseteq V(G)$ in a graph G is said to be a [1,2]-complementary connected dominating set, iffor every vertex $v \in V-$ $S, 1 \leq|N(v) \cap S| \leq 2$ and $\langle V-S>$ is connected. The minimum cardinality of a [1,2]-complementary connected dominating set is called the [1,2]-complementary connected domination number and is denoted by $\gamma_{[1,2] c c}(G)$. In this paper, we exhibited the results based on [1,2]-complementary connected domination number for total graph.

Keywords: Complementary connected domination, [1,2]-domination, [1,2]-complementary connected domination
AMS Subject Classification: 05C69

1 Introduction

The graph $G=(V, E)$, we mean a finite, undirected, connected graph with neither loops nor multiple edges. For graph theoretic terminology we refer to Chartrand and Lesniak [3] and Haynes et.al [4].
V. R. Kulli and B. Janakiraman [5] introduced the concept of nonsplit domination in graphs. Later Tamilchelvam [8] introduced the same concept in different name as complementary connected domination in graphs. Mustapha Chellali et.al., [7] first studied the concept of [1,2]-sets. Xiaojing Yang and Baoyindureng Wu [13] extended the study of this parameter. In [9], K. Renuka, et.al., introduced the concept of [1,2]-complementary connected domination number of graphs and studied its character and in [8], K. Renuka et.al., studied about cubic graphs in [1,2]-complementary connected domination number of graphs. In [11], T.Tamizh Chelvam et.al., studied the concept of complementary connectedness of graphs. In [12], J.Vernold Vivin et.al., studied about on harmonous coloring of total garphs of cycle, path and star graphs.

In [1], M. M. Akbar Ali, et.al., discuseed about equitable coloring of central and total graphs in 2009. Later in [2], M. M. Akbar Ali and S. Panayappan discusses about cycle multiplicity of total graphs of cycle, path and star graphs in 2010. In [9], J. Vernold Vivin, et.al., discussed the results about harmonous coloring of total graphs for various graphs. In [6], T. P. Latchoumi et.al., studies about enhanncement system using grey-fuzzy graph. In [10], TL Yookesh et.al, studied defuzzificztion formula for modelling and scheduling for fuzzy project network.

Motivated by the above concepts, in this paper we found [1,2]-complementary connected domination number for total graphs.

2 Main Result

Theorem $2.1 \gamma_{[1,2] c c}\left(T\left(P_{n}\right)\right)= \begin{cases}\left\lfloor\frac{2 n-1}{5}\right\rceil & n \equiv 2(\bmod 3), \text { for any } n \geq 11 \\ \left\lceil\frac{2 n-1}{5}\right\rceil & n \equiv 2(\bmod 3), \text { for any } n \leq 8 \\ \left\lceil\frac{2 n-1}{5}\right\rceil & n \equiv 0,1(\bmod 3)\end{cases}$
Proof. Let v_{i} be the vertices of P_{n}, where $1 \leq i \leq n$ and v_{i}, be the corresponding vertices of edge $v_{i} v_{i+1}$. Let
$V\left[T\left(P_{n}\right)\right]=\left\{v_{i}, v_{i}\right\}$ and $\left|V\left[T\left(P_{n}\right)\right]\right|=2 n-1$. If $n=2$, then $\left|V\left[T\left(P_{n}\right)\right]\right|=3$, so that $\left\{v_{1}, v_{1 \prime}, v_{2}\right\}$ be the vertices of $V\left[T\left(P_{2}\right)\right]$. Now, v_{1}, forms the [1,2]cc-set and hence $\gamma_{[1,2] c c}\left(T\left(P_{2}\right)\right)=1$. If $n>2$, then $\left|V\left[T\left(P_{n}\right)\right]\right|=2 n-1$, so that $\left\{v_{1}, v_{1}, v_{2}, v_{2}, \ldots, v_{n-1}, v_{n-1}{ }^{\prime}, v_{n}\right\}$ be the vertices of $V\left[T\left(P_{n}\right)\right]$.

Case 1: $n \equiv 2(\bmod 3)$
The set $S_{1}=\left\{v_{2}, v_{7}, v_{4 \prime}\right\}$ forms $[1,2] c c$-set of $T\left(P_{n}\right)$, for any $n \leq 8$. Hence $\gamma_{[1,2] c c}\left(T\left(P_{n}\right)\right)=\left\lceil\frac{2 n-1}{5}\right]$. The set $S_{2}=$ $\left\{v_{2}, v_{7}, v_{12}, \ldots, v_{n}, v_{41}, v_{91}, \ldots, v_{n-2}{ }^{\prime}\right\}$ forms $[1,2] c c$-set of $T\left(P_{n}\right)$, for any $n \geq 11$. Hence $\gamma_{[1,2] c c}\left(T\left(P_{n}\right)\right)=\left\lfloor\frac{2 n-1}{5}\right\rfloor$.

Case 2: $n \equiv 0,1(\bmod 3)$
The sets $S_{1}=\left\{v_{2}, v_{7}, v_{12}, \ldots, v_{n}, v_{4 \prime}, v_{91}, \ldots, v_{n-5}^{\prime '}\right\}$ form $[1,2] c c-$ set of $T\left(P_{n}\right)$, for any $n \equiv 0(\bmod 3)$ and $S_{2}=$ $\left\{v_{2}, v_{7}, v_{12}, \ldots, v_{n-4}, v_{4}, v_{91}, \ldots, v_{n-1}^{\prime}\right\}$ form $[1,2] c c$-set of $T\left(P_{n}\right)$, for any $n \equiv 1(\bmod 3)$. Hence $\gamma_{[1,2] c c}\left(T\left(P_{n}\right)\right)=$ $\left\lceil\frac{2 n-1}{5}\right\rceil$.

Theorem $2.2 \gamma_{[1,2] c c}\left(T\left(K_{1, n-1}\right)\right)=1$, for any $n \geq 2$
Proof. Let v_{0} be central vertex of star graph and $S_{1}=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ be the vertices of pendant in star graph. Let $S_{2}=\left\{v_{1}, v_{2}, \ldots, v_{n-1}^{\prime}\right\}$ be the vertices of $T\left(K_{1, n-1}\right)$. Since v_{0} is adjacent to both the set S_{1} and S_{2}, which forms $[1,2] c c$-set and hence $\gamma_{[1,2] c c}\left(T\left(K_{1, n-1}\right)\right)=1$.

Theorem $2.3 \gamma_{[1,2] c c}\left(T\left(C_{n}\right)\right)= \begin{cases}\left\lfloor\frac{2 n-1}{5}\right] & n \equiv 2(\bmod 3), \text { for any } n \geq 11 \\ \left\lceil\frac{2 n-1}{5}\right\rceil & n \equiv 2(\bmod 3), \text { for any } n \leq 8 \\ \left\lceil\frac{2 n-1}{5}\right\rceil & n \equiv 0,1(\bmod 3)\end{cases}$

Proof. Let v_{i} be the vertices of C_{n}, where $1 \leq i \leq n$ and v_{i}, be the corresponding vertices of edge $v_{i} v_{i+1}$. Let $V\left[T\left(C_{n}\right)\right]=\left\{v_{i}, v_{i}\right\}$ and $\left|V\left[T\left(C_{n}\right)\right]\right|=2 n-1$. If $n=2$, then $\left|V\left[T\left(C_{n}\right)\right]\right|=3$, so that $\left\{v_{1}, v_{1}, v_{2}\right\}$ be the vertices of $V\left[T\left(C_{2}\right)\right]$. Now, v_{1}, forms the $[1,2] c c$-set and hence $\gamma_{[1,2] c c}\left(T\left(C_{2}\right)\right)=1$. If $n>2$, then $\left|V\left[T\left(C_{n}\right)\right]\right|=2 n-1$, so that $\left\{v_{1}, v_{1 \prime}, v_{2}, v_{2 \prime}, \ldots, v_{n-1}, v_{n-1}^{\prime}, v_{n}\right\}$ be the vertices of $V\left[T\left(C_{n}\right)\right]$.

Case 1: $n \equiv 2(\bmod 3)$
The set $S_{1}=\left\{v_{2}, v_{7}, v_{4}\right\}$ forms [1,2]cc-set of $T\left(C_{n}\right)$, for any $n \leq 8$. Hence $\gamma_{[1,2] c c}\left(T\left(C_{n}\right)\right)=\left\lceil\frac{2 n-1}{5}\right\rceil$. The set $S_{2}=$ $\left\{v_{2}, v_{7}, v_{12}, \ldots, v_{n}, v_{41}, v_{91}, \ldots, v_{n-2}^{\prime}\right\}$ forms $[1,2] c c$-set of $T\left(C_{n}\right)$, for any $n \geq 11$. Hence $\gamma_{[1,2] c c}\left(T\left(C_{n}\right)\right)=\left\lfloor\frac{2 n-1}{5}\right\rfloor$.

Case 2: $n \equiv 0,1(\bmod 3)$
The sets $S_{1}=\left\{v_{2}, v_{7}, v_{12}, \ldots, v_{n}, v_{41}, v_{91}, \ldots, v_{n-5}{ }^{\prime}\right\}$ form $[1,2] c c$-set of $T\left(P_{n}\right)$, for any $n \equiv 0(\bmod 3)$ and $S_{2}=$ $\left\{v_{2}, v_{7}, v_{12}, \ldots, v_{n-4}, v_{4 \prime}, v_{91}, \ldots, v_{n-1}^{\prime}\right\}$ form $[1,2] c c$-set of $T\left(C_{n}\right)$, for any $n \equiv 1(\bmod 3)$. Hence $\gamma_{[1,2] c c}\left(T\left(C_{n}\right)\right)=$ $\left\lceil\frac{2 n-1}{5}\right\rceil$.

Theorem $2.4 \gamma_{[1,2] c c}\left(W_{n}\right)=1+\left\lceil\frac{n-1}{3}\right\rceil$, for any $n \geq 4$.
Proof. Let $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be the vertices of W_{n} and v_{1} be the central vertex of W_{n} and $\left\{v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the outer

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1982-1984
https://publishoa.com
ISSN: 1309-3452
vertices of W_{n}. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{2^{\prime}}, v_{3 \prime}, v_{4^{\prime}}, \ldots, v_{n \prime}, u_{2 \prime}, u_{3 \prime \prime}, \ldots, u_{n \prime}\right\}$ be the vertices of $T\left(P_{n}\right)$. If $n=4$, then $\left\{v_{1}, v_{2^{\prime}}\right\}$ forms [1,2]cc -set and $\gamma_{[1,2] c c}\left(W_{4}\right)=2$. Here, $S_{1}=\left\{v_{1}, v_{2 \prime}, v_{5}, v_{8 \prime}, \ldots, v_{n-1}\right\}$ forms [1,2]cc-set when $n \equiv$ $0,2(\bmod 3)$ and $S_{2}=\left\{v_{1}, v_{2 \prime}, v_{5 \prime}, v_{8 \prime \prime}, \ldots, v_{n-2}^{\prime \prime}\right\}$ forms $[1,2] c c-$ set when $n \equiv 1(\bmod 3)$. Hence, $\gamma_{[1,2] c c}\left(W_{n}\right)=1+$ $\left\lceil\frac{n-1}{3}\right\rceil$.

Theorem 2.5 $\gamma_{[1,2] c c}\left(T\left(F_{r}\right)\right)=r+1$, for any $1 \leq r \leq n$ and $n \leq 2$.
Proof. Let $V\left(F_{r}\right)=\left(v_{1}, v_{2}, \ldots, v_{n}\right) . F_{r}$ is constructed by r copies of cycle C_{3} with common vertex and v_{1} is the central vertex of F_{r} and $\left\{v_{2} v_{3}, v_{4} v_{5}, \ldots, v_{n-1} v_{n}\right\}$ be the wings of F_{r}. Let $\left\{v_{1 \prime}, v_{2 \prime}, v_{3 \prime}, v_{1 \prime \prime}, v_{2 \prime \prime}, v_{3 \prime \prime}, \ldots, v_{1}^{r}, v_{2}^{r}, v_{3}^{r}\right\}$, where $1 \leq$ $r \leq n$ be the vertices corresponding to the edges $E\left(F_{r}\right) . V\left(T\left(F_{r}\right)\right)=\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i,}, v_{i \prime \prime}, \ldots, v_{i}^{r}: 1 \leq i \leq\right.$ 3 and $1 \leq r \leq n\}$. Let $S=\left\{v_{1}, v_{i}^{r}: i=3,1 \leq r \leq n\right\}$, where $i \leq r \leq n$ form [1,2]cc-set and $|S|=r+1$. Hence $\gamma_{[1,2] c c}\left(T\left(F_{r}\right)\right)=r+1$.

References

1. M. M. Akbar Ali, K. Kaliraj and J. Vernold Vivin, On Equitable coloring of central graphs and total graphs, Electronic notes in discrete mathematics, 33, (2009), 1-6.
2. M. M. Akbar Ali and S. Panayappan, Cycle multiplicity of total graphs of C_{n}, P_{n} and $K_{1, n}$, International journal of engineering, science and techonology, 2(2), (2010), 54-58.
3. G. Chartrand and L. Lesniak, Graphs and Digraphs, Fourth Edition CRC Press, Boca Raton, 2005.
4. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
5. V. R. Kulli and B. Janakiraman, The nonsplit domination number of a graph, Indian journal of pure and applied mathematics, 31(5), (2000), 545-550.
6. T. P. Latchoumi, G. Kalusuraman, J. F. Banu, T. L. Yookesh, T. P. Ezhilarasi and K. Balamurugan, "Enhancement in manufacturing systems using Grey-Fuzzy and LK-SVM approach," 2021 IEEE International Conference on Intelligent Systems, Smart and Green Technologies (ICISSGT), doi: 10.1109/ICISSGT52025.2021.00026, (2021), 72-78.
7. Mustapha Chellali, Teresa W. Haynes, Stephen T. Hedetniemi and Alice McRae, [1,2]-Sets in graphs, Discrete Applied Mathematics, 161, (2013), 2885-2893.
8. G. Mahadevan and K. Renuka, [1,2]-Complementary connected domination in graphs-III, Communications Faculty Science University of Ankara Series A1 Mathematics and Statistics, 68(2), (2019), 2298-2312.
9. G. Mahadevan, K. Renuka and C. Sivagnanam, [1,2]-Complementary connected domination in graphs, International Journal of Computational and Applied Mathematics, 12(1), (2017), 281 - 288.
10. S Maheswari, M Shalini, TL Yookesh, Defuzzification formula for modelling and scheduling a furniture fuzzy project network Int. J. Eng. Adv. Technol. 9 (5), (2019), 279-283.
11. T. Tamizh Chelvam and B. JayaPrasad, Complementary connected domination number, International journal of management systems, 18(2), (2002), 149-152.
12. J. Vernold Vivin, M. M. Akbar Ali and K. Kaliraj, On harmonous coloring of total graphs of $C\left(C_{n}\right), C\left(K_{1, n}\right)$ and $C\left(P_{n}\right)$, Proyecciones journal of mathematics, 29(1),(2010), 57-76.
13. Xiaojing Yang and Baoyindureng Wu, [1,2]-domination in graphs, Discrete Applied Mathematics, 175, (2014), 79-86.
