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ABSTRACT

In this paper, pan-integral is used to address integrable Boehmians for canonical sine and cosine transforms, as well as
their properties and convolution theorems.
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1 Introduction

The linear canonmical transform (LCT), a generahisation of the Fourier trans-
form (FT), has a wide range of applications in many fields, including signal
processing and optics. We refer in [5], [6], [7]. A new convolution structure for
the LCT and its property of translation invariance are introduced by [1], con-
volution theorems [2] and integrable Boehmians [4]. Yang et al. introduced the
pan-integral and discussed its properties in [16]. Pan-integral research should be
pursued further by Wang et al., Yang and Song [14], [15], [16]. Recent research
has looked into the links between pan integrals and other integrals were in [3],
[10], [12], [11], [13].

From [17], Let ® be a binary operation on R. (where R, = [0,00]). The pair
(R,.®) is called a commutative isotonic semigroup and & is called a pan-addition
on R, iff @ satisfies the following requirements:

(l)aeb=Db@a& a;
(2) (asb)ec=as (bsc);
(B3)agsh = a®c<bdc for any c;
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(4) a @ 0 = a;
(5) impapand limpbyexist = limy(ay, @ by )exists, and
limy(an & by ) = limnan ® limgby,.

From (1)and (3), we have
a<bandc<d = adc<bead

Let ® be a binary operaion on R;. The triple (R, @, ®), where @ is a
pan-addition on R4, is called a commutative 1sotonic semiring with respect to &
and @ iff ® satisfies the following requirements:

(l)aeb=boa;

(2)(a@bl)@c=ao (bec);

B)laeb)ec=(a®c)a (boc);

(4)a<h = a®c<baocforany c;

(h)azlandbz0<=aeb=0;

(6) there exists I € R, such that ] ® a = a, for any a € R,;

(7) lim,a, and lim,b, exist and are finite — lim,(a, ®b,) = lim,a, ® lim,b,,.

The operation ® is called a pan-multiplication on R, , and the number I is
called the unit element of (R,, &, ®)

From (1) and (4), we derive

a<bandc<d = ao®c<bod

It is easy to see that (5) implies that a ® 0 = 0 and 0 ® a = 0 for any

aec ..

If (X, .#.u) (where X— Universe of discourse, .# — g-ring, pu— Set function) is a
fuzzy measure space, and (R, &, ®) 1s a commutative isotonic semiring, then
(X, #, p, Ry, &, @) is called a pan-space.

Let f, € F (where F is the set of finite non-negative measurable functions on a
measurable space (X, .#)) and A € #. The pan-integral of f, on A with respect

to p, which 1s denoted by (p) f fpdpt, 1s given by

X
#) [ fdp=_sup P(slA),
A

O<s< fp, 55

The set of all pan-simple measurable functions 1s denoted by S.

1914



JOURNAL OF ALGEBRAIC STATISTICS
Volume 13, No. 3, 2022, p. 1913-1924
https://publishoa.com

ISSN: 1309-3452

Let p be additive, When & 1s the common addition and @ 1s the commaon

multiphcation, we have
(P}ffpdﬁ:ffpdﬁ
A A

for any f,e F and A € .5 that is, the pan-integral and Lebesgue’s integral 1s

comcide.
In this article, pan integral depends only on usual addition (+) and usual

multiplication (.) instead of pan-addition (&) and pan-multiplication (@),

Consider L], (R ) space of complex absolutely pan integrable functions with || f,||
= (p) [|fp(t)|dt in usual manner. Linear Canonical transform for pan integrable

K
15 defined by

L_3(2)” We?”!e’—i’(ﬁ)f'g Ydt, if b20
Lp«m(t") = Lﬂﬂﬂ{fp{t)}(ﬁ} = m. (p}_‘i fp(f) t,
Ve f,(dv), if b=0

where £, denote canonical pan operator with linearity. Using the above defini-
tion we can derive Canonical cosine pan and canonical sine pan transforms. It 1s
defined as follows.

Definition 1.1 The canonical cosine pan transform (CCPT) of f, e L], (R) for

i

b= 0, is defined by Gan(f,(£))(v) = Jﬁeﬂ(%)”z(p) f ms{%t)e%(%]‘i fo(t)dt

where Guan 18 CCPT operator.
Definition 1.2 The canonical sine pan transform (CSPT) of f,e £l,.(R) for

b2 0, is defined by Syan(f,(£))(v) = J;ﬁe%(%)”z{p)_ f sm{%t)e%(%]‘i f,(t)dt
where §,., 15 CSPT operator. -
Lemma 1.1 If fye £l (R), then Gun(fp(t)) and Spen(fp(f)) arein £1 (R).

Proof. Consider,

1Gan ()= 1@) [ Ganlfp(£))at
.
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< (») j et (87 p) j cos(31)et (8)° 1, ()t
< (p) f 1£,(¢)ldt
1k
ISpan (o)) |1 = () ! Span( (1))

{(p)f|2’r1b i(t): {P)fgm{ EE(E)EEfp(t}dﬂdt
< () f o)t

”ﬁh
Definition 1.3 A sequence (v, ) in L1, (R) is called pan-delta sequence if

] {p)fe{if}u-ﬁ;pn(t)dt = 1] VYnedN and re &
K.

(2) [ehp. | < M.
(3) Aim (p) f|-1.a','pn (t)|dt. for every >0
[t]==
The collection pan-delta sequences 1s indicated by &p.

Example 1.1 For r e &, show that

Ay if0<t<l
&, (1) = tr_9:9 1 2
b ()= {el Bl ep22 _p), i lcre?
0, otherwise
15 a member of Ag
Solution: For ¢ &,
1 2]
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) () f 8, (1)t = (p) f et (p) f RS 2

T

) 6.l = (p)fh: t|dt+{p)f|n |dt < M for some M € ® , and Vne N

) Jim (@) [ 18,0l = () [ [n2tlde +(p [ (2~ t)jde=0.for e > 2.
|z ln
2 Canonical Cosine Pan Transform

Consider f,, g, € £1,,(®) and define fo(t) = e?( ] folt), Gp(lz-1t]) =
el 3(¢ ){I 0 gplz —1), Gz +1) = E’E(F)Erﬂ} gp(z + t) and convolution (f, * g,)

-'(e) :

(fo

fo(@)[Tp(x + 1) + Gp(|z ~ 1)) |d

Lemma 2.1 If f;, gp € £L1,,(R), then fp and g, are in Lin(R).
Lemma 2.2 If f,, gp € L], (R), then f,+g, € LI (R).

Lemma 2.3 If f,, gy € L1 (R), then fy* g, = g, * fp.

Lemma 2.4 If f;, gp. hp€ LL,,(R), then fp * (gp * hp) = (fp * gp) * hyp.

Theorem 2.1 (Canonical cosine pan convolution) If f,, g, € L1, (R). F,.(v)
and G, (v) are the canonical cosine pan transform of f,(¢) and g,(t), then

Gl (f * 9)()](2) = vETD 2 () B, (1), G, (0).

Proof. For f,, g, € L1 (R ), we have

A3 =
Goan[(fp * 95) (1)](®) = = @ [ cos(gﬂeﬁ(g)z

Vv 2mib
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{ (P)_[ CT fP(I)[gp T +t) + (|- tl)]dl}dt

2\/)—7”—(]7)[ 2 fp(.l {(p)/ L % (z-t)? gp(.t—t)

1) G t)]cos(%t)dt}dr

=

() @02
=< m‘p’ [ " 1) (0) / gy~ t)cos( Lt)dda
( i
= m(z) [ ) 1) (p) f 8100, (0 + t)cos(Ct)itde = 41 + 51

put r—t=yin . and r+t=y n H

(dY.2
;3'!5(5)1 ~ i

- =) [ 8740 @) [ A DO g )cos(Gy+ )y

'L

E‘%(%)ve ro— E r? r i =
= m{"”l 38 {p}l )W (eos(Y(y - 2))dyds

C:r"

ié)'—’ oo
f_"{hll :a

=S iea 27 fo() (p)f 3(2)c Deos( (y +2)) + cos(5(y - ) gp(y)dyde

= (. () ()
={p)_£ H(2) 1 {2 = f #(8)00[2c0s(Zy)cos( 2 xugp(y)dy}dx

V2rib e? 5 v
- CO!:‘ - )G (v)dr
( )(13 v2rib (P)f (b ) fp(2)Gp. (v)

_vaet(E)e P F (v)G (v).

3 Canonical cosine Pan Boehmians
Definition 3.1 [9] A pair of sequences (f,,,dp,) 1s known as quotient of se-

quences, denoted by fp, /¢, fp, € Ljan(R), p, € Ao and [, * &y, = fp, * dp,, for
every £,m e N\

1918



JOURNAL OF ALGEBRAIC STATISTICS
Volume 13, No. 3, 2022, p. 1913-1924
https://publishoa.com

ISSN: 1309-3452

Definition 3.2 [9] Two sequences { f,,/(,, } and {g,, /oy, } are equivalent if f, *
Gpy = Gpy *Cp,,, for all,me AL and f,, gy, € L1, (R), Gy, Gp, € Ap. The equivalence
class of quotients described above 18 known as pan integrable Boehmians. All
pan integrable Boehmians space denoted by 227, = Z,1(L], (R), Ap,#). A
function fp € L£1,(R) can be diagnosed with the Boehmian is [fp, * 85, /dp,],
where (dp,) € Ag and members of 227, denoted by [fp,/dp,]. If Fp = [fp,/dp,], then

FF' * '53".&' = fPe € L}lﬂn(ﬂ)

Construct #p1 = (L;uﬂ(ﬂ.)~&(ﬂ.} n ‘LEIUR{R.}!"HFO] where Ag = {Epﬂﬂ{épn) :
(dp, ) € Ap}, (b(R )—complex valued infinitely vanishing continuous functions and
the operator o is pointwise multiplication(usual). Denote Gan( fp,, )/ Cpan(dp, ) an
element of £2;1 and also which is the range of CCPT on 227,.

Lemma 3.1 If (d,,) € Ay, then Gun(d,,) = 1 as n— oo uniformly on each com-

pact set mn L1, (R).
Proof. Let (d,, ) ¢ 4g. Then for any compact subset X of ® such that

Jim (p}fﬁpn{t)dﬂ—»{]andﬂM}Dsuch that [cos(2)ed (8)7_/3mp o7 ()77 ()

x
<M. Choose |t| > ¢ and £ > 0. Then

1. d. 2 o0

( }fms{%t}eé(%)‘ﬂﬁpn(t}dt—(p)fe(%)ffapﬂ{t}dfd

i

| Goan(3p,, ) - 1] =
= (p) f EE(%).E(;]J fw [Cﬂs( 2pyes(e0) ?“ibﬁ(%)vge(%)ﬂ}%(t}dt dv
% V2mb S

< \j%{p) if {(p) Tf |épn{ﬂ|dt]dwﬂas n - co.

Lemma 3.2 If f;, = fp as n — oo in L),,(R) and Guan(tp,) € 40. Then f;, o
Goan(p,) = fp as n — 0o in L, (R).

Proof. Since Gyun(1,.) € &g and lemma 3.1, we have,

”fpn ° (_:j:lﬂﬂ(t.'{;ﬁn) - fp”

= | fo. © Goan(¥p.) = fo © Gan(¥p.) + fp © Goan(¥p..) — [

< | fow = Soll 1Goan(p )|+ < [ foll [ Gan(¥p,) — 1] = 0 as n — oo.
We define CCPT Guan : 2271 = P11 a5 Guanl fo. /0. ] = Guan(fp, )] Guan(0p, ) where
[ fon/0p.] € Z771. Suppose [_fp" [0p.] € [y then fp * 8y, =[p,. * 0p, ¥V m,n € N[
which imply Guanl (fo. *05..)(D1(0) = Ganl (S, +35.) ()] (). Applying both side
convolution, we get Gean( fp,, )/ Goan(0p, )=Cpan( fo.. )] Goan (8, ) ¥Ym,n € AL, Hence
CCPT 1s well-defined on 5%;1.
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Lemma 3.3 If (f, ) e L1 (R),n € A then,

ifd),2 r v,, ifa)z
Gunl . 10) = /et ) () [ cos(2et ) g,
converges uniformly on each compact subset of %.
Proof. If 9, is a pan-delta sequence, then Gyyn[d,.] converges uniformly on
each compact set to the constant function 1. Hence for each compact set X,
Gpan[0p, ] > 0 on K for almost all m € A and

Epﬂﬂ{épm) B E_;(%)vz fmn{fpn *épm)
Cpﬂﬂ{gﬁm) A% 2mb an{rf'pm )

= E%(%]vﬂ @“”{fi’m *‘jﬁn) C,mn(fpm
W 2mb Cpﬂﬂ(apm) Cpﬂn{'§ m)

Appling - o, we gt Ganl ]+ 24 on ¢

cpcm{fpn) = Cﬂlﬂ{fpn)

Cpan(0p,) on K

Theorem 3.1 The CCPT Gun : %2, — Pyt is consistent with Guan : L,,(R) =
Ljon(R)-

Proof. Let f,e L], (R). Then f, e 1 is [(fp* 8y, ) /[0y, ] where 8, is pan—del
sequence. By definition, Guan((fy * 05, )/0p. )= %lr Goan(f) Gpan (9p,. ) [ Goan (9,

.
which represents Boehmian v/2mib Cpan(fp) In Z2p1.

i(g)

Theorem 3.2 The CCPT Guan : 7], — &1 1s bijection.

Proof. Let [fp, /¢p,]. [9p./Up..] € P71 With Gan([ fo.[®p.]) = Gean([gp..[1p..]).
Since Gpan| fp., [@p.] = Coan(fp. )| Goan(8p,.) and Goan[gp.. [Vp.. | = Goan(9p... )| Coan(¥p,,.)-
From which we get, Gun(fp. *¥p.. ) = Goan(Gp,. * @p.. )V m,n € AL Since CCPT Gy,
on Lan(R) is -1, (fp, * Up.) = (Gp, * 0p,)¥Vm,n € AL It follows [f,, [op.] =
[9p... /U, | and hence Gyap 1s 1-1. Since CCPT Gygp on LL,,(R) is onto, it follows
that Gan([fon/®p.]) = [Gpm [ Up.. |- Hence Gan 1227 — P11 1s bijective map.

4 Canonical Sine Pan Transform

Consider fp, gp € L},,,(®) and define Tl t)—ez( ) fo(t), Gp(|a—t]) =€2 ( )Er—z}ﬂgp{:r:—
t), Gp(z+1t) = e’—‘(F)(IH} gp(x +t) and convolution (f, ® g,) as (f, ® g,)(t) =

()7
{P}f Tfp(-r)[ﬁ;ﬂﬂf—ﬁn—§;,(I+f-)}d1' and f,® g, = fp * gp — [, © gy, Where

— o
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(Fp @ 9p)(1) = [ DTy (2)Gp(w + t)dz, Ve R,

Lemma 4.1 If f;. g, € L3y, (R), then f, © gp € Ly, (R).

Lemma 4.2 If f,, g, € L,},ﬂn (R), then f,®@ g, = g, ® fp.

Lemma 4.3 If f,, g,. hye L1,,(R), then f,© (g, @ h,) = (f, @ g) @ hy,.
Lemma 4.4 If f,, g, € L;ﬂn (R), then f, ® g, = g, ® fp.

Lemma 4.5 If f,, g, hye L1 (R), then f, ® (g, * hy) = (fp® gp) * hy.

Theorem 4.1 (Canonical sine pan convolution) If f,. g, € LL,.(R), F,, (v) and
Gy, (v) are the canonical sine and cosine pan transform of f,(t) and g,(t), then

Spanl (fy @ ) (D] (0) = V27D ()7, (0). G, (0),

Proof. For f,, g, € L},,(R). we have

R N A
Span[ (fp ® gp) ()] (v) = S (p)_i S?-ﬂ-(gt)e?—’(];)

= F(¢)e
x{ P)f 5 fp(r [gp(li"—ﬁ” Q'P{I+t)]dx}

:(d 2
1%

N2l f #{2)- fp{:r:{{p) [ @y @

_ E%(%){Iﬂjzgp(-r. + i;)]s-in(%t)dt]dx

s(2)r =, = . v
_ £ ilg)= T eI\ =07 0 (0 ) sin il T
-5 @ [ 5@ @ [ SO @ tysin(ayd
ci(8)
“aam ). f #(2)7 1, (2) () f e3(2)Eg (2 4 t)sin(2 St)dtdz = .9, - 4
put x—t=y1in % and r+i¢ =y in %
E—E(%)”Q roifa2)2 Foifa 2 v
-/ A0 1) ) / ()07 g, (y)sin(2(y + )y
e5(2)7

3 2 1 () (; me’l;’ £) g (y)sin( 2 (y — x))dydx
57 @ [ 0@ o [ B wsinGw-n)dva
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(d]l‘? o0
E‘E B

s i )7 1,(2) () f e%(f){rlﬂ[s?’.n(g{y+:r:))—si.-rl(%{y—x))]gp{y)dydx

oy [
(P)f B fp( {Em {p}f F () 2{‘0?[ y sin( b z)]as(y) dy}dr

2mb e’f{%)
E;_‘,(E)@ 2 2
VIt O B ()6, (),

- p)f 0 sin (T fy ()G (v)

5 Canonical Sine Pan Boehmians

Definition 5.1 [9] Two sequences { f,,/(, } and {gp, /@y, } are equivalent if f, &

o = Ope ®Cp,,, for all l,m e ACand f,,, gp, € L1 (R), Goy» Op, € Ag. The equivalence
class of quotients described above 1s known as pan integrable Boehmians, All
pan integrable Boehmians space denoted by 227, = Z.:(L], (R). &g, ®). A
function f, € £1,,(R ) can be diagnosed with the Bochmian 18 [ fp, ®0p,/0,, ], where
(0p,) € Ag and members of 2P denoted by [f,, [¢y,]. Suppose F = [f,,/¢p,] then

FE&PE = fPE € L;%an{ﬂ)

We define Span :‘9’?. - Ep!.] as Srlﬂn[fpnfapn] = Spﬂn{fpn )J}Cpﬂn{ﬁpn):

where [fp, [0p.] € 227, Suppose [y, [0p.] € 7, then f, &0y, =f,, ® 0, ¥ m,n
€ 2( which imply %m[(fpn ® 0p,,,) ()] (v) = Span([(fp.. ® 5, )(¢)](v) which imply
Span([p, ) Coan (05, ) =Span (fo.. )/ Coan(9p,. ) ¥V, n € AL. Hence CSPT is well-defined
on ..

Lemma 5.1 If (4, ) € &g, then Spon(dp, ) = 1 as n - oo uniformly on each com-

pact set in £l (R).
Proof. Let (dp, ) € Ag. Then for any compact subset X of ® such that

hm (p)f|§ (t)dt| = 0 and 3 M > 0 such that |sin(} t)eT( )z —/2mib eT(é) 2e(%)m

<M. ChODb{’ |t| > and £ > 0. Then

|-Span (dp,, ) — 1||
—(p)f EE E p}f sin( t)ei % ﬁpn(t}dt—{p}f e(f) dp, (t)dt|dv
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{p}f{sm( t)el(%) — V2wibe? (%) _e(f) ]dp (t)dit|dv

ﬂm(p}{{{p)!|§pﬂ(t}|dt}dv—>0ﬂ-s 1 oo,

Lemma 5.2 If [f,./d,.] € 27 ne [, then

Sanl 1) = /e () () j cos(0eH (B 1, ()i

converges uniformly on each compact subset of &.

Proof. If §,, i1s a pan-delta sequence, then S,,,[d,, ] converges uniformly on
each compact set to the constant function 1. Hence for each compact set %,

Span|[dp_ ] > 0 on X for almost all m € A and

Cpan(0p,,,) _ EE(%)?P Span( fp, ® 0p,,, )
Cpaﬂ{épm ) W 2??1]3 Cpﬂn {Epm )

( ] Span (fp.. ®8,.) Span(fpm)C (6p,) on K
m 'Cpﬂﬂ{ Pm} Cp‘m pm) o

J—'ipplg.ring n— oo, we get L‘;mﬂ[fpn] — E;%gp— on K.

‘SPﬂn{fpn) = Spun{fﬁn}
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