Volume 13, No. 3, 2022, p. 1798-1802 https://publishoa.com ISSN: 1309-3452

On the Edge Coloring of Triangular Snake Graph Families

G. Jayaraman¹ and Deepalakshmi²

¹Assistant Professor, Department of Mathematics,
Vels Institute of Science, Technology and Advanced Studies, Tamil Nadu, India.
²M.Phil Research Scholar, Department of Mathematics,
Vels Institute of Science, Technology and Advanced Studies, Tamil Nadu, India.

Received 2022 April 02; Revised 2022 May 20; Accepted 2022 June 18.

ABSTRACT

We discuss the edge chromatic number of the triangular snake graph T_n , double triangular snake graph DT_n , triple triangular snake graph TT_n and alternate triangular snake graph AT_n . A proper edge coloring of a graph G, is an assignment of colors to all the edges of graph G so that the adjacent edges received distinct colors. The smallest number of colors needed for such coloring is known as edge chromatic number.

Keywords: Triangular snake graph, double triangular snake graph, triple triangular snake graph, alternate triangular snake and edge coloring.

2010 Mathematics Subject Classification: 05C15.

1. INTRODUCTION

All graphs considered in this article are finite, simple and undirected. Let G = (V(G), E(G)) be a graph consists of a vertex set V(G) and edge set E(G) respectively. In 1880, Tait [4] was introduced the concept of edge coloring and he proved that, if the four-color conjecture is true then the edges of all the 3-connected planar graph can be colored properly only using 3-colors. In 1916, Konigsberg was proved that all the bipartite graphs have been edge colored with $\Delta(G)$

colors exactly. In 1949, Shannon[3] proved that all the graph have been edge colored with $\leq \frac{3}{2}\Delta(G)$ colors. In 1964,

Vizing[5] proved that for every simple graph G, $\chi'(G) \le \Delta(G) + 1$.

An edge coloring of a graph G is that an assignment of colors to the edges of G such that the adjacent edges received distinct colors. The chromatic index of a graph G, denoted by $\chi'(G)$, is the minimum number of colors required for a proper edge coloring of graph G. The graph G is k-edge-chromatic if $\chi'(G) = k$. Obviously $\chi'(G) \ge \Delta(G)$, where $\Delta(G)$ is the maximum degree of a graph G.

In other words, An edge coloring of graph G is a function $c : E(G) \rightarrow \{1, 2, ..., \Delta\}$, the colors satisfying the following conditions.

(i) $c(e) \neq c(e')$ for any two adjacent edges $e, e' \in E(G)$

The minimum number of colors are required for such coloring is called edge chromatic number of G and it is denoted by $\chi'(G)$.

Volume 13, No. 3, 2022, p. 1798-1802 https://publishoa.com ISSN: 1309-3452

Many real life situations can be modeled as a graph coloring problem, some of them are planning and scheduling problems, timetabling and map coloring. Since graph coloring problem is a NP-hard problem, until now there are not known deterministic methods as a whole that can solve such problems.

2. PRELIMINARIES

Definition 2.1: A *Triangular snake graph*[2] T_n is obtained from a path $\{u_1, u_2, ..., u_n\}$ by joining u_k and u_{k+1} to a new vertex v_k for $k \in \{1, 2, ..., n\}$. That is, every edge of a path is replaced by a triangle.

Definition 2.2: The double triangular snake graph [2] DT_n consists of two triangular snakes that have a common path.

Definition 2.3: The *triple triangular snake graph* [2] TT_n consists of three triangular snakes that have a common path.

Definition 2.4: An alternate triangular snake graph [2] AT_n is obtained by a path $\{u_1, u_2, ..., u_n\}$ by joining u_k and u_{k+1} to a new vertex alternatively v_k for $k \in \{1, 3, 5, ...,\}$, i.e. Every alternate edge of a path is replaced by triangle.

In this paper, we focus on edge chromatic number for triangular snake graph T_n , double triangular snake graph DT_n , triple triangular snake graph TT_n and alternate triangular snake graph AT_n .

3. MAIN RESULTS

Theorem 3.1. Let T_n be the triangular snake graph of order $n \ge 3$, then $\chi'(T_n) = 4$.

Proof. Let $V(T_n) = \{u_l : 1 \le l \le n-1\} \bigcup \{v_l : 1 \le l \le n\}$ and

$$\begin{split} E(T_n) &= \left\{ e_l : 1 \leq l \leq n-1 \right\} \bigcup \left\{ s_l : 1 \leq l \leq n-1 \right\} \bigcup \left\{ f_l : 1 \leq l \leq n-1 \right\}, \quad \text{where the edges} \quad \left\{ e_l : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \left\{ v_l v_{l+1} : 1 \leq l \leq n-1 \right\}, \text{ the edges} \quad \left\{ s_l : 1 \leq l \leq n-1 \right\} \text{ represents the edge} \quad \left\{ u_l v_l : 1 \leq l \leq n-1 \right\} \text{ and} \\ \text{the edges} \quad \left\{ f_l : 1 \leq l \leq n-1 \right\} \text{ represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \text{ represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{where the edges} \quad \left\{ f_l : 1 \leq l \leq n-1 \right\} \text{ represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represents the edge} \quad \left\{ u_l v_{l+1} : 1 \leq l \leq n-1 \right\} \\ \text{represe$$

Define an edge coloring $c: E(T_n) \rightarrow \{1, 2, 3, ..., \Delta\}$ as follows. Now we assign the edge coloring to all the edges as follows,

 $c(v_l v_{l+1}) = \begin{cases} 1, \text{ if } l \text{ is odd} \\ 2, \text{ if } l \text{ is even} \end{cases}$

$$c(v_{l}u_{l}) = 3, c(u_{l}v_{l+1}) = 4$$

We observed that the procedure of edge coloring pattern, the graph T_n is edge colored properly with 4 colors. This implies that $\chi'(T_n) \le 4$. Since $\Delta = 4$ and $\chi'(T_n) \ge \Delta = 4$. Therefore $\chi'(T_n) = 4$. Thus *c* is edge colored with 3 colors.

Theorem 3.2. Let DT_n be double triangular snake graph of order $n \ge 3$, then $\chi'(DT_n) = \Delta(DT_n) = 6$.

Proof. Let $V(DT_n) = \{u_l, w_l : 1 \le l \le n-1\} \bigcup \{v_l : 1 \le l \le n\}$ and

Volume 13, No. 3, 2022, p. 1798-1802 https://publishoa.com ISSN: 1309-3452

edges $\{e_l^n: 1 \le l \le n-1\}$ represents the edge $\{u_l v_{l+1}: 1 \le l \le n-1\}$, the edges $\{s_l^n: 1 \le l \le n-1\}$ represents the edge $\{w_l v_l: 1 \le l \le n-1\}$ and the edges $\{s_l^n: 1 \le l \le n-1\}$ represents the edge $\{w_l v_{l+1}: 1 \le l \le n-1\}$

Define an edge coloring $c: E(DT_n) \rightarrow \{1, 2, 3, ..., \Delta\}$ as follows. Now we assign the edge coloring to all the edges as follows,

 $c(v_{l}v_{l+1}) = \begin{cases} 1, \text{ if } l \text{ is odd} \\ 2, \text{ if } l \text{ is even} \end{cases}$ $c(v_{l}u_{l}) = 3, \quad c(u_{l}v_{l+1}) = 4$ $c(v_{l}w_{l}) = 5, \quad c(w_{l}v_{l+1}) = 6$

Clearly the above method of edge coloring, the graph DT_n is edge colored properly with 6 colors. This implies that $\chi'(DT_n) \le 6$. Since $\Delta = 6$ and $\chi'(DT_n) \ge \Delta = 6$. Therefore $\chi'(DT_n) = 6$. Thus *c* is edge colored with 6 colors.

Theorem 3.3. Let TT_n be triple triangular snake graph, then $\chi'(TT_n) = \Delta(TT_n), n \ge 3$.

Proof. Let $V(TT_n) = \{u_l, s_l, w_l : 1 \le l \le n-1\} \bigcup \{v_l : 1 \le l \le n\}$ and

$$E(TT_n) = \begin{cases} \{e_l : 1 \le l \le n-1\} \bigcup \{e_l^{'} : 1 \le l \le n-1\} \bigcup \\ \{e_l^{''} : 1 \le l \le n-1\} \bigcup \{e_l^{'''} : 1 \le l \le n-1\} \bigcup \\ \{f_l : 1 \le l \le n-1\} \bigcup \{f_l^{''} : 1 \le l \le n-1\} \bigcup \{f_l^{'''} : 1 \le l \le n-1\} \end{cases}$$
, where the edges $\{e_l : 1 \le l \le n-1\}$

Define an edge coloring $c: E(TT_n) \rightarrow \{1, 2, 3, ..., \Delta\}$ as follows. Now we assign the edge coloring to all the edges as follows,

$$c(v_l v_{l+1}) = \begin{cases} 1, \text{ if } l \text{ is odd} \\ 2, \text{ if } l \text{ is even} \end{cases}$$

Volume 13, No. 3, 2022, p. 1798-1802 https://publishoa.com ISSN: 1309-3452

$$c(v_l u_l) = 3$$
, $c(u_l v_{l+1}) = 4$

 $c(v_l w_l) = 5$, $c(w_l v_{l+1}) = 6$

 $c(v_l s_l) = 7$, $c(s_l v_{l+1}) = 8$

We observed that the above condition of edge coloring, the graph TT_n is properly edge colored with 8 colors. Hence $\chi'(TT_n) \le \Delta = 8$. Since $\Delta = 8$ and $\chi'(TT_n) \ge \Delta = 8$. Therefore $\chi'(TT_n) = 8$. Thus *c* is edge colored with 8 colors.

Theorem 3.4. Let AT_n be the alternate triangular snake graph, then $\chi'(AT_n) = \Delta(AT_n), n \ge 3$.

Proof. Let $V(AT_n) = \{u_l : l \in \{1, 2, ..., n\}\} \bigcup \{v_l : l \in \{1, 3, 5, ..., n-2\}\}$ and

Let $E(TT_n) = \{e_l : l \in \{1, 2, ..., n-1\}\} \cup \{e_l : l \in \{1, 3, ..., n-2\}\} \cup \{e_l : l \in \{1, 3, ..., n-2\}\}$

where the edges $\{e_l : l \in \{1, 2, ..., n\}\}$ represents the edge $\{u_l u_{l+1} : l \in \{1, 2, ..., n-1\}\}$, the edges $\{e_l : l \in \{1, 3, ..., n-2\}\}$ represents the edge $\{u_l v_l : l \in \{1, 3, ..., n-2\}\}$, the edges $\{e_l : l \in \{1, 3, ..., n-2\}\}$ represents the edge $\{v_l u_{l+1} : l \in \{1, 3, ..., n-2\}\}$,

Define an edge coloring $c: E(AT_n) \rightarrow \{1, 2, 3\}$ as follows. Now we assign the edge coloring to all the edges as follows. Consider the following two cases

Case (i): when *n* is odd,

Subcase(i): $n = 2k + 1, k = 2, 4, 6, \dots$

$$c(e_l) = \begin{cases} 1, & \text{if } l \in \{1, 3, 5, \dots, n-2\} \\ 2, & \text{if } l = 2k-2, k \in \{2, 4, 6, \dots, n-3\} \\ 3, & \text{if } l = 2k+2, k \in \{1, 3, 5, \dots, n-1\} \end{cases}$$

For $k \in \{1, 3, 5, \dots, n-1\}$

$$c(e_l) = \begin{cases} 2, & \text{if } l = 2k - 1, \\ 3, & \text{if } l = 2k + 2, \end{cases}$$
$$c(e_l) = \begin{cases} 3, & \text{if } l = 2k - 1, \\ 2, & \text{if } l = 2k + 2, \end{cases}$$

Subcase(ii): $n = 2k + 3, k = 2, 4, 6, \dots$

$$c(e_l) = \begin{cases} 1, & \text{if } l \in \{1, 3, 5, \dots, n-2\} \\ 2, & \text{if } l = 2k-2, k \in \{2, 4, 6, \dots, n-1\} \\ 3, & \text{if } l = 2k+2, k \in \{1, 3, 5, \dots, n-3\} \end{cases}$$

Volume 13, No. 3, 2022, p. 1798-1802 https://publishoa.com ISSN: 1309-3452

For $k \in \{1, 3, 5, \dots, n-2\}$

$$c(e_l) = \begin{cases} 2, & \text{if } l = 2k - 1, \\ 3, & \text{if } l = 2k + 2, \end{cases}$$
$$c(e_l) = \begin{cases} 3, & \text{if } l = 2k - 1, \\ 2, & \text{if } l = 2k + 2, \end{cases}$$

Case (i): when *n* is even,

$$c(e_l) = \begin{cases} 1, & \text{if } l \in \{1, 3, 5, \dots, n-1\} \\ 2, & \text{if } l = 2k-2, k \in \{2, 4, 6, \dots, n-4\} \\ 3, & \text{if } l = 2k+2, k \in \{1, 3, 5, \dots, n-2\} \end{cases}$$

For $k \in \{1, 3, 5, \dots, n-1\}$

$$c(e_l) = \begin{cases} 2, & \text{if } l = 2k - 1, \\ 3, & \text{if } l = 2k + 2, \end{cases}$$
$$c(e_l) = \begin{cases} 3, & \text{if } l = 2k - 1, \\ 2, & \text{if } l = 2k + 2, \end{cases}$$

We have observed that the above condition of edge coloring, the graph AT_n is properly edge colored with 3 colors. This implies that $\chi'(T_n) \le \Delta = 3$. Since $\Delta = 3$ and $\chi'(T_n) \ge \Delta = 3$. Therefore $\chi'(T_n) = 3$. Thus *c* is edge colored with 3 colors.

4. CONCLUSION

In this article, we obtained an edge chromatic number of triangular snake graph T_n , double triangular snake graph DT_n , triple triangular snake graph TT_n and alternate triangular snake graph AT_n .

REFERENCES

- 1. M. Behzad., Graphs and their Chromatic Numbers, Ph.D. thesis, Michigan State University, East Lansing, 1965.
- 2. Dharamvirsinh Parmar, Pratik V. Shah, Bharat Suthar., Ranbow connection number of Triangular snake graph, Journal of Emerging Technologies and Innovative Research, 6(3)(2019), 339-343.
- 3. C. E. Shannon, A theorem on coloring the lines of a network, J. Math. Phys. 28 (1949) 148–151.
- 4. P. G. Tait, Remarks on the colouring of maps, Proc. Roy. Soc. Edinburgh 29 (1880) 501-503.
- 5. V. G. Vizing, On an estimate of the chromatic class of a ρ -graph (Russian), Diskret. Analiz 3 (1964) 25–30.