On the Edge Coloring of Triangular Snake Graph Families

G. Jayaraman ${ }^{1}$ and Deepalakshmi ${ }^{2}$

${ }^{1}$ Assistant Professor, Department of Mathematics,
Vels Institute of Science, Technology and Advanced Studies, Tamil Nadu, India.
${ }^{2}$ M.Phil Research Scholar, Department of Mathematics,
Vels Institute of Science, Technology and Advanced Studies, Tamil Nadu, India.
Received 2022 April 02; Revised 2022 May 20; Accepted 2022 June 18.

Abstract

We discuss the edge chromatic number of the triangular snake graph T_{n}, double triangular snake graph $D T_{n}$, triple triangular snake graph $T T_{n}$ and alternate triangular snake graph $A T_{n}$. A proper edge coloring of a graph G, is an assignment of colors to all the edges of graph G so that the adjacent edges received distinct colors. The smallest number of colors needed for such coloring is known as edge chromatic number.

Keywords: Triangular snake graph, double triangular snake graph, triple triangular snake graph, alternate triangular snake and edge coloring.

2010 Mathematics Subject Classification: 05C15.

1. INTRODUCTION

All graphs considered in this article are finite, simple and undirected. Let $G=(V(G), E(G))$ be a graph consists of a vertex set $V(G)$ and edge set $E(G)$ respectively. In 1880, Tait [4] was introduced the concept of edge coloring and he proved that, if the four-color conjecture is true then the edges of all the 3-connected planar graph can be colored properly only using 3 -colors. In 1916, Konigsberg was proved that all the bipartite graphs have been edge colored with $\Delta(G)$ colors exactly. In 1949, Shannon[3] proved that all the graph have been edge colored with $\leq \frac{3}{2} \Delta(G)$ colors. In 1964, Vizing[5] proved that for every simple graph $G, \chi^{\prime}(G) \leq \Delta(G)+1$.

An edge coloring of a graph G is that an assignment of colors to the edges of G such that the adjacent edges received distinct colors. The chromatic index of a graph G , denoted by $\chi(G)$, is the minimum number of colors required for a proper edge coloring of graph G. The graph G is k-edge-chromatic if $\chi(G)=k$. Obviously $\chi(G) \geq \Delta(G)$, where $\Delta(G)$ is the maximum degree of a graph G.

In other words, An edge coloring of graph G is a function $c: E(G) \rightarrow\{1,2, \ldots, \Delta\}$, the colors satisfying the following conditions.
(i) $c(e) \neq c(e)$ for any two adjacent edges $e, e \in E(G)$

The minimum number of colors are required for such coloring is called edge chromatic number of G and it is denoted by $\chi^{\prime}(G)$.

Many real life situations can be modeled as a graph coloring problem, some of them are planning and scheduling problems, timetabling and map coloring. Since graph coloring problem is a NP-hard problem, until now there are not known deterministic methods as a whole that can solve such problems.

2. PRELIMINARIES

Definition 2.1: A Triangular snake graph[2] T_{n} is obtained from a path $\left\{u_{1}, u_{2}, \ldots ., u_{n}\right\}$ by joining u_{k} and u_{k+1} to a new vertex v_{k} for $k \in\{1,2, \ldots ., n\}$. That is, every edge of a path is replaced by a triangle.

Definition 2.2: The double triangular snake graph [2] $D T_{n}$ consists of two triangular snakes that have a common path.

Definition 2.3: The triple triangular snake graph [2] $T T_{n}$ consists of three triangular snakes that have a common path.

Definition 2.4: An alternate triangular snake graph [2] $A T_{n}$ is obtained by a path $\left\{u_{1}, u_{2}, \ldots ., u_{n}\right\}$ by joining u_{k} and u_{k+1} to a new vertex alternatively v_{k} for $k \in\{1,3,5 \ldots \ldots\}$,i.e. Every alternate edge of a path is replaced by triangle.

In this paper, we focus on edge chromatic number for triangular snake graph T_{n}, double triangular snake graph $D T_{n}$, triple triangular snake graph $T T_{n}$ and alternate triangular snake graph $A T_{n}$.

3. MAIN RESULTS

Theorem 3.1. Let T_{n} be the triangular snake graph of order $n \geq 3$, then $\chi^{\prime}\left(T_{n}\right)=4$.

Proof. Let $V\left(T_{n}\right)=\left\{u_{l}: 1 \leq l \leq n-1\right\} \bigcup\left\{v_{l}: 1 \leq l \leq n\right\}$ and
$E\left(T_{n}\right)=\left\{e_{l}: 1 \leq l \leq n-1\right\} \bigcup\left\{s_{l}: 1 \leq l \leq n-1\right\} \bigcup\left\{f_{l}: 1 \leq l \leq n-1\right\}$, where the edges $\quad\left\{e_{l}: 1 \leq l \leq n-1\right\}$ represents the edge $\left\{v_{l} v_{l+1}: 1 \leq l \leq n-1\right\}$, the edges $\left\{s_{l}: 1 \leq l \leq n-1\right\}$ represents the edge $\left\{u_{l} v_{l}: 1 \leq l \leq n-1\right\}$ and the edges $\left\{f_{l}: 1 \leq l \leq n-1\right\}$ represents the edge $\left\{u_{l} v_{l+1}: 1 \leq l \leq n-1\right\}$

Define an edge coloring $c: E\left(T_{n}\right) \rightarrow\{1,2,3, \ldots ., \Delta\}$ as follows. Now we assign the edge coloring to all the edges as follows,
$c\left(v_{l} v_{l+1}\right)=\left\{\begin{array}{l}1, \text { if } l \text { is odd } \\ 2, \text { if } l \text { is even }\end{array}\right.$

$$
c\left(v_{l} u_{l}\right)=3, c\left(u_{l} v_{l+1}\right)=4
$$

We observed that the procedure of edge coloring pattern, the graph T_{n} is edge colored properly with 4 colors. This implies that $\chi^{\prime}\left(T_{n}\right) \leq 4$. Since $\Delta=4$ and $\chi^{\prime}\left(T_{n}\right) \geq \Delta=4$. Therefore $\chi^{\prime}\left(T_{n}\right)=4$. Thus c is edge colored with 3 colors.

Theorem 3.2. Let $D T_{n}$ be double triangular snake graph of order $n \geq 3$, then $\chi^{\prime}\left(D T_{n}\right)=\Delta\left(D T_{n}\right)=6$.

Proof. Let $V\left(D T_{n}\right)=\left\{u_{l}, w_{l}: 1 \leq l \leq n-1\right\} \bigcup\left\{v_{l}: 1 \leq l \leq n\right\}$ and
$E\left(D T_{n}\right)=\left\{\begin{array}{l}\left\{e_{l}: 1 \leq l \leq n-1\right\} \bigcup\left\{e_{l}^{\prime}: 1 \leq l \leq n-1\right\} \bigcup \\ \left\{e_{l}^{\prime \prime}: 1 \leq l \leq n-1\right\} \bigcup\left\{s_{l}: 1 \leq l \leq n-1\right\} \bigcup\left\{s_{l}^{\prime}: 1 \leq l \leq n-1\right\}\end{array}\right.$, where the edges $\left\{e_{l}: 1 \leq l \leq n-1\right\}$ represents the edge $\left\{v_{l} v_{l+1}: 1 \leq l \leq n-1\right\}$, the edges $\left\{e_{l}: 1 \leq l \leq n-1\right\}$ represents the edge $\left\{u_{l} v_{l}: 1 \leq l \leq n-1\right\}$, the edges $\left\{e_{l}{ }_{l}: 1 \leq l \leq n-1\right\}$ represents the edge $\left\{u_{l} v_{l+1}: 1 \leq l \leq n-1\right\}$, the edges $\left\{s_{l}: 1 \leq l \leq n-1\right\}$ represents the edge $\left\{w_{l} v_{l}: 1 \leq l \leq n-1\right\}$ and the edges $\left\{s_{l}^{\prime}: 1 \leq l \leq n-1\right\}$ represents the edge $\left\{w_{l} v_{l+1}: 1 \leq l \leq n-1\right\}$

Define an edge coloring $c: E\left(D T_{n}\right) \rightarrow\{1,2,3, \ldots, \Delta\}$ as follows. Now we assign the edge coloring to all the edges as follows,
$c\left(v_{l} v_{l+1}\right)=\left\{\begin{array}{l}1, \text { if } l \text { is odd } \\ 2, \text { if } l \text { is even }\end{array}\right.$
$c\left(v_{l} u_{l}\right)=3, \quad c\left(u_{l} v_{l+1}\right)=4$
$c\left(v_{l} w_{l}\right)=5, \quad c\left(w_{l} v_{l+1}\right)=6$

Clearly the above method of edge coloring, the graph $D T_{n}$ is edge colored properly with 6 colors. This implies that $\chi^{\prime}\left(D T_{n}\right) \leq 6$. Since $\Delta=6$ and $\chi^{\prime}\left(D T_{n}\right) \geq \Delta=6$. Therefore $\chi^{\prime}\left(D T_{n}\right)=6$. Thus c is edge colored with 6 colors.

Theorem 3.3. Let $T T_{n}$ be triple triangular snake graph, then $\chi^{\prime}\left(T T_{n}\right)=\Delta\left(T T_{n}\right), n \geq 3$.
Proof. Let $V\left(T T_{n}\right)=\left\{u_{l}, s_{l}, w_{l}: 1 \leq l \leq n-1\right\} \cup\left\{v_{l}: 1 \leq l \leq n\right\}$ and
$E\left(T T_{n}\right)=\left\{\begin{array}{l}\left\{e_{l}: 1 \leq l \leq n-1\right\} \bigcup\left\{e_{l}^{\prime}: 1 \leq l \leq n-1\right\} \bigcup \\ \left\{e_{l}^{\prime \prime}: 1 \leq l \leq n-1\right\} \bigcup\left\{e_{l}^{\prime \prime \prime}: 1 \leq l \leq n-1\right\} \bigcup \\ \left\{f_{l}: 1 \leq l \leq n-1\right\} \bigcup\left\{f_{l}^{\prime}: 1 \leq l \leq n-1\right\} \bigcup\left\{f_{l}^{\prime \prime}: 1 \leq l \leq n-1\right\}\end{array}\right.$, where the edges $\left\{e_{l}: 1 \leq l \leq n-1\right\}$
represents the edge $\left\{v_{l} v_{l+1}: 1 \leq l \leq n-1\right\}$, the edges $\left\{e_{l}^{\prime}: 1 \leq l \leq n-1\right\}$ represents the edge $\left\{u_{l} v_{l}: 1 \leq l \leq n-1\right\}$, the edges $\left\{e_{l}^{\prime \prime}: 1 \leq l \leq n-1\right\}$ represents the edge $\left\{u_{l} v_{l+1}: 1 \leq l \leq n-1\right\}$, the edges $\left\{e_{l}^{\prime \prime}: 1 \leq l \leq n-1\right\}$ represents the edge $\left\{u_{l} s_{l}: 1 \leq l \leq n-1\right\}$, the edges $\left\{f_{l}: 1 \leq l \leq n-1\right\}$ represents the edge $\left\{w_{l} v_{l}: 1 \leq l \leq n-1\right\}$, the edges $\left\{f_{l}^{\prime}: 1 \leq l \leq n-1\right\}$ represents the edge $\left\{w_{l} v_{l+1}: 1 \leq l \leq n-1\right\}$ and the edges $\left\{f_{l}^{\prime \prime}: 1 \leq l \leq n-1\right\}$ represents the edge $\left\{s_{l} v_{l+1}: 1 \leq l \leq n-1\right\}$

Define an edge coloring $c: E\left(T T_{n}\right) \rightarrow\{1,2,3, \ldots ., \Delta\}$ as follows. Now we assign the edge coloring to all the edges as follows,

$$
c\left(v_{l} v_{l+1}\right)=\left\{\begin{array}{l}
1, \text { if } l \text { is odd } \\
2, \text { if } l \text { is even }
\end{array}\right.
$$

Volume 13, No. 3, 2022, p. 1798-1802
https://publishoa.com
ISSN: 1309-3452

$$
\begin{aligned}
& c\left(v_{l} u_{l}\right)=3, c\left(u_{l} v_{l+1}\right)=4 \\
& c\left(v_{l} w_{l}\right)=5, c\left(w_{l} v_{l+1}\right)=6 \\
& c\left(v_{l} s_{l}\right)=7, c\left(s_{l} v_{l+1}\right)=8
\end{aligned}
$$

We observed that the above condition of edge coloring, the graph $T T_{n}$ is properly edge colored with 8 colors. Hence $\chi^{\prime}\left(T T_{n}\right) \leq \Delta=8$. Since $\Delta=8$ and $\chi^{\prime}\left(T T_{n}\right) \geq \Delta=8$. Therefore $\chi^{\prime}\left(T T_{n}\right)=8$. Thus c is edge colored with 8 colors.

Theorem 3.4. Let $A T_{n}$ be the alternate triangular snake graph, then $\chi^{\prime}\left(A T_{n}\right)=\Delta\left(A T_{n}\right), n \geq 3$.
Proof. Let $V\left(A T_{n}\right)=\left\{u_{l}: l \in\{1,2, \ldots, n\}\right\} \bigcup\left\{v_{l}: l \in\{1,3,5, \ldots, n-2\}\right\}$ and

Let $E\left(T T_{n}\right)=\left\{e_{l}: l \in\{1,2, \ldots ., n-1\}\right\} \bigcup\left\{e_{l}^{\prime}: l \in\{1,3, \ldots ., n-2\}\right\} \bigcup\left\{e_{l}^{\prime}: l \in\{1,3, \ldots, n-2\}\right\}$,
where the edges $\left\{e_{l}: l \in\{1,2, \ldots, n\}\right\}$ represents the edge $\left\{u_{l} u_{l+1}: l \in\{1,2, \ldots, n-1\}\right\}$, the edges $\left\{e_{l}^{\prime}: l \in\{1,3, \ldots, n-2\}\right\}$ represents the edge $\left\{u_{l} v_{l}: l \in\{1,3, \ldots, n-2\}\right\}$, the edges $\left\{e_{l}^{\prime \prime}: l \in\{1,3, \ldots, n-2\}\right\}$ represents the edge $\left\{v_{l} u_{l+1}: l \in\{1,3, \ldots ., n-2\}\right\}$,

Define an edge coloring $c: E\left(A T_{n}\right) \rightarrow\{1,2,3\}$ as follows. Now we assign the edge coloring to all the edges as follows. Consider the following two cases

Case (i): when n is odd,
Subcase(i): $n=2 k+1, k=2,4,6, \ldots \ldots$.
$c\left(e_{l}\right)= \begin{cases}1, & \text { if } l \in\{1,3,5, \ldots . n-2\} \\ 2, & \text { if } l=2 k-2, k \in\{2,4,6, \ldots ., n-3\} \\ 3, & \text { if } l=2 k+2, k \in\{1,3,5, \ldots, n-1\}\end{cases}$
For $k \in\{1,3,5, \ldots, n-1\}$
$c\left(e_{l}^{\prime}\right)= \begin{cases}2, & \text { if } l=2 k-1, \\ 3, & \text { if } l=2 k+2,\end{cases}$
$c\left(e_{l}^{\prime \prime}\right)= \begin{cases}3, & \text { if } l=2 k-1, \\ 2, & \text { if } l=2 k+2,\end{cases}$
Subcase(ii): $n=2 k+3, k=2,4,6, \ldots \ldots$.
$c\left(e_{l}\right)=\left\{\begin{array}{l}1, \text { if } l \in\{1,3,5, \ldots . n-2\} \\ 2, \text { if } l=2 k-2, k \in\{2,4,6, \ldots, n-1\} \\ 3, \text { if } l=2 k+2, k \in\{1,3,5, \ldots, n-3\}\end{array}\right.$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1798-1802
https://publishoa.com
ISSN: 1309-3452

For $k \in\{1,3,5, \ldots, n-2\}$
$c\left(e_{l}^{\prime}\right)= \begin{cases}2, & \text { if } l=2 k-1, \\ 3, & \text { if } l=2 k+2,\end{cases}$
$c\left(e_{l}\right)= \begin{cases}3, & \text { if } l=2 k-1, \\ 2, & \text { if } l=2 k+2,\end{cases}$
Case (i): when n is even,
$c\left(e_{l}\right)= \begin{cases}1, & \text { if } l \in\{1,3,5, \ldots, n-1\} \\ 2, & \text { if } l=2 k-2, k \in\{2,4,6, \ldots, n-4\} \\ 3, & \text { if } l=2 k+2, k \in\{1,3,5, \ldots, n-2\}\end{cases}$

For $k \in\{1,3,5, \ldots, n-1\}$
$c\left(e_{l}^{\prime}\right)= \begin{cases}2, & \text { if } l=2 k-1, \\ 3, & \text { if } l=2 k+2,\end{cases}$
$c\left(e_{l}\right)= \begin{cases}3, & \text { if } l=2 k-1, \\ 2, & \text { if } l=2 k+2,\end{cases}$

We have observed that the above condition of edge coloring, the graph $A T_{n}$ is properly edge colored with 3 colors. This implies that $\chi^{\prime}\left(T_{n}\right) \leq \Delta=3$. Since $\Delta=3$ and $\chi^{\prime}\left(T_{n}\right) \geq \Delta=3$. Therefore $\chi^{\prime}\left(T_{n}\right)=3$. Thus c is edge colored with 3 colors.

4. CONCLUSION

In this article, we obtained an edge chromatic number of triangular snake graph T_{n}, double triangular snake graph $D T_{n}$, triple triangular snake graph $T T_{n}$ and alternate triangular snake graph $A T_{n}$.

REFERENCES

1. M. Behzad., Graphs and their Chromatic Numbers, Ph.D. thesis, Michigan State University, East Lansing, 1965.
2. Dharamvirsinh Parmar, Pratik V. Shah, Bharat Suthar., Ranbow connection number of Triangular snake graph, Journal of Emerging Technologies and Innovative Research, 6(3)(2019), 339-343.
3. C. E. Shannon, A theorem on coloring the lines of a network, J. Math. Phys. 28 (1949) 148-151.
4. P. G. Tait, Remarks on the colouring of maps, Proc. Roy. Soc. Edinburgh 29 (1880) 501-503.
5. V. G. Vizing, On an estimate of the chromatic class of a ρ-graph (Russian), Diskret. Analiz 3 (1964) 25-30.
