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ABSTRACT 

We discuss the edge chromatic number of the triangular snake graph nT , double triangular snake graph nDT , triple 

triangular snake graph nTT  and alternate triangular snake graph nAT . A proper edge coloring of a graph G , is an 

assignment of colors to all the edges of graph G so that the adjacent edges received distinct colors. The smallest number 

of colors needed for such coloring is known as edge chromatic number.  
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1. INTRODUCTION 

All graphs considered in this article are finite, simple and undirected.  Let ( ( ), ( ))G V G E G=  be a graph consists of a 

vertex set ( )V G  and edge set ( )E G respectively. In 1880, Tait [4] was introduced the concept of edge coloring and he 

proved that, if the four-color conjecture is true then the edges of all the 3-connected planar graph can be colored properly 

only using 3-colors. In 1916, Konigsberg was proved that all the bipartite graphs have been edge colored with ( )G

colors exactly.  In 1949, Shannon[3] proved that all the graph have been edge colored with 
3

( )
2

G  colors.  In 1964, 

Vizing[5] proved that for every simple graph G , 
' ( ) ( ) 1G G   + .   

An edge coloring of a graph G  is that an assignment of colors to the edges of G such that the adjacent edges received 

distinct colors. The chromatic index of a graph G, denoted by
' ( )G , is the minimum number of colors required for a 

proper edge coloring of graph .G The graph G  is k-edge-chromatic if
'( )G k = .  Obviously

' ( ) ( )G G   , where 

( )G is the maximum degree of a graph .G  

In other words, An edge coloring of graph G is a function : ( ) {1, 2,...., }c E G →  , the colors satisfying the following 

conditions.  

(i)  
'( ) ( )c e c e for any two adjacent edges 

', ( )e e E G  

The minimum number of colors are required for such coloring is called edge chromatic number of G and it is denoted by
' ( )G . 
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Many real life situations can be modeled as a graph coloring problem, some of them are planning and scheduling 

problems, timetabling and map coloring. Since graph coloring problem is a NP-hard problem, until now there are not 

known deterministic methods as a whole that can solve such problems.  

2. PRELIMINARIES 

Definition 2.1: A Triangular snake graph[2] nT  is obtained from a path 1 2{ , ,....., }nu u u by joining ku and 1ku + to a 

new vertex kv for {1, 2,....., }k n .  That is, every edge of a path is replaced by a triangle.  

Definition 2.2: The double triangular snake graph [2] nDT  consists of two triangular snakes that have a common path.  

Definition 2.3: The triple triangular snake graph [2] nTT  consists of three triangular snakes that have a common path.  

Definition 2.4: An alternate triangular snake graph [2] nAT  is obtained by a path 1 2{ , ,....., }nu u u  by joining ku and 

1ku + to a new vertex alternatively kv  for {1,3,5.....}k  ,i.e.  Every alternate edge of a path is replaced by triangle.  

In this paper, we focus on edge chromatic number for triangular snake graph nT , double triangular snake graph nDT , 

triple triangular snake graph nTT  and alternate triangular snake graph nAT . 

3. MAIN RESULTS 

 

Theorem 3.1. Let nT be the triangular snake graph of order 3n , then
'( ) 4nT = . 

Proof.  Let    ( ) :1 1 :1n l lV T u l n v l n=   −   and 

     ( ) :1 1 :1 1 :1 1n l l lE T e l n s l n f l n=   −   −   − , where the edges  :1 1le l n  −  

represents the edge 1 :1 1l lv v l n+   − , the edges  :1 1ls l n  −  represents the edge  :1 1l lu v l n  −  and 

the edges  :1 1lf l n  −  represents the edge  1 :1 1l lu v l n+   −  

Define an edge coloring  : ( ) 1,2,3,....,nc E T →  as follows. Now we assign the edge coloring to all the edges as 

follows, 

1

1,  if   is odd
( )

2,  if   is even
l l

l
c v v

l
+


= 


     

  ( ) 3l lc v u = , 1( ) 4l lc u v + =  

We observed that the procedure of edge coloring pattern, the graph nT is edge colored properly with 4 colors.  This implies 

that
'( ) 4nT  . Since 4= and

' ( ) 4nT   = .  Therefore
'( ) 4nT = . Thus c is edge colored with 3 colors. 

Theorem 3.2. Let nDT  be double triangular snake graph of order 3n , then 
' ( ) ( ) 6n nDT DT =  = . 

Proof.  Let    ( ) , :1 1 :1n l l lV DT u w l n v l n=   −   and 
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'

'' '

{ :1 1} { :1 1}
( )

{ :1 1} { :1 1} { :1 1}

l l

n

l l l

e l n e l n
E DT

e l n s l n s l n

   −   −
= 

  −   −   −
, where the edges  :1 1le l n  −  

represents the edge 1 :1 1l lv v l n+   − , the edges  ' :1 1le l n  − represents the edge :1 1l lu v l n  − , the 

edges  '' :1 1le l n  − represents the edge 1 :1 1l lu v l n+   − , the edges  :1 1ls l n  −  represents the edge 

 :1 1l lw v l n  −  and the edges  ' :1 1ls l n  −  represents the edge  1 :1 1l lw v l n+   −  

Define an edge coloring  : ( ) 1,2,3,....,nc E DT →  as follows. Now we assign the edge coloring to all the edges as 

follows, 

1

1,  if   is odd
( )

2,  if   is even
l l

l
c v v

l
+


= 


 

 ( ) 3l lc v u = , 1( ) 4l lc u v + =  

( ) 5l lc v w = ,  1( ) 6l lc w v + =  

Clearly the above method of edge coloring, the graph nDT is edge colored properly with 6 colors.  This implies that

'( ) 6nDT  .  Since 6= and
' ( ) 6nDT   = . Therefore

'( ) 6nDT = . Thus c is edge colored with 6 colors. 

Theorem 3.3. Let nTT be triple triangular snake graph, then 
' ( ) ( ), 3.n nTT TT n =    

Proof.  Let    ( ) , , :1 1 :1n l l l lV TT u s w l n v l n=   −   and 

'

'' '''

' ''

{ :1 1} { :1 1}

( ) { :1 1} { :1 1}

{ :1 1} { :1 1} { :1 1}

l l

n l l

l l l

e l n e l n

E TT e l n e l n

f l n f l n f l n

   −   −


=   −   −


  −   −   −

, where the edges  :1 1le l n  −  

represents the edge  1 :1 1l lv v l n+   − , the edges  ' :1 1le l n  − represents the edge  :1 1l lu v l n  − , the 

edges  '' :1 1le l n  − represents the edge  1 :1 1l lu v l n+   − , the edges  ''' :1 1le l n  − represents the edge 

 :1 1l lu s l n  − ,the edges  :1 1lf l n  −  represents the edge  :1 1l lw v l n  − , the edges 

 ' :1 1lf l n  −  represents the edge  1 :1 1l lw v l n+   −  and the edges  '' :1 1lf l n  −  represents the edge 

 1 :1 1l ls v l n+   −  

Define an edge coloring  : ( ) 1,2,3,....,nc E TT →  as follows. Now we assign the edge coloring to all the edges as 

follows, 

1

1,  if   is odd
( )

2,  if   is even
l l

l
c v v

l
+


= 

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 ( ) 3l lc v u = , 1( ) 4l lc u v + =  

 ( ) 5l lc v w = , 1( ) 6l lc w v + =  

 ( ) 7l lc v s = ,  1( ) 8l lc s v + =  

We observed that the above condition of edge coloring, the graph nTT is properly edge colored with 8 colors.  Hence

' ( ) 8nTT   = . Since 8= and
' ( ) 8nTT   = .  Therefore 

'( ) 8nTT = . Thus c is edge colored with 8 colors. 

Theorem 3.4. Let nAT be the alternate triangular snake graph, then 
'( ) ( ), 3.n nAT AT n =    

Proof.  Let    ( ) : {1,2,...., } : {1,3,5,...., 2}n l lV AT u l n v l n=   − and 

Let
' ''( ) { : {1,2,...., 1}} { : {1,3,...., 2}} { : {1,3,...., 2}}n l l lE TT e l n e l n e l n=  −  −  − ,  

where the edges { : {1,2,...., }}le l n  represents the edge 1{ : {1,2,...., 1}}l lu u l n+  − , the edges 

'{ : {1,3,...., 2}}le l n − represents the edge { : {1,3,...., 2}}l lu v l n − , the edges 
''{ : {1,3,...., 2}}le l n −

represents the edge 1{ : {1,3,...., 2}}l lv u l n+  − , 

Define an edge coloring  : ( ) 1,2,3nc E AT → as follows. Now we assign the edge coloring to all the edges as follows. 

Consider the following two cases 

Case (i): when n is odd,  

Subcase(i): 2 1, 2, 4,6,.......n k k= + =  

1,   if  {1,3,5,.... 2}

( ) 2,   if  2 2, {2,4,6,...., 3}

3,   if  2 2, {1,3,5,...., 1}

l

l n

c e l k k n

l k k n

 −


= = −  −
 = +  −

   

For {1,3,5,...., 1}k n −  

'
2,   if  2 1,

( )
3,   if  2 2,

l

l k
c e

l k

= −
= 

= +
   

''
3,   if  2 1,

( )
2,   if  2 2,

l

l k
c e

l k

= −
= 

= +
 

Subcase(ii): 2 3, 2, 4,6,.......n k k= + =  

1,   if  {1,3,5,.... 2}

( ) 2,   if  2 2, {2, 4,6,...., 1}

3,   if  2 2, {1,3,5,...., 3}

l

l n

c e l k k n

l k k n

 −


= = −  −
 = +  −
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For {1,3,5,...., 2}k n −  

'
2,   if  2 1,

( )
3,   if  2 2,

l

l k
c e

l k

= −
= 

= +
   

''
3,   if  2 1,

( )
2,   if  2 2,

l

l k
c e

l k

= −
= 

= +
 

Case (i): when n is even,  

1,   if  {1,3,5,...., 1}

( ) 2,   if  2 2, {2, 4,6,...., 4}

3,   if  2 2, {1,3,5,...., 2}

l

l n

c e l k k n

l k k n

 −


= = −  −
 = +  −

   

For {1,3,5,...., 1}k n −  

'
2,   if  2 1,

( )
3,   if  2 2,

l

l k
c e

l k

= −
= 

= +
   

''
3,   if  2 1,

( )
2,   if  2 2,

l

l k
c e

l k

= −
= 

= +
 

We have observed that the above condition of edge coloring, the graph nAT is properly edge colored with 3 colors.  This 

implies that
' ( ) 3nT   = . Since 3= and

' ( ) 3nT   = . Therefore
'( ) 3nT = . Thus c is edge colored with 3 

colors. 

4. CONCLUSION 

In this article, we obtained an edge chromatic number of triangular snake graph nT , double triangular snake graph nDT

, triple triangular snake graph nTT  and alternate triangular snake graph nAT . 
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