On Equitable Edge Coloring of Wheel Graph Families

D.K. Sathiya ${ }^{1}$ and S. Senthamilselvi ${ }^{*}$
${ }^{1}$ Research Scholar, Department of Mathematics,
Vels Institute of Science, Technology and Advanced Studies, Chennai-117.
${ }^{2}$ Department of Mathematics,
Vels Institute of Science, Technology and Advanced Studies, Chennai-117.
*Corresponding Author

Received 2022 April 02; Revised 2022 May 20; Accepted 2022 June 18.

Abstract

An equitable edge coloring of a graph is a proper edge coloring for which the difference between any two color classes is at most one. The minimum cardinality of G for such coloring is called equitable edge chromatic number. In this article, we determine the theorem on equitable edge coloring for sunlet graph, wheel graph and helm graph.

Keywords: Sunlet graph, wheel graph, helm graph and equitable edge coloring.
AMS Subject Classification: 05C15

1. INTRODUCTION

Let us consider all graphs are finite, simple and undirected graph G. The concept of edge coloring introduced by Tait in 1880. Clearly $\chi^{\prime}(G) \geq \Delta(G)$, where $\Delta(G)$ is the maximum degree of graph G. In 1916, Konig was proved that every bipartite graph can be edge colored with exactly $\Delta(G)$ colors. Xia Zhang and Guizhen Liu [6] prove that the equitable edge-colorings of simple graphs.

In 1949 Shannon proved that every graph can be edge colored with $\leq \frac{3}{2} \Delta(G)$ colors. In 1964, Vizing [5] given the tight bound for edge coloring that $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$. In 1973, Meyer [3] presented the concept of equitable coloring and equitable chromatic number. After few years, as an extension of equitable coloring, the concept of equitable edge coloring was introduced byHilton and deWerra [1] in 1994. K. Kaliraj [2] proved that equitable edge coloring of some join graphs. Veninstine vivik et.al [4] proved the equitable edge coloring of splitting graph of helm and sunlet graph.

2. PRELIMINARIES

Definition 2.1[5]

The n - sunlet graph S_{n} is obtained by joining n pendant edges to all the vertices of the cycle C_{n}

Definition 2.2[5]

For $n \geq 4$, the wheel W_{n} is obtained by joining a vertex v_{0} to each of the $n-1$ vertices $v_{1}, v_{2}, \ldots ., v_{n-1}$ of C_{n-1}.

Definition 2.3[5] The Helm graph H_{n} is the graph attained by a W_{n} by adjoining a pendant edge to each vertex of the $n-1$ vertices of the cycle in W_{n}.

Volume 13, No. 3, 2022, p. 1791-1797
https://publishoa.com
ISSN: 1309-3452

Lemma 2.4[5]: Let G be a simple graph, then $\chi_{e}^{\prime}(G) \geq \Delta(G)$.

3. MAINRESULTS

Theorem3.1.

For any $n \geq 3$, the equitable chromatic index for sunlet graph is $\chi_{e}^{\prime}\left(S_{n}\right)=3$.

Proof.

Let $\quad V\left(S_{n}\right)=\left\{u_{k}, v_{k}: 1 \leq k \leq n\right\}$ and $E\left(S_{n}\right)=\left\{e_{k}, s_{k}: 1 \leq k \leq n\right\}, \quad$ where \quad the edges $\left\{e_{k}: 1 \leq k \leq n\right\}$ represents the edge $\left\{v_{k} \nu_{k+1(\bmod n)}: 1 \leq k \leq n\right\}$, the edges $\left\{s_{k}: 1 \leq k \leq n\right\}$ represents the edge $\left\{\boldsymbol{u}_{\boldsymbol{k}} \boldsymbol{\nu}_{\boldsymbol{k}}: \mathbf{1} \leq \boldsymbol{k} \leq \boldsymbol{n}\right\}$

Define an edge coloring $c: E\left(S_{n}\right) \rightarrow\{1,2,3\}$ as follows. Let us partition the edge set of sunlet graph $E\left(S_{n}\right)$ as follows.

Case (i): $n \equiv 0(\bmod 3)($ i.e $) 3,6,9 \ldots$
$E_{1}=\left\{e_{1}, e_{3}, e_{7} \ldots, e_{n-2}\right\} \cup\left\{s_{3}, s_{6}, \ldots, s_{n}\right\}$
$E_{2}=\left\{e_{2}, e_{5}, e_{8} \ldots, e_{n-1}\right\} \bigcup\left\{s_{1}, s_{4}, \ldots ., s_{n-2}\right\}$
$E_{3}=\left\{e_{3}, e_{6}, e_{7} \ldots, e_{n}\right\} \bigcup\left\{s_{2}, s_{5}, \ldots, s_{n-1}\right\}$

From the equation (3.1) to (3.3), clearly the sunlet graph S_{n} is equitable edge colored with 3 colors. Also we observe that the color classes E_{1}, E_{2} and E_{3} are independent sets of S_{n} and its satisfies the inequiality $\| E_{i}\left|-\left|E_{j}\right|\right| \leq 1$, for $i \neq j$. Hence $\chi_{e}^{\prime}\left(S_{n}\right) \leq 3$. Since $\Delta=3$ and $\chi_{e}^{\prime}\left(S_{n}\right) \geq \Delta=3$ Therefore $\chi_{e}^{\prime}\left(S_{n}\right)=3$. When $n=3,6,9, \ldots$, i.e consider $n=6$, for which the color classes $\left|E_{1}\right|=\left|E_{2}\right|=\left|E_{3}\right|=4$ and which implies that $\left|\left|E_{1}\right|-\left|E_{2}\right|\right| \leq 1$. Thus, it is equitable edge colored with 3 colors. Therefore $\chi_{e}^{\prime}\left(S_{6}\right) \leq 3$. The maximum degree of sunlet graph is $3(\Delta=3)$ and by lemma 2.4, $\chi_{e}^{\prime}\left(S_{6}\right) \geq \Delta=3$. Hence $\chi_{e}^{\prime}\left(S_{6}\right)=3$.

Case (ii): $n \equiv 1(\bmod 3)$

$$
\begin{align*}
& E_{1}=\left\{e_{1}, e_{4}, e_{7} \ldots, e_{n-3}\right\} \cup\left\{s_{3}, s_{6}, \ldots, s_{n-1}\right\} \cup\left\{s_{n}\right\} \tag{3.4}\\
& E_{2}=\left\{e_{2}, e_{5}, e_{8} \ldots, e_{n-2}\right\} \cup\left\{e_{n}\right\} \cup\left\{s_{4}, s_{7}, \ldots, s_{n-3}\right\} \tag{3.5}\\
& E_{3}=\left\{e_{3}, e_{6}, e_{9} \ldots, e_{n-1}\right\} \cup\left\{s_{1}, s_{2}\right\} \cup\left\{s_{5}, s_{8}, \ldots, s_{n-2}\right\} \tag{3.6}
\end{align*}
$$

From the equation (3.4) to (3.6), clearly the sunlet graph S_{n} is equitable edge colored with 3 colors. Also we observe that the color classes E_{1}, E_{2} and E_{3} are independent sets of S_{n} and its satisfies the inequiality $\left\|E_{i}|-| E_{j}\right\| \leq 1$, for $i \neq j$. Hence $\chi_{e}^{\prime}\left(S_{n}\right) \leq 3$. Since $\Delta=3$ and $\chi_{e}^{\prime}\left(S_{n}\right) \geq \Delta=3$ Therefore $\chi_{e}^{\prime}\left(S_{n}\right)=3$. For example, in the case(ii) when $n \equiv 1(\bmod 3)$, i.e consider $n=10$, for which the color classes $\left|E_{1}\right|=\left|E_{3}\right|=7$ and $\left|E_{2}\right|=6$, which implies that $\| E_{i}\left|-\left|E_{j}\right|\right| \leq 1$. Thus, it is equitable edge colored with 3 colors. So that $\chi_{e}^{\prime}\left(S_{10}\right) \leq 3$. The maximum degree of sunlet graph is $3(\Delta=3)$ and by lemma 2.4, $\chi_{e}^{\prime}\left(S_{10}\right) \geq \Delta=3$. Hence $\chi_{e}^{\prime}\left(S_{10}\right)=3$.

Case (iii): $n \equiv 2(\bmod 3)$

$$
\begin{align*}
& E_{1}=\left\{e_{1}, e_{4}, e_{7} \ldots, e_{n-1}\right\} \cup\left\{s_{3}, s_{6}, \ldots, s_{n-2}\right\} \tag{3.7}\\
& E_{2}=\left\{e_{2}, e_{5}, e_{8} \ldots, e_{n-3}\right\} \cup\left\{e_{n}\right\} \cup\left\{s_{4}, s_{7}, s_{10} \ldots ., s_{n-1}\right\} \tag{3.8}\\
& E_{3}=\left\{e_{3}, e_{6}, e_{9} \ldots ., e_{n-2}\right\} \cup\left\{s_{1}, s_{2}\right\} \cup\left\{s_{5}, s_{8}, \ldots ., s_{n}\right\} \tag{3.9}
\end{align*}
$$

From the equation (3.7) to (3.9), clearly the sunlet graph S_{n} is equitable edge colored with 3 colors. Also we observe that the color classes E_{1}, E_{2} and E_{3} are independent sets of S_{n} and its satisfies the inequiality $\| E_{i}\left|-\left|E_{j}\right|\right| \leq 1$, for each (i, j). Hence $\chi_{e}^{\prime}\left(S_{n}\right) \leq 3$. Since $\Delta=3$ and $\chi_{e}^{\prime}\left(S_{n}\right) \geq \Delta=3$ Therefore $\chi_{e}^{\prime}\left(S_{n}\right)=3$. For example, in the case(iii) when $n \equiv 2(\bmod 3)$, i.e consider $n=11$, for which the color classes $\left|E_{1}\right|=\left|E_{2}\right|=7$ and $\left|E_{3}\right|=8$, which implies that $\| E_{1}\left|-\left|E_{2}\right|\right| \leq 1$. Thus $\chi_{e}^{\prime}\left(S_{11}\right) \leq 3$. The maximum degree of sunlet graph is $3(\Delta=3)$ and by using the lemma 2.4, $\chi_{e}^{\prime}\left(S_{11}\right) \geq \Delta=3$. Hence $\chi_{e}^{\prime}\left(S_{11}\right)=3$.

Figure 1: Equitable edge coloring of sunlet graph with 5 vertices

Theorem 3.2

For any $n \geq 4$, the equitable chromatic index for wheel graph is $\chi_{e}^{\prime}\left(w_{n}\right)=n-1$.

Proof. Let $V\left(W_{n}\right)=\left\{v_{0}\right\} \bigcup\left\{v_{k}: 1 \leq k \leq n-1\right\}$ and
Let $E\left(W_{n}\right)=\left\{g_{k}: 1 \leq k \leq n-1\right\} \cup\left\{s_{k}: 1 \leq k \leq n-1\right\}$, where the edges $\left\{g_{k}: 1 \leq k \leq n-1\right\}$ represents the edge $\left\{v_{0} v_{k}: 1 \leq k \leq n-1\right\}$ the edges $\left\{s_{k}: 1 \leq k \leq n\right\}$ represents the edge $\left\{v_{k} v_{k+1}: 1 \leq k \leq n-1\right\}$

Construct an edge coloring $c: E\left(W_{n}\right) \rightarrow\{1,2,3, \ldots ., n-1\}$ as follows. Let us partition the edge set for wheel graph $E\left(W_{n}\right)$ as follows.
$E_{1}=\left\{g_{1}, s_{2}\right\}$
$E_{2}=\left\{g_{2}, s_{3}\right\}$
$E_{3}=\left\{g_{3}, s_{4}\right\}$
$E_{4}=\left\{g_{4}, s_{5}\right\}$
$E_{5}=\left\{g_{5}, s_{6}\right\}$
$E_{n-4}=\left\{g_{n-4}, s_{n-3}\right\}$
$E_{n-3}=\left\{g_{n-3}, s_{n-2}\right\}$
$E_{n-2}=\left\{g_{n-2}, s_{n-1}\right\}$
$E_{n-1}=\left\{g_{n-1}, s_{n}\right\}$

From the equation (3.10) to (3.18), clearly the wheel graph W_{n} is equitableedgecolored with $n-1$ colors. Also observe that color classes $E_{1}, E_{2}, \ldots, E_{n-1}$ are independent sets of W_{n}, the cardinality of the color classes $\left|E_{1}\right|=\left|E_{2}\right|=\left|E_{3}\right| \ldots . .=\left|E_{n-2}\right|=\left|E_{n-1}\right|=2$ and its satisfies the inequiality $\| E_{i}\left|-\left|E_{j}\right|\right| \leq 1$, for $i \neq j$. Hence $\chi_{e}^{\prime}\left(W_{n}\right) \leq n-1$. Since $\Delta=n-1$ and $\chi_{e}^{\prime}\left(W_{n}\right) \geq n-1$. Therefore $\chi_{e}^{\prime}\left(W_{n}\right)=n-1$. For example, consider $n=8$, vertices, such that the color classes $\left|E_{1}\right|=\left|E_{2}\right|=\left|E_{3}\right| \ldots . .=\left|E_{7}\right|=2$ and which implies that $\left|\left|E_{1}\right|-\left|E_{2}\right|\right| \leq 1$. Thus,

Volume 13, No. 3, 2022, p. 1791-1797
https://publishoa.com
ISSN: 1309-3452
an equitable edge colored with 7 colors and so that $\chi_{e}\left(W_{8}\right) \leq 7$. The maximum degree of wheel graph is $7(\Delta=7)$ and by lemma 2.4, $\chi_{e}^{\prime}\left(W_{8}\right) \geq \Delta=7$. Hence $\chi_{e}^{\prime}\left(W_{8}\right)=7$.

Figure 2: Equitable edge coloring of wheel graph with 6 vertices

Theorem 3.3

For any $n \geq 4$, the equitable chromatic index for helm graph is $\chi_{e}^{\prime}\left(H_{n}\right)=n-1$.

Proof. Let $V\left(H_{n}\right)=\left\{v_{0}\right\} \bigcup\left\{v_{k}: 1 \leq k \leq n-1\right\} \cup\left\{u_{k}: 1 \leq k \leq n-1\right\}$ and
Let $E\left(H_{n}\right)=\left\{e_{k}: 1 \leq k \leq n-1\right\} \bigcup\left\{f_{k}: 1 \leq k \leq n-1\right\} \bigcup\left\{s_{k}: 1 \leq k \leq n-1\right\}$, where the edges $\left\{e_{k}: 1 \leq k \leq n-1\right\}$ represents the edge $\left\{v_{0} v_{k}: 1 \leq k \leq n-1\right\}$, the edges $\left\{f_{k}: 1 \leq k \leq n-1\right\}$ represents the edge $\left\{\nu_{k} v_{k+1(\bmod \operatorname{n-1})}: 1 \leq k \leq n-1\right\}$ and the edges $\left\{s_{k}: 1 \leq k \leq n-1\right\}$ represents the edge $\left\{\nu_{k} u_{k}: \mathbf{1} \leq \boldsymbol{k} \leq \boldsymbol{n}-\mathbf{1}\right\}$

By construction an edge coloring $c: E\left(H_{n}\right) \rightarrow\{1,2,3, \ldots, n-1\}$ as follows. Let us partition the edge set for helm graph $E\left(H_{n}\right)$ as follows.
$E_{1}=\left\{e_{1}, f_{2}, s_{5}\right\}$
$E_{2}=\left\{e_{2}, f_{3}, s_{1}\right\}$
$E_{3}=\left\{e_{3}, f_{4}, s_{2}\right\}$
$E_{4}=\left\{e_{4}, f_{5}, s_{3}\right\}$

ISSN: 1309-3452

$$
\begin{equation*}
E_{5}=\left\{e_{5}, f_{1}, s_{4}\right\} \tag{3.23}
\end{equation*}
$$

$E_{n-5}=\left\{e_{n-5}, f_{n-4}, s_{n-1}\right\}$
$E_{n-4}=\left\{e_{n-4}, f_{n-3}, s_{n-5}\right\}$
$E_{n-3}=\left\{e_{n-3}, f_{n-2}, s_{n-4}\right\}$
$E_{n-2}=\left\{e_{n-2}, f_{n-1}, s_{n-3}\right\}$

$$
\begin{equation*}
E_{n-1}=\left\{e_{n-1}, f_{n-5}, s_{n-2}\right\} \tag{3.28}
\end{equation*}
$$

From the equation (3.19) to (3.28), clearly the helm graph H_{n} is equitable edge colored with $n-1$ colors. Also observe that the color classes independent sets of H_{n}, the cardinality of the color classes $\left|E_{1}\right|=\left|E_{2}\right|=\left|E_{3}\right| \ldots . .=\left|E_{n-2}\right|=\left|E_{n-1}\right|=3$ and its satisfies the inequiality $\left|\left|E_{i}\right|-\left|E_{j}\right|\right| \leq 1$, for any (i, j). Hence $\chi_{e}^{\prime}\left(H_{n}\right) \leq n-1$. Since $\Delta=n-1$ and $\chi_{e}^{\prime}\left(H_{n}\right) \geq \Delta=n-1$. Therefore $\chi_{e}^{\prime}\left(H_{n}\right)=n-1$. For example, consider the helm $n=8$, vertices, the color classes $\left|E_{1}\right|=\left|E_{2}\right|=\left|E_{3}\right| \ldots . .=\left|E_{7}\right|=3$ and which implies that $\left|\left|E_{1}\right|-\left|E_{2}\right|\right| \leq 1$. So that the equitable edge colored with 7 colors. So that $\chi_{e}\left(H_{8}\right) \leq 7$. The maximum degree of helm graph is 7 ($\Delta=7$) and by lemma 2.4 , it follows that $\chi_{e}^{\prime}\left(H_{8}\right) \geq \Delta=7$. Hence $\chi_{e}^{\prime}\left(H_{8}\right)=7$.

Figure 3: Equitable edge coloring of helm graph with 6 vertices

4. CONCLUSION

In this article, we determined the equitable chromatic index of sunlet, wheel, helm graph. The proofs establish an optimal solution to the equitable edge coloring of these graph families. The field of equitable edge coloring of graphs is broad open. It would be further interesting to determine the bounds of equitable edge coloring of various families of graphs.

REFERENCES

1. A.J.W. Hilton and D de Werra, A sufficient condition for equitable edge-colorings of
simple graphs, Discrete Mathematics 128, (1994), 179-201.
2. K. Kaliraj, Equitable edge coloring of some join graphs, International Journal of Mathematics and its Applications, 5(4-F), (2017), 971-975.
3. W. Meyer, Equitable Coloring, Amer. Math. Monthly, 80 (1973), 920-922.
4. J. Veninstine vivik, Catherine Grace John and Sheeba Merlin., Determination of equitable edge chromatic number for the splitting of helm and sunlet graphs, International Journal of Mechanical Engineering and Technology, 9(10), (2018), 820-827.
5. V.G. Vizing, Critical graphs with given chromatic class, Metody Diskret. Analiz, 5 (1965), 9-17.
6. Xia Zhang and Guizhen Liu, Equitable edge-colorings of simple graphs, (2010), Journal of Graph Theory, V.66, 175-197.
