Volume 13, No. 3, 2022, p. 1474-1480

https://publishoa.com

ISSN: 1309-3452

Fixed Point Theorems In Generalized Fuzzy Symmetric Spaces Under Generalized Fuzzy Contractive Conditions

M. Suganthi^{1,*}, R. Pandiselvi ² & M. Jeyaraman³

¹Research Scholar, PG and Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai 630561.

Affiliated to Alagappa University, Karaikudi, India.

*Department of Mathematics, Government Arts College, Melur 625106.

E-mail: vimalsugan@gmail.com; ORCID: https://oricd.org/0000-0002-9752-1827.

²Research Center & PG Department of Mathematics, The Madura College, Madurai-625 011, Tamilnadu, India.

E-mail: rpselvi@gmail.com; ORCID: orcid.org/0000-0002-8236-964X.

³P.G. and Research Department of Mathematics, Raja Doraisingam Govt. Arts College, Sivagangai, Affiliated to Alagappa

University, Karaikudi, Tamilnadu, India.

E-mail: jeya.math@gmail.com. ORCID: https://orcid.org/0000-0002-0364-1845.

Abstract: This work aims to present an extended work on fixed point theorem that carries over some existing fixed point results from fuzzy symmetric spaces to *M*-fuzzy metric spaces. The fuzzy contractive mapping, which was introduced by Gregori and Sapena [6], were considered to bring out the required results.

Key words: Fixed point, Fuzzy symmetric spaces, Fuzzy contractive.

Mathematics Subject Classification: 54H25, 47H10.

1. Introduction

In the year 1931, Wilson [8] came up with an idea of symmetric spaces. In the year 1965, Lofti A. Zadeh [11] brought out the idea of fuzzy sets. The concept of fuzzy contractive mapping was set up by Gregori and Sapena [5], and, they have also extended the Banach's fixed point theorem to fuzzy contractive mappings in a fuzzy metric space that is defined by Kramosil and Michalek [3]. George and Veeramani [1, 2] have also proved many fixed point theorems by modifying the definition of fuzzy metric space that was given by Kramosil and Michalek [3]. The aim here is to prove the existence and uniqueness of fixed points in *M*-fuzzy symmetric spaces under generalized fuzzy contractive conditions.

2. Preliminaries

Definition 2.1

A triplet (X, M, *) is said to be a generalized fuzzy symmetric space [M-fuzzy symmetric spaces] if X is an arbitrary in nonempty set, * is a continuous t- norm,

and M is a fuzzy set on $X^3(0,\infty)$, satisfying the following conditions:

For each x, y, z, $a \in X$ and t, s > 0,

(FS-1) M(x, y, z, t) > 0,

(FS-2) M(x, y, z, t) = 1 if and only if x = y = z,

Volume 13, No. 3, 2022, p. 1474-1480

https://publishoa.com

ISSN: 1309-3452

$$(FM-3) M(x, y, y, t) = M(y, x, x, t).$$

Remark 2.2

It is to be noted that every M- fuzzy metric space is an M- fuzzy symmetric space but the converse is not always true.

Example 2.3

Consider $X = [0, \infty)$, and $M(x, y, z, t) = \frac{t}{t + |x - y| + |y - z| + |z - x|}$, $x \ne 0, y \ne 0$ and $z \ne 0$. Then (X, M, *) is an M-fuzzy metric space.

Definition 2.4

A sequence $\{x_n\}$ in X converges to x if and only if $\lim_{n\to\infty} (\frac{1}{\mathcal{M}(x_n,x,x,t)} - 1) = 0$ for each t>0.

Definition 2.5

A sequence $\{x_n\}$ in X is said to be Cauchy if for t > 0 then there exists $n_0 \in \mathbb{N}$ such that $\lim_{n \to \infty} (\frac{1}{M(x_n, x_n, x_m, t)} - 1) = 0$ and for all n, m $> n_0$.

Definition 2.6

An M - fuzzy symmetric space is said to be complete if in which every Cauchy sequence is convergent.

Preposition 2.7

In an
$$M$$
 - fuzzy symmetric space $(X, \mathcal{M}, *,)$, for $x, y \in X$, $\lim_{n \to \infty} (\frac{1}{M(x_n, x, x, t)} - 1) = 0$, $\lim_{n \to \infty} (\frac{1}{M(x_n, y, y, t)} - 1) = 0$ and $\lim_{n \to \infty} (\frac{1}{M(x_n, x, x, t)} - 1) = 0$ imply that $x = y = z$.

Preposition 2.8

Let X be an
$$M$$
 - fuzzy symmetric space. For $\{x_n\}$, $\{y_n\}$, $x, y \in X$, $\lim_{n \to \infty} \left(\frac{1}{M(x_n, x, x, t)} - 1\right) = 0$ and $\lim_{n \to \infty} \left(\frac{1}{M(x_n, y_n, y_n, t)} - 1\right) = 0$ imply that $\lim_{n \to \infty} \left(\frac{1}{M(x_n, y, y, y, t)} - 1\right) = 0$.

3. Main Result

Theorem 3.1:

Let (X, M, *) be a complete M - fuzzy symmetric space and the following generalized contraction conditions satisfied:

$$\left(\frac{1}{M(fx,fy,fz,t)} - 1\right) \leq \phi\left(\Delta(x,y,z)\right) \\
+ c \min \left\{ \left(\frac{1}{M(x,fx,fx,t)} - 1\right), \left(\frac{1}{M(y,fy,fy,t)} - 1\right), \left(\frac{1}{M(x,fx,fx,t)} - 1\right) \right\} \\
+ \left(\frac{1}{M(x,fy,fy,t)} - 1\right), \left(\frac{1}{M(y,fx,fx,t)} - 1\right), \left(\frac{1}{M(x,fx,fx,t)} - 1\right) \right\}$$
(3.1.1)

Volume 13, No. 3, 2022, p. 1474-1480

https://publishoa.com

ISSN: 1309-3452

$$\text{Where } \Delta(x,y,z) = \max \left\{ \begin{aligned} & \left(\frac{1}{M(x,y,z,t)} - 1 \right), \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1 \right) \left(\left(\frac{1}{M(y,fy,fy,t)} - 1 \right) + 1 \right)}{\left(\left(\frac{1}{M(x,y,z,t)} - 1 \right) + 1 \right)}, \\ & \left(\frac{1}{M(y,fy,fy,t)} - 1 \right) \left(\left(\frac{1}{M(x,fx,fz,t)} - 1 \right) + 1 \right), \\ & \left(\left(\frac{1}{M(x,y,z,t)} - 1 \right) + 1 \right), \\ & \left(\left(\frac{1}{M(x,y,z,t)} - 1 \right) + 1 \right), \\ & \left(\left(\frac{1}{M(x,y,z,t)} - 1 \right) + 1 \right), \end{aligned} \right.$$

for all x ,y, z \in X , $\beta \ge 0$, and $\psi : [0,\infty) \to [0,\infty)$ be a continuous ,non- decreasing function and $\lim_{n\to\infty} \psi^n(t) = 0$ for all t > 0. Then f has a unique fixed point.

Proof:

Suppose x_0 is an arbitrary point in X and set $x_n = f x_{n-1}$ for all $n \in \mathbb{N}$. If there exists $m \in \mathbb{N}$ such that $x_m = x_{m+1}$, then $x_m = x_{m+1} = f x_m$, and x_m is a fixed point. Suppose, on the contrary, that $x_{n+1} \neq x_n$ for all $n \in \mathbb{N}$.

That is,
$$\lim_{n\to\infty} (\frac{1}{M(x_n, x_{n+1}, x_{n+1}, t)} - 1) > 0$$
.

Now.

$$(\frac{1}{M(fx_{n},fx_{n+1},fx_{n+1},t)}-1) \leq \psi(\Delta(x_{n},x_{n+1},x_{n+1}))$$

$$+ c \min \begin{cases} \left(\frac{1}{M(x_{n},fx_{n},fx_{n},t)}-1\right), \left(\frac{1}{M(x_{n+1},fx_{n+1},fx_{n+1},t)}-1\right), \left(\frac{1}{M(x_{n+1},fx_{n+1},fx_{n+1},t)}-1\right) \\ , \left(\frac{1}{M(x_{n},fx_{n+1},fx_{n+1},t)}-1\right), \left(\frac{1}{M(x_{n+1},fx_{n+1},fx_{n+1},t)}-1\right), \left(\frac{1}{M(x_{n+1},fx_{n},fx_{n},t)}-1\right) \end{cases}$$

$$(\frac{1}{M(fx_{n},fx_{n+1},fx_{n+1},t)}-1) \leq \psi(\Delta(x_{n},x_{n+1},x_{n+1}))$$

$$+ c \min \begin{cases} \left(\frac{1}{M(x_{n},fx_{n+1},x_{n+1},t)}-1\right), \left(\frac{1}{M(x_{n+1},x_{n+2},x_{n+2},t)}-1\right), \left(\frac{1}{M(x_{n+1},x_{n+2},x_{n+2},t)}-1\right), \left(\frac{1}{M(x_{n+1},x_{n+1},x_{n+1},t)}-1\right) \\ , \left(\frac{1}{M(x_{n},fx_{n},fx_{n},t)}-1\right), \left(\frac{1}{M(x_{n+1},fx_{n+1},fx_{n+1},t)}-1\right) + 1 \\ \frac{\left(\frac{1}{M(x_{n},fx_{n},fx_{n},t)}-1\right)\left(\left(\frac{1}{M(x_{n+1},fx_{n+1},fx_{n+1},t)}-1\right) + 1\right)}{\left(\left(\frac{1}{M(x_{n},fx_{n},fx_{n},t)}-1\right), \left(\frac{1}{M(x_{n+1},fx_{n+1},fx_{n+1},t)}-1\right) + 1\right)} \end{cases}$$

$$\text{Where } \Delta(x_{n},x_{n+1},x_{n+1}) = \max \begin{cases} \frac{1}{M(x_{n+1},fx_{n+1},fx_{n+1},t)}-1\right) + 1 \\ \frac{1}{M(x_{n},fx_{n},fx_{n},t)}-1} + 1 \\ \frac{1}{M(x_{n},fx_{n},fx_{n},t)} + 1 \\ \frac{1}{M(x_{n},fx_{n},fx_{n},t)} + 1 \\ \frac{1}{M(x_{n},fx_{n},fx_{n},t)} + 1 \\ \frac{1}{M(x_{n},fx_{$$

Volume 13, No. 3, 2022, p. 1474-1480

https://publishoa.com

ISSN: 1309-3452

$$= \max \left\{ \frac{\left(\frac{1}{M(x_{n},x_{n+1},x_{n+1},t)}-1\right),}{\left(\frac{1}{M(x_{n},x_{n+1},x_{n+1},t)}-1\right)\left(\left(\frac{1}{M(x_{n+1},x_{n+2},x_{n+2},t)}-1\right)+1\right)}{\left(\left(\frac{1}{M(x_{n},x_{n+1},x_{n+1},t)}-1\right)+1\right)}, \\ \left(\frac{\frac{1}{M(x_{n+1},x_{n+2},x_{n+2},t)}-1\right)\left(\left(\frac{1}{M(x_{n+1},x_{n+2},x_{n+2},t)}-1\right)+1\right)}{\left(\left(\frac{1}{M(x_{n},x_{n+1},x_{n+1},t)}-1\right)+1\right)}, \\ \left(\frac{\frac{1}{M(x_{n+1},x_{n+2},x_{n+2},t)}-1\right)\left(\left(\frac{1}{M(x_{n},x_{n+1},x_{n+1},t)}-1\right)+1\right)}{\left(\left(\frac{1}{M(x_{n},x_{n+1},x_{n+1},t)}-1\right)+1\right)}. \right)$$

Consider the following cases,

If
$$\Delta(x_n, x_{n+1}, x_{n+1}) = \left(\frac{1}{M(x_n, x_{n+1}, x_{n+1}, t)} - 1\right)$$
 then from (3.1.2),
$$\left(\frac{1}{M(x_{n+1}, x_{n+2}, x_{n+2}, t)} - 1\right) \leq \psi\left(\left(\frac{1}{M(x_n, x_{n+1}, x_{n+1}, t)} - 1\right)\right) < \left(\frac{1}{M(x_n, x_{n+1}, x_{n+1}, t)} - 1\right)$$
. (3.1.3)

If $\Delta(x_n, x_{n+1}, x_{n+1}) = \begin{cases} \frac{1}{M(x_n, x_{n+1}, x_{n+1}, t)} - 1\left(\left(\frac{1}{M(x_n, x_{n+1}, x_{n+2}, t)} - 1\right) + 1\right)}{\left(\frac{1}{M(x_n, x_{n+1}, x_{n+2}, t)} - 1\right) + 1} \right)$, then from (3.1.2),
$$\left(\frac{1}{M(x_{n+1}, x_{n+2}, x_{n+2}, t)} - 1\right) \leq \psi\left(\frac{\left(\frac{1}{M(x_n, x_{n+1}, x_{n+1}, t)} - 1\right)\left(\left(\frac{1}{M(x_n, x_{n+1}, x_{n+2}, t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x_n, x_{n+1}, x_{n+2}, t)} - 1\right) + 1\right)} \right)$$

$$< \left\{\frac{\left(\frac{1}{M(x_n, x_{n+1}, x_{n+2}, t)} - 1\right)\left(\left(\frac{1}{M(x_n, x_{n+1}, x_{n+2}, t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x_n, x_{n+1}, x_{n+2}, t)} - 1\right) + 1\right)} \right\}$$

Hence,
$$\left(\frac{1}{M(x_n, x_{n+1}, x_{n+2}, t)} - 1\right) < \left(\frac{1}{M(x_n, x_{n+1}, x_{n+2}, t)} - 1\right) \cdot \left(\frac{1}{M(x_n, x_{n+1}, x_{n+2}, t)} - 1\right) + 1\right)$$

$$\left(\frac{1}{M(x_{n+1}, x_{n+2}, x_{n+2}, t)} - 1\right) < \left(\frac{1}{M(x_{n+1}, x_{n+2}, x_{n+2}, t)} - 1\right)$$
 and this is absurd.

If
$$\Delta(x_n, x_{n+1}, x_{n+1}) = \left(\frac{\left(\frac{1}{M(x_{n+1}, x_{n+2}, x_{n+2}, t)} - 1\right)\left(\left(\frac{1}{M(x_n, x_{n+1}, x_{n+1}, t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x_n, x_{n+1}, x_{n+2}, t)} - 1\right) + 1\right)} \right)$$

$$\left(\frac{1}{M(x_{n+1}, x_{n+2}, x_{n+2}, t)} - 1\right) \leq \psi\left(\frac{\left(\frac{1}{M(x_{n+1}, x_{n+2}, x_{n+2}, t)} - 1\right)\left(\left(\frac{1}{M(x_n, x_{n+1}, x_{n+1}, t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x_n, x_{n+1}, x_{n+2}, t)} - 1\right) + 1\right)} \right)$$

$$\left(\frac{1}{M(x_{n+1}, x_{n+2}, x_{n+2}, t)} - 1\right) \leq \psi\left(\frac{\left(\frac{1}{M(x_{n+1}, x_{n+2}, x_{n+2}, t)} - 1\right)\left(\left(\frac{1}{M(x_{n+1}, x_{n+1}, t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1\right) + 1\right)} \right)} \right)$$

$$\left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1\right) \leq \psi\left(\frac{\left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1\right)\left(\left(\frac{1}{M(x_{n+1}, x_{n+1}, t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1\right) + 1\right)} \right)} \right)$$

$$\left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1\right) \leq \psi\left(\frac{\left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1\right)}{\left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1\right) + 1}} \right)$$

$$\left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1\right) + 1} \right)$$

$$\left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1\right) + 1}$$

In any case, it is proved (3.1.3) holds. Since $\{\left(\frac{1}{M(x_{n+2},x_{n+2},x_{n+1},t)}-1\right)\}$ is decreasing. Thus, it converges to a nonnegative number, $\beta \ge 0$. If $\beta > 0$, then letting $n \to +\infty$ in (3.1.2),

$$\Rightarrow \beta \leq \psi(\max\{\beta,\beta,\frac{\beta(1+\beta)}{1+\beta},\frac{\beta(1+\beta)}{1+\beta}\}) = \psi(\beta) < \beta,$$

Volume 13, No. 3, 2022, p. 1474-1480

https://publishoa.com

ISSN: 1309-3452

$$\Rightarrow \beta = 0$$

That is,
$$\lim_{n\to\infty} \left(\frac{1}{M(x_{n+2}, x_{n+2}, x_{n+1}, t)} - 1 \right) = 0.$$

Hence, $\{x_n\}$ is a Cauchy sequence, and (X, M, *) is complete, there exists $u \in X$ such that

$$\lim_{n\to\infty} \left(\frac{1}{M(x_n,u,u,t)} - 1\right) = 0.$$

$$\begin{split} &(\frac{1}{M(fu,u,u,t)}-1) = \lim_{n \to \infty} (\frac{1}{M(x_{n+1},fu,fu,t)}-1) = \lim_{n \to \infty} (\frac{1}{M(fx_n,fu,fu,t)}-1) \\ & \leq \lim_{n \to \infty} \left[\psi \big(\Delta(x_n,u,u) \big) + c \min \left\{ \left(\frac{1}{M(x_n,fx_n,fx_n,fx_n,t)}-1 \right), \left(\frac{1}{M(u,fu,fu,t)}-1 \right), \left(\frac{1}{M(u,fu,fu,t)}-1 \right), \left(\frac{1}{M(u,fu,fu,t)}-1 \right) \right\} \right] \\ & = \lim_{n \to \infty} \left[\psi \big(\Delta(x_n,u,u) \big) + c \min \left\{ \left(\frac{1}{M(x_n,fu,fu,t)}-1 \right), \left(\frac{1}{M(u,fu,fu,t)}-1 \right), \left(\frac{1}{M(u,fu,fu,t)}-1 \right), \left(\frac{1}{M(u,fu,fu,t)}-1 \right), \left(\frac{1}{M(u,fu,fu,t)}-1 \right) \right\} \right] \\ & = \lim_{n \to \infty} \left[\psi \big(M(x_n,u,u) \big) + c \min \left\{ \left(\frac{1}{M(x_n,fu,fu,t)}-1 \right), \left(\frac{1}{M(u,fu,fu,t)}-1 \right), \left(\frac{1}{M(u,fu,fu,t)}-1 \right), \left(\frac{1}{M(u,fu,fu,t)}-1 \right), \left(\frac{1}{M(u,fu,fu,fu,t)}-1 \right) \right\} \right] \\ & = \lim_{n \to \infty} \left[\psi \big(M(x_n,u,u,u) \big) \right] \leq \left(\frac{1}{M(fu,u,u,t)}-1 \right), \text{ where} \end{split}$$

$$\Delta(x_n, u, u) = \max \left\{ \begin{aligned} & \left(\frac{1}{M(x_n, u, u, t)} - 1\right), \frac{\left(\frac{1}{M(x_n, fx_n, fx_n, t)} - 1\right) \left(\left(\frac{1}{M(u, fu, fu, t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(u, fu, u, u, t)} - 1\right) + 1\right)}, \\ & \left(\frac{1}{M(u, fu, fu, t)} - 1\right) \left(\left(\frac{1}{M(u, fu, fu, t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x_n, u, u, t)} - 1\right) + 1\right)}, \frac{\left(\frac{1}{M(u, fu, fu, t)} - 1\right) \left(\left(\frac{1}{M(x_n, u, u, t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x_n, u, u, t)} - 1\right) + 1\right)} \right\} \\ & = \max \left\{ \begin{aligned} & \left(\frac{1}{M(x_n, u, u, t)} - 1\right), \frac{\left(\frac{1}{M(x_n, x_{n+1}, x_{n+1}, t)} - 1\right) \left(\left(\frac{1}{M(u, fu, fu, t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x_n, u, u, t)} - 1\right) + 1\right)}, \\ & \left(\frac{1}{M(u, fu, fu, t)} - 1\right) \left(\left(\frac{1}{M(u, fu, fu, t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x_n, u, u, t)} - 1\right) + 1\right)}, \frac{\left(\frac{1}{M(u, fu, fu, t)} - 1\right) \left(\left(\frac{1}{M(x_n, u, u, t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x_n, u, u, t)} - 1\right) + 1\right)} \\ & = \left(\frac{1}{M(fu, u, u, t)} - 1\right) \text{ as } n \to \infty. \end{aligned} \right.$$

This leads to a contradiction. Thus, $(\frac{1}{M(fu,u,u,t)} - 1) = 0$, fu = u.

To prove the uniqueness, Suppose v be another fixed point of f such that fu = u and fv = v.

$$\left(\frac{1}{M(u,v,v,t)} - 1\right) = \left(\frac{1}{M(fu,fv,fv,t)} - 1\right)$$

$$\leq \psi \left(\begin{array}{c} \left(\frac{1}{M(u,v,v,t)} - 1\right), \frac{\left(\frac{1}{M(u,fu,fu,t)} - 1\right)\left(\left(\frac{1}{M(v,fv,fv,t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(u,v,v,t)} - 1\right) + 1\right)}, \\ \left(\frac{1}{M(v,fv,fv,t)} - 1\right)\left(\left(\frac{1}{M(v,fv,fv,t)} - 1\right) + 1\right)}, \frac{\left(\frac{1}{M(v,fv,fv,t)} - 1\right) + 1}{\left(\left(\frac{1}{M(u,v,v,t)} - 1\right) + 1\right)}, \frac{\left(\frac{1}{M(v,fv,fv,t)} - 1\right)\left(\left(\frac{1}{M(u,v,v,t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(u,v,v,t)} - 1\right) + 1\right)} \right) \right)$$

Volume 13, No. 3, 2022, p. 1474-1480

https://publishoa.com

ISSN: 1309-3452

$$+ c \min \left\{ \left(\frac{1}{M(u,fu,fu,t)} - 1 \right), \left(\frac{1}{M(v,fv,fv,t)} - 1 \right), \left(\frac{1}{M(v,fv,fv,t)} - 1 \right) \right\}$$

$$+ \left(\frac{1}{M(u,fv,fv,t)} - 1 \right), \left(\frac{1}{M(v,fv,fv,t)} - 1 \right), \left(\frac{1}{M(v,fu,fu,t)} - 1 \right) \right\}$$

$$= \psi \left(\left(\frac{1}{M(u,v,v,t)} - 1 \right) \right) < \left(\frac{1}{M(u,v,v,t)} - 1 \right)$$

$$\Rightarrow \left(\frac{1}{M(u,v,v,t)} - 1 \right) = 0.$$

Thus u = v and f has a unique fixed point.

Theorem 3.2:

Let (X , M , \ast) be a complete M - fuzzy symmetric space and the following generalized contraction conditions satisfied:

$$\psi \left(\max \left\{ \frac{\left(\frac{1}{M(x,fy,fz,t)} - 1\right)}{\left(\frac{1}{M(x,fy,fz,t)} - 1\right), \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)\left(\left(\frac{1}{M(y,fy,fy,t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1\right)}, \\ \left(\frac{\left(\frac{1}{M(y,fy,fy,t)} - 1\right)\left(\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1\right)}, \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x,y,z,t)} - 1\right) + 1\right)} \right\} \right)$$

For all x ,y, $z \in X$, $\beta \ge 0$ and ψ : $[0,\infty) \to [0,\infty)$ be a continuous ,non- decreasing function and $\lim_{n\to\infty} \psi^n(t) = 0$, for all t > 0. Then f has a unique fixed point.

Proof:

In the above theorem, take $\beta = 0$.

Corollary 3.3:

Let (X , M , \ast) be a complete M -fuzzy symmetric space and the following generalized contraction conditions satisfied:

$$\left(\frac{1}{M(fx, fy, fz, t)} - 1\right) \leq \psi \left(\frac{\left(\frac{1}{M(x, fx, fx, t)} - 1\right) \left(\left(\frac{1}{M(y, fy, fy, t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x, y, z, t)} - 1\right) + 1\right)}\right) ,$$

for all x ,y \in X , $\beta \ge 0$, and ψ : $[0,\infty) \to [0,\infty)$ be a continuous ,non- decreasing function and $\lim_{n\to\infty} \psi^n(t) = 0$ for all t > 0. Then f has a unique fixed point.

Proof:

In theorem (3.1), take $\beta = 0$ and

Volume 13, No. 3, 2022, p. 1474-1480

https://publishoa.com

ISSN: 1309-3452

$$\max \left\{ \frac{\left(\frac{1}{M(x,y,z,t)} - 1\right),}{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)\left(\left(\frac{1}{M(y,fy,fy,t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1\right)}, \\ \frac{\left(\frac{1}{M(y,fy,fy,t)} - 1\right)\left(\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x,y,z,t)} - 1\right) + 1\right)}, \\ \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)\left(\left(\frac{1}{M(x,y,z,t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1\right)}, \\ \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)\left(\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x,y,z,t)} - 1\right) + 1\right)}, \\ \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)\left(\left(\frac{1}{M(x,y,z,t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x,y,z,t)} - 1\right) + 1\right)}, \\ \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)\left(\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x,y,z,t)} - 1\right) + 1\right)}, \\ \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)\left(\left(\frac{1}{M(x,y,z,t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x,y,z,t)} - 1\right) + 1\right)}, \\ \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)\left(\left(\frac{1}{M(x,y,z,t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x,y,z,t)} - 1\right) + 1\right)}, \\ \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)\left(\left(\frac{1}{M(x,y,z,t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1\right)}, \\ \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)\left(\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1\right)}, \\ \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)\left(\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1\right)}, \\ \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)\left(\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1\right)}{\left(\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1\right)}, \\ \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1}{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)}, \\ \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1}{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)}, \\ \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1}{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)}, \\ \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1}{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)}, \\ \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)\left(\frac{1}{M(x,fx,fx,t)} - 1\right) + 1}{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)}, \\ \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)}{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)}, \\ \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)}{\left(\frac{M(x,fx,fx,t)} - 1\right)}, \\ \frac{\left(\frac{1}{M(x,fx,fx,t)} - 1\right)}{\left(\frac{M(x,fx,$$

Conclusion

The work done here have shown that a function defined on an \mathcal{M} - fuzzy symmetric space must have a unique fixed point under the stated generalized contractive conditions. The same result can also be further easily extended over generalized spaces like intuitionistic fuzzy metric spaces and neutrosophic metric spaces.

References

- [1] A. George, and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy sets and Systems, 64(1994), 395-399.
- [2] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy sets and Systems, 90(1997),365-368
- [3] O.Kramosil, and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetics, 11(1975), 330-334.
- [4] Z. Mustafa, and B. Sims, A new approach to generalized metric space, J. Nonlinear Convex Analysis, 7(2006), 289-297.
- [5] V.Gregori, A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy sets and Systems, 125(2002), 245-252.
- [6] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy sets and Systems, 12(1984), 215-229.
- [7] R. Krishnakumar, N. Pandit S., Fixed point theorem of gen. contraction function in fuzzy symmetric spaces, Int. J. of Sci. Research in Math. And Stat. Sci., 6(3)(2019), 105-110.
- [8] W.A.Wilson, On semi-metric spaces, American J. of Math., 53(2)(1931), 361-373.
- [9] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy sets and Systems, 27(1988), 385-389.
- [10] T. Veerapandi, M. Jeyaraman, and J. Paul Raj Joseph, Some fixed point and coincident point theorem in generalized M-fuzzy metric space, Int. Journal of Math. Analysis, 3, (2009), 627 635.
- [11] L.A. Zadeh, Fuzzy sets, Inform. and Control, 8(1965), 338-353.