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Abstract: This work aims to present an extended work on fixed point theorem that carries over some existing fixed
point results from fuzzy symmetric spaces to M-fuzzy metric spaces. The fuzzy contractive mapping, which was

introduced by Gregori and Sapena [6], were considered to bring out the required results.
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1. Introduction
In the year 1931, Wilson [8] came up with an idea of symmetric spaces. In the year 1965, Lofti A. Zadeh [11]
brought out the idea of fuzzy sets. The concept of fuzzy contractive mapping was set up by Gregori and Sapena [5],
and, they have also extended the Banach’s fixed point theorem to fuzzy contractive mappings in a fuzzy metric space
that is defined by Kramosil and Michalek [3]. George and Veeramani [1, 2] have also proved many fixed point
theorems by modifying the definition of fuzzy metric space that was given by Kramosil and Michalek [3]. The aim
here is to prove the existence and uniqueness of fixed points in M-fuzzy symmetric spaces under generalized fuzzy
contractive conditions.

2. Preliminaries

Definition 2.1
A triplet (X, M,*) is said to be a generalized fuzzy symmetric space [M-fuzzy symmetric spaces] if X is an
arbitrary in nonempty set,* is a continuous t- norm,
and M is a fuzzy set on X3(0, ), satisfying the following conditions:
Foreach x,y,z,a€e Xandt,s >0,
(FS-1) M(x,y,z,t) > 0,
(FS-2) M(x,y,z,t) = lifandonlyifx =y =z,
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(FM-3) M(x,y,y,t) = M(y,x,%,t).

Remark 2.2
It is to be noted that every M- fuzzy metric space is an M- fuzzy symmetric space but the converse is not
always true.

Example 2.3

t
t+lx=yl+ly-z|+|z-x|’

Consider X = [0, ), and M(x,y,7t) = x #0,y #0and z # 0. Then (X,M,*) is an M-

fuzzy metric space.
Definition 2.4

A sequence {x,} in X converges to x if and only if lim ( — 1) = 0 for each t>0.
n—oo

M (xpn,x,%,t)

Definition 2.5

A sequence {x,,} in X is said to be Cauchy if for t > 0 then there exists n, € N such that lim( !

R M (XX, X )
1) =0 and for all n, m >n,,.
Definition 2.6
An M - fuzzy symmetric space is said to be complete if in which every Cauchy sequence is convergent.
Preposition 2.7

Inan M - fuzzy symmetric space (X, M, *,), forx,y € X, l1m(

-0 - M(xn,xx,t)

-D=0, h oo(M(Xnyyt)

1)=0

and lim ( !

now M(xn, 2z, z, t)

—1)=0imply thatx =y=2
Preposition 2.8

Let X be an M - fuzzy symmetric space. For {x,}, {y.}, X,y € X, hm( —1)=0and

M(xn x, x,t)
. 1

lim(————
n-ow - M(Xn,Yn.ynt)

— 1) =0 imply that l1m( -1 =0.

(n yt)

3. Main Result

Theorem 3.1:
Let (X, M,* ) be a complete M - fuzzy symmetric space and the following generalized contraction conditions
satisfied:
1
(

i~ D < o(atny 2)

+ cmin

(M(x,fjc,fx,t) - 1) (M(yfyfy t) ) EM(ZfoZ t) ) (3.1.1)

1
Giwrms~ V) Gorrs— 1)
(M(x.fy.fy.t) MG.fzfzt) M(z,fx,fxt) D
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( 1 1) (i) ((M(y,fly.fy.t) 1)“)

M(x,y,z,t) 1
<(M(x,y,z,t)_1)+1>

M(y,f;,fy,t) 1) ((M(z,flz,fz,t) 1)+1> (M(z,flz,fz,l:) 1) ((M(x,flx,fx,l:) 1)+1>

((m_l)ﬂ) ' ((m_l)ﬂ)

)

Where A(x,y, z) = max

forallx,y,ze X, =0, and vy : [0,00) = [0,0) be a continuous ,non- decreasing function and lim y™(t) =0 for all t

n—-ow

> 0. Then f has a unique fixed point.
Proof:
Suppose x, is an arbitrary point in X and set x,, = f x,,_; for all n € N. If there exists
m € N such that x,,, =X+, then x,, = x,+1 = f x,,,, @nd x,,, is a fixed point. Suppose, on the contrary, that x,,,,; #

x, forallneN.
1

That is, rlll_r};lo( D) 1)>0.
Now ,
1
( - 1) < \V(A(xn'xn+1 'xn+1))

M(fxn.fxXn+1.fXn+1.t)

1 1 1
(M( fxnf r)_l)'(M( fxnerf c)_l)’(m fxnerf t)‘l)
+ cmin XnJ Xn.J Xn, Xn+1.) Xn+1.) Xn+1, Xn+1.J Xn+1.] Xn+1,

1 1 1
, -1, -1),(——-1
(M(xn,fxn+1,fxn+1,t) ) (M(xn+1,fxn+1,fxn+1,t) ) (M(xn+1,fxn,fxn,t) )
1
-1)< W(A(xn:xnﬂ rxn+1))

M(fxn.fxXn+1.f Xn+1.t)

(

+ cmin (3.1.2)

(e ). o 1).( -1)
M(xp,Xn+1, Xnt1,t) "\MGnt1Xnsznsat) M(Xpn+1.Xn+2,Xn+2,t)

e ). G 1) 5D
" \M(xn.xn+2Xn+2.t) "\ MGpsrneztnezt) ) MGni1xne1xnsnt)

1
Gommmms V-
M (xp,Xn+1,Xn+1,t)

1 1
(e ((M(xn+1.fxn+1.fxn+1,t) 1)“)

1 )
((M(Xn,xn+1xn+1,t)_1)+1>

Where A(xy, Xpt1 5 Xn41) = max 3 ( L 1) <( L 1)+1) ;

MQOn+1.fXn+1.f xn+1.0) MQGn41.fXn+1.fXn+1.t)

1
((M(Xn,xn+1,xn+1.t)_1)+1>

1 1
(M(xn+1.fxn+1.fxn+1,t) 1) (( M(Qxen, fxn,fxn,t) 1)+1>

’ 1
((M(xn'xn+1rxn+1'f)_1)+1>
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( ( 1 _ 1) 3\
)
M (xnXn+1.Xn+1,t)

1 1
(M(xn'xn+1vxn+1-f) 1) ((M(xn+1:xn+2:xn+z.t) 1)+1>
)
1
((M(Xn.xn+1xn+1,t)_1)+1>
_ 1 1
= maxy (M(Xn+1,xn+2.xn+2.f) 1) <(M(xn+1.xn+2.xn+2,t) 1)+1> (

1 )
((M(xn,xn+1,xn+1.5)_1)+1>

1 1
(M(Xn+1.xn+2.xn+z.t) 1) ((M(Xn.xn+1.xn+1.t) 1)+1)

1
<(M(Xn. Xn+1,xn+1,t)_1)+1>

Consider the following cases,

1
If A(xn,an ,Xn+1) = (m - 1) then from (312),

-5y (G- D)< 1) . (3.13)

M(Xn+1.Xn+2Xn+2.t) M (xnXn+1.Xn+1,8) M (xnXn+1.Xn+1,8)

1 1
1) (( 1
(M(xn,xn+1,xn+1.t) < M(xXn+1.Xn+2.Xn+2,t)

)+1)
If A(x,, Xpgq ) Xne1) = <( , then from (3.1.2),

1
S — ]
MQnxn+1Xn+1.t) ) )

1 1
( 1 )< v (M(Xn.xn+1,xn+1,t) 1) ((M(Xn+1,xn+2.xn+2.f) 1)+1>

M(Xn+1%n+2Xn+2.t) ((7( 1 )—1)+1
M(xXnXn+1Xn+1.t

1 1
1 1)+1
(M(Xn.xn+1vxn+1:f) ) (( M(xn41.Xn+2.Xn4+2.t) ) )

1
((M(anxn+1xn+1:f)_1)+ 1)

Hence (; 1) < (; - 1). (3.1.9)

M(xn+1.%n+2.Xn+2,t) M (xn,Xn+1,Xn+1,t)

1 1
1) (( 1
(M(Xn+1,xn+2'xn+z.f) < M(xn+1Xn+2.Xn+2.t)

If Ay, Xne1 ) Xne1) = (( )+1> , from (3.1.2),

1
e —1)+1
M(xnxn+1Xn+1.t) ) )

(; 1) < (+ 1) and this is absurd.

M(Xn41Xn+2Xn+2,t) M(Xp+1.Xn+2Xn+2t)

1 1
1 1)+1
(M(xn+1,xn+2,xn+2,t) ) <( M(xnXn+1Xn4+1.t) ) )

If A(x‘rvxn+1 'xn+1) = 1
((M(Xn: xn+1,xn+1,t)_1)+1)
1 1
( 1 _ 1) < (M(xn+1,xn+2,xn+2,t) 1) (( M(xnxXn+1Xn+1.t) 1)+1)
M(xn4+1.Xn4+2.%n+2:t) =V ((—( L )—1)+1>
M(xn, Xn+1Xn+1t
1 . .
< (— — 1) which is absurd . (3.1.5)
M(xn+1.%n+2Xn+2t)

1

In any case, it is proved (3.1.3) holds. Since {( — 1)} is decreasing. Thus, it converges to a

M(Xn+2Xn+2Xn+1,t)

nonnegative number, 8 >0. If § > 0, then letting n = 4+ in (3.1.2),

= B < y(max{p,pLTL LY = w(B) < B,
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= =0

That is, lim (m ~1)=0.

Hence,{x, } is a Cauchy sequence, and ( X, M, =) is complete, there exists u € X such that
(s~ D =0

Getaems ~ 0= MG s — D = I ems = 1)

(M(xn,fxln,fxn, 0 1)'(M(u,f111,fu, 0 1) (M(u fu fut)

< lim \V(A(xn, u, u)) + cmin
n—oo

1 1
"\M(x,, fu, fu,t) 1>'(M(u,fu,fu, 0 1) (M(u fxn,fxn, 0
1 1
— tim | w(AGowww) + ¢ min {(M(xn,xnﬂ,xnﬂ,t) B 1)'(M(u,fu,fu, t) 1) (M(u fu fut) )l

v (M(xn,flu, fut) 1)'(M(u, f:t, fut) 1) (M(u xn+1,xn+1,t) )

= llm [\V(M(xn JU, U, ))] <( — 1), where

M(fuuut)

[ ( 1 1) (i) ((M(u,flu,fu,t) 1)“) ]

M(xn,u,u,t) ((m_1)+1> ’
(e (e 01) (e (Greagme-1)*)

(i) #1) ’ ((reme)+1)

A(x,, u,u) = max

( 1 1) (s ) ((M(u,flu,fu.t) 1)“)

MCxn i) B ((M(x-,;u,u,t)_l)-'.l)
Mu,fu,fut) 1) <(M(u,f1u,fu,t) 1)+1> (M(u,fi/.,fu,t) 1) ((M(xn,xnil,xn+1,t) 1)+1)
(Grmea)1) (Grmeaa)1)

—1)asn— oo.

’

= max

:( 1

M(fuu,u,t)

This leads to a contradiction. Thus, ( —-1)=0,fu=u.

M(fuuu
To prove the uniqueness, Suppose v be another fixed point of f such that fu=u and fv=v.

(

M(uvvt)_ 1= (M(fufvat) 1)

() (1))
( 1 _ 1)’ M(u,fu,fu,t) M@,fv.fv,t)

M(uvw,t) <(m_1)+1>
(rrrt) (Grommo+) Grormo)) (Grrges-2)*+)

((m_l)ﬂ) ’ ((m_l)ﬂ)

’

<vy| max
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+ cmin (m_l) (M(vafvt) ) (M(vafvt) )
(G

'(m_l) (M(vafvt) )' M(vfufut) )

—_ 1 _ 1 J—
-V ((M(u,v,v,t) 1)) < (M(u,v,v,t) 1)

= (M(u,t,u,t) B 1) =0.

Thus u=vand f has a unique fixed point.
Theorem 3.2:

Let (X, M %) be a complete M - fuzzy symmetric space and the following generalized contraction
conditions satisfied:

1

Gz~ Y =
( 1 1) (i) ((M(y.fly.fy.t) 1)“)
MEoy 20 ((M(x,;,z,t)_l)-'-l)
v | max

(M(y,f;,fy,t) 1) ((M(z,flz,fz,t) 1)+1) (M(z,flz,fz,t) 1) ((M(x,flx,fx,t) 1)+1)

| ((m_l)ﬂ) ’ ((m_l)ﬂ) )

Forall x,y,ze X ,8 = 0andy: [0,0) = [0,00) be a continuous ,non- decreasing function and lim y"(t) =0, for all t
n—oo

> 0. Then f has a unique fixed point.
Proof:

In the above theorem, take g = 0.

Corollary 3.3:
Let (X, M ,*) be a complete M -fuzzy symmetric space and the following generalized contraction conditions
satisfied:
1
1 1)< (rperze ) ((M(y,fy,fy,t) 1)“)
Gy ~ D=V !

((m_l)ﬂ)

forall x,y € X, 8 =0, and y: [0,00) — [0,00) be a continuous ,non- decreasing function and lim y™(t) =0 for all t >
n—oo

0. Then f has a unique fixed point.
Proof:
In theorem (3.1), take 8 = 0 and

1479



JOURNAL OF ALGEBRAIC STATISTICS
Volume 13, No. 3, 2022, p. 1474-1480
https://publishoa.com

ISSN: 1309-3452

max

(M(x;/,z,t) - 1) ’

(o) (orems)+)

((m_l)H)

( 1 1) (( 1 1)+1) L _ (M(x.fic,fx,t) 1) ((M(y,fly,fy,t) 1)+1>
M(y,fy.fy.t) M@f2f70)

)

((m—l)ﬂ) ’ ((m—l)+1)

(rrsrrt) (G2

((m_l)ﬂ)

Conclusion

The work done here have shown that a function defined on an M- fuzzy symmetric space must have a unique fixed

point under the stated generalized contractive conditions. The same result can also be further easily extended over

generalized spaces like intuitionistic fuzzy metric spaces and neutrosophic metric spaces.
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