Cartesian Product of Path Semigraphs with 2 mid vertices and its a-Domination

D. Narmatha,
Department of Mathematics, Sri Ramakrishna Engineering College, Coimbatore.
K. P. Thilagavathy, Department of Mathematics, Kumaraguru College of Technology, Coimbatore.
\section*{N. Nithya Devi,}
Department of Science and Humanities, Faculty of Engineering, Karpagam
Academy of Higher Education, Coimbatore.
D. Indhumathy,
Department of Mathematics, Sri Ramakrishna Engineering College, Coimbatore.

Abstract

The formation of more complex structures from the well-known simplest structures is a general way of thought in all endeavours, and the extension of the live properties of easiest structures to the toughest structures is an usual attempt. In this paper, a - domination number of the Cartesian product of elementary semigraphs with several edges and two middle vertices are discussed.

Keywords: Semigraph, Path Semigraph, Cartesian Product, Dominating set, Domination number.

1. Introduction

A a - dominating set is that, subset C of A in which if for every $b \in A-C$ there exists $a \in C$ such that a and b are adjacent. The minimum cardinality of such a set C is called a-domination number of the semigraph P. It is denoted as $\gamma_{a}(P)$.

In 1990, S. T. Hedetniemi et.al [3] discussed some basic definitions of domination parameters. In 2003, E. S. S. Kamath and R. S. Bhat [2] studied domination in semigraphs. In [4, 5, 6] N. Murugesan and D. Narmatha studied domination number of Cartesian product of path semigraphs.

2. Definition

Consider two path semigraphs P_{1} and P_{2} with vertex set A_{1} and A_{2} and edge set B_{1} and B_{2} respectively. The Cartesian product of P_{1} and P_{2} ie., $P_{1} \square P_{2}$ is defined as
$P_{1} \square P_{2}=\left(\mathrm{A}_{1} \times A_{2}, B_{1} \times B_{2}\right)$ such that $\mathrm{A}_{1} \times A_{2}=\left\{\left(\mathrm{a}_{\mathrm{i}}, a_{j}\right) / a_{i} \in A_{1}, a_{j} \in A_{2}\right\}$ and
i. Any vertex $\mathrm{a} \in \mathrm{A}_{1}$ and any edge $\mathrm{B}=\left(\mathrm{b}_{1}, b_{2}, \ldots, b_{t}\right)$ in $\mathrm{B}_{2},\left(\left(\mathrm{a}, \mathrm{b}_{1}\right),\left(a, b_{2}\right), \ldots \ldots,\left(a, b_{t}\right)\right)$ is an element of $\mathrm{B}_{1} \times B_{2}$ and also
ii. Any edge $\mathrm{B}=\left(\mathrm{a}_{1}, a_{2}, \ldots, a_{r}\right)$ in B_{1} and for any vertex $\mathrm{b} \in \mathrm{A}_{2},\left(\left(\mathrm{a}_{1}, b\right),\left(a_{2}, b\right), \ldots \ldots,\left(a_{r}, b\right)\right)$ is an element of $\mathrm{B}_{1} \times B_{2}$.

Dominations in semigraphs was discussed in [1].

2.1 Theorem

$$
\gamma_{\mathrm{a}}\left[\mathrm{P}_{\mathrm{s}(1 \mathrm{~m}(1))} \square \mathrm{P}_{\mathrm{s}(\mathrm{~nm}(1))}\right]=3
$$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1462-1467
https://publishoa.com
ISSN: 1309-3452

Proof:

Let $\mathrm{P}_{\mathrm{s}(1 \mathrm{~m}(1))}$ be a path semigraph with single edge having only one middle vertex. When $\mathrm{n}=1, \quad \mathrm{P}_{\mathrm{s}(\mathrm{nm}(1))}$ becomes $\mathrm{P}_{\mathrm{s}(1 \mathrm{~m}(1))}$.

Fig. 2.1 $P_{\text {s(} 1 \mathrm{~m}(1))}$

Fig. 2.2 $\mathrm{P}_{\mathrm{s}(1 \mathrm{~m}(1))}$

The following figure represents $\mathrm{P}_{\mathrm{s}(1 \mathrm{~m}(1))} \square \mathrm{P}_{\mathrm{s}(1 \mathrm{~m}(1))}$

Fig. 2.3 $\mathrm{P}_{\mathrm{s}(\ln (1))} \square \mathrm{P}_{\mathrm{s}(1 \mathrm{~m}(1))}$
In the above figure, if we select any three vertices from each row otherwise in each column forms a minimal adominating set. i.e., from the above fig., the semigraph which contains minimum number of vertices that vertices are enough to dominate all the other vertices in that graph. Hence $\gamma_{\mathrm{a}}\left[\mathrm{P}_{\mathrm{s}(1 \mathrm{~m}(1))} \square \mathrm{P}_{\mathrm{s}(1 \mathrm{~m}(1))}\right]=3$.
Next put $\mathrm{n}=2, \mathrm{P}_{\mathrm{s}(1 \mathrm{~m}(1))} \square \mathrm{P}_{\mathrm{s}(\mathrm{nm}(1))}$ becomes $\mathrm{P}_{\mathrm{s}(1 \mathrm{~m}(1))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}$.

Fig.2.4 $\mathrm{P}_{\mathrm{s}(1 \mathrm{~m}(1))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}$
From the above figure (triangles) it can be easily observed that

$$
\gamma_{\mathrm{a}}\left[\mathrm{P}_{\mathrm{s}(1 \mathrm{~m}(1))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}\right]=3 \text {. Similarly } \gamma_{\mathrm{a}}\left[\mathrm{P}_{\mathrm{s}(1 \mathrm{~m}(1))} \square \mathrm{P}_{\mathrm{s}(\mathrm{~nm}(1))}\right]=3 \text {. }
$$

2.2 Note

$$
\text { i. } \gamma_{\mathrm{a}}\left[\mathrm{P}_{\mathrm{s}(\operatorname{nm}(1)) \square} \mathrm{P}_{\mathrm{s}(1 \mathrm{~m}(1))]}\right]=3 \text {. }
$$

$$
\text { ii. } \gamma_{\mathrm{a}}\left[\mathrm{P}_{\mathrm{s}(\mathrm{~nm}(1))} \square \mathrm{P}_{\mathrm{s}(\mathrm{rm}(1))}\right]=\gamma_{\mathrm{a}}\left[\mathrm{P}_{\mathrm{s}(\mathrm{rm}(1))} \square \mathrm{P}_{\mathrm{s}(\mathrm{~nm}(1))}\right]=\mathrm{r} \text {, if } \mathrm{r}<\mathrm{n} .
$$

2.3 Lemma

i. $\quad \gamma_{\mathrm{a}}\left[\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}\right]=4$
ii. $\quad \gamma_{\mathrm{a}}\left[\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(2))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}\right]=4$
iii. $\quad \gamma_{\mathrm{a}}\left[\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(\mathrm{n}))}\right.$ ロ $\left.\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}\right]=\left\{\begin{array}{cl}\frac{6 n}{3}+1 & \text { if } n=3 p \\ \frac{6(n-1)}{3}+2 & \text { if } n=3 p+1 \\ \frac{6(n-2)}{3}+4 & \text { if } n=3 p+2\end{array}\right.$ where $p=1,2,3 \ldots$.

Proof:

Consider a path semigraph with single edge having exactly two middle vertices, it is denoted as $\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}$. For calculating the minimal a-domination number for the Cartesian product graph $\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}$ and $\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}$, consider the above mentioned two graphs with labeling $a_{i}, i=1,2,3,4$ and $b_{j}, j=1,2,3,4$ as shown below.

$\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}$

$$
\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}
$$

Fig. 2.5 Single edge path semigraph with 2 middle vertices
$\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}$ represents the Cartesian product of the above two graphs. It is also a graph containing the vertex set $V=\left\{\begin{array}{l}\left(a_{1}, b_{1}\right),\left(a_{2}, b_{1}\right),\left(a_{3}, b_{1}\right),\left(a_{4}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{2}\right),\left(a_{4}, b_{2}\right),\left(a_{1}, b_{3}\right),\left(a_{2}, b_{3}\right), \\ \left(a_{3}, b_{3}\right),\left(a_{4}, b_{3}\right),\left(a_{1}, b_{4}\right),\left(a_{2}, b_{4}\right),\left(a_{3}, b_{4}\right),\left(a_{4}, b_{4}\right)\end{array}\right\}$
and edge set

$$
E=\left\{\begin{array}{l}
{\left[\left(a_{1}, b_{1}\right),\left(a_{2}, b_{1}\right),\left(a_{3}, b_{1}\right),\left(a_{4}, b_{1}\right)\right],\left[\left(a_{1}, b_{2}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{2}\right),\left(a_{4}, b_{2}\right)\right],} \\
{\left[\left(a_{1}, b_{3}\right),\left(a_{2}, b_{3}\right),\left(a_{3}, b_{3}\right),\left(a_{4}, b_{3}\right)\right],\left[\left(a_{1}, b_{4}\right),\left(a_{2}, b_{4}\right),\left(a_{3}, b_{4}\right),\left(a_{4}, b_{4}\right)\right],} \\
{\left[\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{1}, b_{3}\right),\left(a_{1}, b_{4}\right)\right],\left[\left(a_{2}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{2}, b_{3}\right),\left(a_{2}, b_{4}\right)\right],} \\
{\left[\left(a_{3}, b_{1}\right),\left(a_{3}, b_{2}\right),\left(a_{3}, b_{3}\right),\left(a_{3}, b_{4}\right)\right],\left[\left(a_{4}, b_{1}\right),\left(a_{4}, b_{2}\right),\left(a_{4}, b_{3}\right),\left(a_{4}, b_{4}\right)\right]}
\end{array}\right\}
$$

The following figure represents the Cartesian product graphs of the above figure.

Fig. 2.6 $\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}$ Semigraph
In the above semigraph $\left(a_{1}, b_{1}\right),\left(a_{4}, b_{1}\right),\left(a_{1}, b_{4}\right),\left(a_{4}, b_{4}\right)$ are end vertices, $\left(a_{2}, b_{1}\right),\left(a_{3}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{4}, b_{2}\right),\left(a_{1}, b_{3}\right),\left(a_{4}, b_{3}\right),\left(a_{2}, b_{4}\right),\left(a_{3}, b_{4}\right)$ are middle-end vertices and $\left(a_{2}, b_{2}\right),\left(a_{3}, b_{2}\right),\left(a_{2}, b_{3}\right),\left(a_{3}, b_{3}\right)$ are middle vertices.

From fig. 2 any one vertex taken in each row or any one vertex taken in each column ie., 4 vertices form a minimal adominating set.
$\therefore \gamma_{a}\left[\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}\right]=4$.
Consider the path semigraphs

Fig. 2.7 $\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}$

Fig. $2.8 \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}$

The Cartesian product of the above two graphs is given below.

Fig. 2.9 $\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(2))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}$
In the above graph the vertex set $\left\{\left(a_{4}, b_{1}\right),\left(a_{4}, b_{2}\right),\left(a_{4}, b_{3}\right),\left(a_{4}, b_{4}\right)\right\}$ form a minimal a- dominating set.

$$
\therefore \gamma_{a}\left[\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(2))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}\right]=4 .
$$

To prove (iii), let us assume $n=3 p, p=1,2,3,4, \ldots$. can be noted that the semigraph $\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(2))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}$ is of order $36 p+4$ and of size $21 p+1$.

Consider the path semigraph with 2 edges and 4 middle vertices.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1462-1467
https://publishoa.com
ISSN: 1309-3452

Fig. 2.10 $\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(2))}$ Semigraph

In fig.2.10 the vertex a_{4} dominates the adjacent vertices $a_{1}, a_{2}, a_{3}, a_{5}, a_{6}, a_{7}$. It is noted that the grid $\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(2))}$. $\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}$ containing 40 vertices with exactly 4 copies of $\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(2))}$. Therefore $\left(a_{4}, b_{1}\right),\left(a_{4}, b_{2}\right),\left(a_{4}, b_{3}\right),\left(a_{4}, b_{4}\right)$ are the exactly 4 vertices dominating the other adjacent vertices in that edge. Also the semigraph $\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(\mathrm{n}))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}$, $n=3 p, p=1,2,3,4, \ldots$ containing p copies of $\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(2))} \quad \square \quad \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}$. Hence the set $U=\left\{\left(a_{i}, b_{j}\right) / i=4,13,22, \ldots(9 p-5), p=1,2, \ldots . j=1,2,3,4\right\}$
with 4 k (may be end or middle-end) vertices construct a minimal a-dominating set which dominates all the other vertices in $\quad \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(\mathrm{n}))} \quad \square \quad \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))} \quad$ apart \quad from $\quad\left(a_{9 t-1}, b_{1}\right),\left(a_{9 t-1}, b_{2}\right),\left(a_{9 t-1}, b_{3}\right),\left(a_{9 t-1}, b_{4}\right) \quad$ and $\left(a_{9 t}, b_{1}\right),\left(a_{9 t}, b_{2}\right),\left(a_{9 t}, b_{3}\right),\left(a_{9 t}, b_{4}\right) \quad, \quad t=1,2,3,4, \ldots \ldots, p \quad$ vertices and the vertices $\left(a_{9 r+1}, b_{1}\right),\left(a_{9 r+1}, b_{2}\right),\left(a_{9 r+1}, b_{3}\right),\left(a_{9 r+1}, b_{4}\right)$. Note that for all $t=1,2,3,4, \ldots \ldots, p$ the vertices $\left(a_{9 t-1}, b_{1}\right),\left(a_{9 t-1}, b_{2}\right),\left(a_{9 t-1}, b_{3}\right),\left(a_{9 t-1}, b_{4}\right)$ form an edge $E_{9 t-1}$ (say) and $\left(a_{9 t}, b_{1}\right),\left(a_{9 t}, b_{2}\right),\left(a_{9 t}, b_{3}\right),\left(a_{9 t}, b_{4}\right)$ form an edge $E_{9 t}$ (say) with $\left(a_{9 t}, b_{1}\right),\left(a_{9 t}, b_{4}\right),\left(a_{9 t-1}, b_{1}\right),\left(a_{9 t-1}, b_{4}\right)$ middle-end vertices and $\left(a_{9 t}, b_{2}\right),\left(a_{9 t}, b_{3}\right),\left(a_{9 t-1}, b_{2}\right),\left(a_{9 t-1}, b_{3}\right)$ middle vertices in which any one vertex from the edge $E_{9 t-1}$ and one vertex from the edge $E_{9 t}$ dominates all the other vertices in that edge. Hence p vertices must be taken i.e., any one vertex from each edge to dominates the vertices $\left(a_{9 t-1}, b_{1}\right),\left(a_{9 t-1}, b_{2}\right),\left(a_{9 t-1}, b_{3}\right),\left(a_{9 t-1}, b_{4}\right)$ and $\left(a_{9 t}, b_{1}\right),\left(a_{9 t}, b_{2}\right),\left(a_{9 t}, b_{3}\right),\left(a_{9 t}, b_{4}\right), t=1,2,3,4, \ldots \ldots, p$. At the end if we select only one vertex from $E_{9 r+1}=\left(\left(a_{9 r+1}, b_{1}\right),\left(a_{9 r+1}, b_{2}\right),\left(a_{9 r+1}, b_{3}\right),\left(a_{9 r+1}, b_{4}\right)\right)$ the corresponding set containing $6 \mathrm{p}+1$ vertices, where $n=3 p$ which is a minimal a-dominating set in $\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(\mathrm{n}))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}$. Hence $\gamma_{a}\left[\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(\mathrm{n}))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}\right]=6\left(\frac{n}{3}\right)+1$ if $n=3 k$.

Next, $n=3 p+1, p=1,2,3,4, \ldots$.The Cartesian product graph $\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(\mathrm{n}))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}$ when $n=3 p+1$ contains all the vertices of $\quad \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(\mathrm{n}))} \quad \square \quad \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))} \quad$ when $\quad n=3 p \quad$ and \quad also the vertices $\left(a_{9 r+2}, b_{1}\right),\left(a_{9 r+2}, b_{2}\right),\left(a_{9 r+2}, b_{3}\right),\left(a_{9 r+2}, b_{4}\right),\left(a_{9 r+3}, b_{1}\right),\left(a_{9 r+3}, b_{2}\right),\left(a_{9 r+3}, b_{3}\right),\left(a_{9 r+3}, b_{4}\right)$,
$\left(a_{9 r+4}, b_{1}\right),\left(a_{9 r+4}, b_{2}\right),\left(a_{9 r+4}, b_{3}\right),\left(a_{9 r+4}, b_{4}\right)$. Hence for selecting vertices from the edges $E_{9 r+1}=\left(\left(a_{9 r+1}, b_{1}\right),\left(a_{9 r+1}, b_{2}\right),\left(a_{9 r+1}, b_{3}\right),\left(a_{9 r+1}, b_{4}\right)\right)$, the corresponding set form a minimal a-dominating set. Hence $\gamma_{a}\left[\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(\mathrm{n}))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}\right]$ when $n=3 p+1$ is $\gamma_{a}\left[\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(\mathrm{n}))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}+1\right]$.

Therefore $\gamma_{a}\left[\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(\mathrm{n}))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}\right]=6 p+1+1=6 p+2=6\left(\frac{n-1}{3}\right)+2$.
At the end, let $n=3 p+2$. It can be observed that $\gamma_{a}\left[\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(\mathrm{n}))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}\right]$ is same for $n=3 p, 3 p+1,3 p+2$ from th edge $E_{1}=\left(\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{1}, b_{3}\right),\left(a_{1}, b_{4}\right)\right)$ to $E_{9 p-2}=\left(\left(a_{9 p-3}, b_{1}\right),\left(a_{9 p-3}, b_{2}\right),\left(a_{9 p-3}, b_{3}\right),\left(a_{9 p-3}, b_{4}\right)\right)$. For various values of n, γ_{a} changes based on the remaining edges. The list of remaining edges is given below.

S.No.	n	Edges	Minimal a-dominating vertices
1	$3 p$	$\begin{aligned} & E_{9 p-4}, E_{9 p-3}, E_{9 p-2} \\ & E_{9 p-1}, E_{9 p}, E_{9 p+1} \\ & \hline \end{aligned}$	$\left(a_{9 p-1}, b_{4}\right),\left(a_{9 p}, b_{4}\right),\left(a_{9 p+1}, b_{4}\right)$
2	$3 p+1$	$\begin{aligned} & E_{9 p-4}, E_{9 p-3}, E_{9 p-2} \\ & E_{9 p-1}, E_{9 p}, E_{9_{p+1}}, \\ & E_{9 p+2}, E_{9 p+3}, E_{9_{p+4}} \end{aligned}$	$\left(a_{9 p+1}, b_{1}\right),\left(a_{9 p+1}, b_{2}\right),\left(a_{9 p+1}, b_{3}\right),\left(a_{9 p+1}, b_{4}\right)$
3	$3 p+2$	$\begin{aligned} & E_{9_{p-4}}, E_{9_{p-3}}, E_{9_{p-2}}, \\ & E_{9_{p-1}}, E_{9_{p}}, E_{9_{p+1}}, \\ & E_{9_{p+2}}, E_{9_{p+3}}, E_{9_{p+4}}, \\ & E_{9_{p+5}}, E_{9_{p+6}}, E_{9_{p+7}} \end{aligned}$	$\begin{aligned} & \left(a_{9 p-1}, b_{4}\right),\left(a_{9 p}, b_{4}\right),\left(a_{9 p+4}, b_{1}\right),\left(a_{9 p+4}, b_{2}\right), \\ & \left(a_{9 p+4}, b_{3}\right),\left(a_{9 p+4}, b_{4}\right) \end{aligned}$

Table: Minimal a-dominating vertices
Therefore from the second and third row of the above table, it can be easily understood that, when n increases by one, γ_{a} increases by two.

Therefore $\gamma_{a}\left[\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(\mathrm{n}))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}\right]$, when $n=3 p+2$ is
$\gamma_{a}\left[\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(\mathrm{n}))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}+2\right]=6 p+2+2=6 p+4=6\left(\frac{n-2}{3}\right)+4$. Hence the lemma.

Conclusion

In this research work, $\gamma_{\mathrm{a}}\left[\mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(\mathrm{n}))} \square \mathrm{P}_{\mathrm{s}(2 \mathrm{~m}(1))}\right]$ was discussed briefly.

References

[1] S. Gomathi, "Studies in Semigraphs and Domination", Ph.D Thesis, Madurai Kamaraj University, 2008.
[2] S. T. Hedetniemi and R. C. Lasar, Bibliography on domination in graphs and some basic definitions of domination parameters, Discrete Math., 86 (1990), pp. 25-27.
[3] E. S. S. Kamath and R. S. Bhat, Domination in Semigraphs, Discrete Mathematics, 15 (2003), pp. 106-111.
[4] N. Murugesan and D. Narmatha, "Some properties of Semigraph and its Associated Graphs", International Journal of Engineering Research and Technology, Vol. 3, Issue 5, May 2014, pp. 898-903.
[5] N. Murugesan and D. Narmatha, "Dominations in Semigraphs", International Journal of Engineering and Advanced Technology, Vol. 8, Issue 6, Aug 2019, pp. 563-568.
[6] N. Murugesan and D. Narmatha, "a-Domination in Cartesian Product of Path Semigraphs", Journal of Physics: Conference Series, Vol. 1543, May 2020, pp. 1-5.

