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Abstract: A topological index, also known as connectivity index, is a molecular structure descriptor calculated from a 

molecular graph of a chemical compound which characterizes its topology. Various topological indices are categorized 

based on their degree, distance, and spectrum. In this study, we calculated and analysed the degree-based topological 

indices such as positive arithmetic- geometric index ( 
+)(AG  index) and negative arithmetic- geometric index ( 

−)(AG  

index). Further investigated the 
+)(AG  index) and 

−)(AG  index in regular graph, complete graph, complete bipartite 

graph, union of graphs and join of graphs are derived. Further explain the theorem by examples. 
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Arithmetic-geometric index is defined as  
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INTRODUCTION 

A signed graph is defined by an ordered pair ( ),G=  where ),( EVG =  is an underlying graph of  and  

 −+→ ,:E  is a function called a signature function. 

The positive degree of the vertex u  in the signed graph is defined by number of positive edges are incident in 

the vertex u  and it is denoted by ( )ud+  .The negative degree of the vertex u  in the signed graph is defined by number 

of negative edges are incident in the vertex u  and it is denoted by ( )ud− . 

The maximum positive degree of the signed graph  is maximum positive degree along the vertices in  it is 

denoted by ( )G+ . The maximum negative degree of the signed graph  is maximum negative degree along the 

vertices in  it is denoted by ( )G− .  

Note that the sum of positive degree and negative degree of a vertex in u is the degree of vertex in 

underlying graph ),( EVG = . 

The positive degree of the edge uv  in the signed graph is defined by number of positive edges are adjacent to 

the edge uv  and it is denoted by ( )uvd+  .The negative degree of the edge uv  in the signed graph is defined by number 

of negative edges are adjacent to the edge uv  and it is denoted by ( )uvd− . 

The minimum positive degree of the signed graph   is minimum positive degree along the edges in   it is 

denoted by ( )GE+ . The minimum negative degree of the signed graph  is minimum negative degree along the edges 

in  it is denoted by ( )GE− . 

One of the most investigated categories of topological indices used in mathematical chemistry is called degree-

based topological indices, which are defined in terms of the degrees of the vertices of a graph. We can write the 

definition of such a topological index in the form given as 

( )
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Arithmetic-geometric index is defined as  
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In this paper we define the Arithmetic-geometric index of signed graphs. Further we investigate some properties 

and bounds of the Arithmetic-geometric index of signed graphs. 

 

1. ARITHMETIC-GEOMETRIC INDEX IN SIGNED GRAPHS 

 

In this section we define the positive and negative AG index in signed graphs and investigate the properties and 

bounds of the AG index in signed graphs. 

Definition 2.1:  The positive Arithmetic-geometric (AG+) index of signed graphs is defined as 
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Definition 2.2:  The negative Arithmetic-geometric (AG-) index of signed graphs is defined as 
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Theorem 2.1:  In a positive K regular signed graph with n vertices, then the )( +AG  index is 
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Proof: Let  be a positive K regular signed graph with n vertices. Therefore we get 

.,)( =− ii veveryforKvd  The positive Arithmetic-geometric (AG+) index of signed graphs is defined as 
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In a negative K regular signed graph   with n vertices, there is minimum 
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Illustration 2.1: Positive 2-regular signed graph ),( G . 



JOURNAL OF ALGEBRAIC STATISTICS 
Volume 13, No. 3, 2022, p. 1428-1439 
https://publishoa.com 
ISSN: 1309-3452 

 

1430 
 

 

Figure 2.1: Positive 2-regular signed graph ),( G . 

 In a positive 2-regular signed graph ),( G  the positive degree of the every vertices in ),( G  is 

2. . The order ),( G  is 6)(,4)( === GSnO . The )( +AG  index) 
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Theorem 2.2:  In a negative K regular signed graph with n vertices, then the )( −AG  index is 
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Proof: Let  be a negative K regular signed graph with n vertices. Therefore we get 

.,)( =− ii veveryforKvd  The negative Arithmetic-geometric (AG-) index of signed graphs is defined as  
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In a negative K regular signed graph   with n vertices, there is minimum 
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Illustration 2.2: Negative 2-regular signed graph ),( G . 

 

Figure 2.2: Negative 2-regular signed graph ),( G . 

 In a negative 2-regular signed graph ),( G  the negative degree of the every vertices in ),( G  is 

2. . The order ),( G  is 6)(,4)( === GSnO . The )( −AG  index) 
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Theorem 2.3: For a positive complete signed graph of n vertices, then the )(AG  index 
( )

2

1
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−
+ nn

AG .  

Proof: Let ),( G  be a positive complete signed graph this implies the induced sub graph  +V  is a 

complete graph of order nGO =)( . This implies the positive degree of every vertices in G is (n-1) and n number of 

vertices in the induced sub graph  +V . In a (n-1) regular graph there is 
( )

2

1−nn
edges in a complete graph of n 

vertices. The positive Arithmetic-geometric (AG+) index of signed graphs is defined as  
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Illustration 2.3: Positive complete signed graph ),( G . 



JOURNAL OF ALGEBRAIC STATISTICS 
Volume 13, No. 3, 2022, p. 1428-1439 
https://publishoa.com 
ISSN: 1309-3452 

 

1433 
 

 
Figure 2.3: Positive complete signed graph ),( G . 

In a positive complete signed graph ),( G the positive degree of the every vertices in  +V  is 4. . The 

order ),( G  is 14)(,7)( === SnO . The )( +AG  index) 
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Theorem 2.3: For a negative complete signed graph of n vertices, then the )( −AG  index 
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AG .  
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Proof: Let ),( G  be a negative complete signed graph this implies the induced sub graph  −V  is a 

complete graph of order nGO =)( . This implies the positive degree of every vertices in G is (n-1) and n number of 

vertices in the induced sub graph  −V . In a (n-1) regular graph there is 
( )

2

1−nn
edges in a complete graph of n 

vertices. The positive arithmetic-geometric (AG-) index of signed graphs is defined as  
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Illustration 2.4: Negative complete signed graph ),( G . 
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Figure 2.4: Negative complete signed graph ),( G . 

In a negative complete signed graph ),( G the negative degree of the every vertices in  −V  is 4. . The 

order ),( G  is 14)(,7)( === SnO . The )( −AG  index) 
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Theorem 2.5: For a positive complete bipartite signed graph nmK , , then the )( +AG  index 

( ) .
2

1
)( mnmnAG ++

 

Proof: Let ),( G  be a positive complete bipartite signed graph of vertex sets 
++

nm VV & respectively .This 

implies the induced sub graph  +

nmV ,  is a positive complete bipartite graph of vertex sets nm VV & . This implies the 
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positive degree of every vertices in mV and  nV are mn &  respectively such that mii Vvnvd =+ ,)(  and 

njj Vvmvd =+ ,)( , there is mn edges in a positive complete bipartite signed graph nmK ,  of ),( nm  vertices. 

Therefore )( +AG  index 
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Illustration 2.5: Positive complete bipartite signed graph ),( G . 
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Figure 2.5: Positive complete bipartite signed graph ),( G . 

In a positive complete bipartite signed graph ),( G the positive degree of the every vertices in 
+

1V  and 
+

2V

are m=4 and n=3 respectively. The order ),( G  is 7)( =O . There is 12 edges in positive complete bipartite signed 

graph ),( G . The )( +AG  index) ( ) mnmnAG +=+
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Theorem 2.6: For a negative complete bipartite signed graph nmK , , then the )( −AG  index 
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1
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Proof: Let ),( G  be a negative complete bipartite signed graph of vertex sets 
−−

nm VV & respectively 

.This implies the induced sub graph  =

nmV ,
 is a negative complete bipartite graph of vertex sets nm VV & . This 

implies the negative degree of every vertices in mV and  nV are mn &  respectively such that mii Vvnvd =− ,)(  

and .,)( njj Vvmvd =−
 clearly there is mn edges in a negative complete bipartite signed graph nmK ,  of ),( nm  

vertices. Therefore )( −AG  index 
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Illustration 2.6: Negative complete bipartite signed graph ),( G . 

 

Figure 2.6: Negative complete bipartite signed graph ),( G . 

In a Negative complete bipartite signed graph ),( G the Negative degree of the every vertices in 
+

1V  and 

+

2V are m=4 and n=3 respectively. The order ),( G  is 7)( =O . There is 12 edges in Negative complete bipartite 

signed graph ),( G . The )( +AG  index) ( ) mnmnAG +=−

2

1
37)( . 

2. Conclusion 
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 In this study, we calculated and analysed the degree-based topological indices such as positive arithmetic- 

geometric index ( 
+)(AG  index) and negative arithmetic- geometric index ( 

−)(AG  index). Further investigated the 

+)(AG  index) and 
−)(AG  index in regular graph, complete graph, complete bipartite graph, union of graphs and join 

of graphs are derived. Further explain the theorem by examples. In future we will analysed the different degree-based 

topological indices 

 

References: 

1. Harary, F. (1956), "Structural balance: A generalization of Heider's theory", Psychological Review, 63 (5): 277 

293.  

2. Zaslavsky, Thomas (1998), "A mathematical bibliography of signed and gain graphs and allied 

areas", Electronic Journal of Combinatorics, 5, Dynamic Surveys 8, 124 pp.  

3. F. Harary, Graph Theory, Addison Wesley, Reading, Mass., 1972. 

4. Bollobas, Modern Graph Theory, Springer Science and Business Media, Berlin, Germany, 2013.  

5. Chartrand, G & Zhang, P 2005, Introduction to Graph Theory, McGraw Hill International Edition. 

6. J. L. Gross and T. W. Tucker, Topological Graph Theory, Courier Corporation, Chelmsford, MA, USA, 2001.  

7. Y. Yuan, B. Zhou, and N. Trinajstic, “On geometric-arithmetic ´ index,” Journal of Mathematical Chemistry, 

vol. 47, no. 2, pp. 833–841, 2010. 

8. L. Zhong, “, harmonic index for graphs,” Applied Mathematics Letters, vol. 25, no. 3, pp. 561 

https://en.wikipedia.org/wiki/Frank_Harary
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS8
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS8

