Volume 13, No. 3, 2022, p. 1397-1404 https://publishoa.com ISSN: 1309-3452

Distinct-Congruent spectrum of graphs

T.Rajasulochana¹ & Dr.M.Kamaraj²

¹Assistant Professor, Department of Mathematics, SFR College For Women, Sivakasi. Mail id: trajasulochana136@gmail.com

²Head&Associate Professor,Department of Mathematics,Government arts and science collegeSivakasi. Mail id: kamarajm17366@gmail.com

Abstract: Let $A^*=A-\{0\}$. A function $f:E(G)\to A^*$ is called a labeling of G. Any labeling induces a map $f^+:V(G)\to A$, defined by $f^+(v)=\sum f(u,v)=$ distinct ,where $u,v\in E(G)$. In this paper, we examine, the DC-magic spectra of class of graphs such as cycle, star, path, k_1+P_3 , $C_4@S_n$, $C_6@S_n$, $C_{10}@S_n$, $C_{12}@S_n$, where n is odd. The conjecture that the even cycle $C_{2n}@S_n$ whose distinct magic spectrum is Z_n .

Keywords distinct congruent, DC graph, spectrum,

1.Introduction

Let G=(V,E) be a connected graph, without multiple edges or loops. For any abelian group $A(written \ additively)$. Let $A^*=A-\{0\}$. A function $f:E(G)\to A^*$ is called a labeling of G. Any labeling induces a map $f^+:V(G)\to A$, defined by $f^+(v)=\sum f(u,v)$ where $u,v\in E(G)$. If there exists a labeling f which induces a distinct label g on g on g of integers (mod n). In this paper, we are interested in determining for which values of g a graph is DC-magic. The set g is g-magic, g-alled the Distinct-Congruent spectrum of a graph g-and is denoted by DC (G). In this paper, we examine, the DC-magic spectra of class of graphs .

2.Definition

Let G=(V,E) be a connected graph, without multiple edges or loops. For any abelian group A(written additively) .Let $A^*=A-\{0\}$. A function $f:E(G)\to A^*$ is called a labeling of G. Any labeling induces a map $f^+:V(G)\to A$, defined by $f^+(v)=\sum f(u,v)$ where $u,v\in E(G)$. If there exists a labeling f which induces a distinct label f on f on f on f is an spectrum of distinct magic labeling and that f is an distinct-congruence magic graph.

In the first example the distinct congruence magic spectrum is \mathbb{Z}_3 where as in the second DC[G]= \mathbb{Z}_7

3. Some observations

Theorem 3.1

The odd cycle of order n whose distinct congruence magic spectrum is Z_n for all $n \ge 3$

Proof

Claim The cycle C_n, n is odd has DC Z_n

Construction

Label all the edges by 1,2,...n clockwise simultaneously. The sum at each vertex is distinct, they are 0,1,2,...n-1. Therefore $DC[C_n]=Z_n$

Verification

```
\begin{split} & \text{Let } V(C_n) = \{v_1, v_2, v_3, \dots, v_n \} \\ & E(C_n) = \{v_i v_{i+1} / 1 \leq \text{ } i \leq n \}, v_{i+1} = v_1 \\ & \text{Define } f \text{ on } E(C_n) \text{ by } f(v_i v_{i+1}) = i, \ 1 \leq \text{ } i \leq \text{n-1,then the induced vertex labeling } f^+ \text{on } V(C_n) \text{ by } \\ & f^+(v_i) = f(v_i v_{i+1}) + f(v_{i-1} v_i) \text{ (mod n)} \\ & = i + i - 1 (\text{mod n}) \\ & = 2i - 1 (\text{mod n}) \end{split}
```

Volume 13, No. 3, 2022, p. 1397-1404

https://publishoa.com

ISSN: 1309-3452

Therefore $f^+(v_i)=2i-1 \pmod n$ for all $v_i \in V(C_n)$

Theorem 3.2

The star graph whose distinct congruence magic spectrum is Z_n for all $n \ge 3$

Proof

Claim The star S_n , n is odd has DC Z_n

Construction

Label the pendant edges by 1,2,.....n-1,The sum at each vertex is corresponding to the edges 1,2,.....n-1 respectively. Thecentre vertex whose sum is zero

Verification

Let
$$V(C_n) = \{v_1, v_2, v_3, \dots, v_n\}$$

$$E(C_n) = \{v_n v_i / 1 \le i \le n-1\}$$

Define f on E(C_n) by $f(v_n v_i)=i$, $1 \le i \le n-1$, then the induced vertex labeling f^+ on V(C_n) by

$$f^{\scriptscriptstyle +}(v_i) = f(v_n v_i) = i, \ 1 \leq \mathit{i} \leq \mathit{n-1}; \ f^{\scriptscriptstyle +}(v_n) = \sum_{\mathit{i}=1}^{\mathit{n-1}} f(v_n v_i) = 1 + 2 + \ldots \ldots + \mathit{n-1}$$

$$= \frac{(n-1)n}{2} \pmod{n}$$

$$\equiv 0 \pmod{n}$$

Theorem 3.3

The path graph whose distinct congruence magic spectrum is Z_n for all $n \ge 3$,n is odd.

Proof

Claim The path P_n , n is odd has DC Z_n

Construction

Label all the edges of path by 1,2,3,....n,the sum at each vertex is distinct, such as 0,1,2,3,...n-1. Therefore $DC[P_n]=Z_n$

Verification

$$f(v_1,v_2)=1; f(v_{n-1},v_n)=n-1; f(v_i,v_{i+1})=i, 1 \le i \le n-1.$$

The sum at each vertex is $f^+(v_1)=1, f^+(v_i)=f(v_i, v_{i+1})+f(v_{i-1}, v_i)$

$$=i+i-1$$

$$=2i-1, (mod n) \ 1 \le i \le n-1$$

$$f^{\scriptscriptstyle +}(v_n)\!\!=\!n\text{-}1$$

Theorem 3.4

The cycle attached with star graph that is $DC(C_4@S_n)=Z_n$ where n is odd

Proof

Claim The graph C₄@S_n has distinct magic spectrum.

Construction

Label the cycle edges by 1,n,2,n-1 and star edges by 3,4,5,....n-2 in the clockwise direction.

Verification

$$V(G)=\{v_1,v_2,....v_n\}$$

Volume 13, No. 3, 2022, p. 1397-1404 https://publishoa.com

ISSN: 1309-3452

$$E(G) = \{(v_1, v_2), (v_2, v_3), (v_3, v_4), (v_4, v_i)/, 5 \le i \le n\}$$

Define f on E(G) by $f(v_1,v_2)=1$;

$$f(v_2,v_3)=n; f(v_3,v_4)=2;$$

$$f(v_4, v_1)=n-1$$
; $f(v_4, v_i)=i$; $5 \le i \le n$

$$f^+(v_1) = f(v_1, v_2) + f(v_4, v_1) = 1 + n - 1 = n \equiv 0 \pmod{n}$$

$$f^+(v_2)=f(v_1,v_2)+f(v_2,v_3)=1+n=n\equiv 1 \pmod{n}$$

$$f^+(v_3)=f(v_2,v_3)+f(v_3,v_4)=n+2\equiv 2 \pmod{n}$$

$$f^+(v_4)=f(v_3,v_4)+f(v_4,v_1)+f(v_4,v_i)$$

$$=2+n-1+3+4+...n-2=2+3+4+...n-1+n-2$$

$$=1+2+3+4+....n-2+n-2$$

$$=(n-2(n-1)/2)+n-2$$

$$=(n^2-3n+2/2)+n-2$$

$$\equiv 1 + n - 2 \pmod{n}$$

$$\equiv n - 1 \pmod{n}$$

$$f^{+}(v_{i})=i-2,5 \le i \le n$$

Therefore the sum at each vertex is distinct. Therefore $DC(C_4@S_n)=Z_n$ where n is odd.

Theorem 3.5

The cycle attached with star graph that is $DC(C_6@S_n)=Z_n$ where n is odd

Proof

ClaimThe graph $C_6@S_n$ has distinct magic spectrum.

Construction

Label the cycle edges by 1,n-2,2,n-1,n,n-3 and star edges by 3,4,5,....n-4 in the clockwise direction.

Verification

$$V(G)=\{v_1,v_2,....v_n\}$$

$$E(G) = \{(v_1, v_2), (v_2, v_3), (v_3, v_4), (v_4, v_5), (v_5, v_n), (v_5, v_i) / , 6 \le i \le n-1 \}$$

$$f(v_1,v_2)=1$$
; $f(v_2,v_3)=n-2$; $f(v_3,v_4)=2$;

$$f(v_4, v_5)=n-1$$
; $f(v_5, v_i)=i-3$; $5 \le i \le n-1$;

$$f(v_5,v_n)=n; f(v_n,v_1)=n-3$$

$$f^+(v_1)=f(v_1,v_2)+f(v_n,v_1)=1+n-3\equiv n-2\pmod{n}$$

$$f^+(v_2)=f(v_1,v_2)+f(v_2,v_3)=1+n-2 \equiv n-1 \pmod{n}$$

$$f^+(v_3)=f(v_2,v_3)+f(v_3,v_4)=n-2+2\equiv 0 \pmod{n}$$

$$f^+(v_4)=f(v_3,v_4)+f(v_4,v_5)=2+n-1+\equiv n+1\equiv 1 \pmod{n}$$

$$f^+(v_5) = f(v_4, v_5) + f(v_5, v_{13}) + f(v_5, v_i)$$

$$=n-1+n+i-3=n-1+n+3+4+5+.....n-4$$

$$=3+4+5+\dots n-4+n-1+n$$

Volume 13, No. 3, 2022, p. 1397-1404

https://publishoa.com

ISSN: 1309-3452

$$=((n-4)(n-3)/2)-3+n-1+n$$

$$=((n^2-7n+12)/2)-3+n-1+n$$

 $\equiv 6-3-1 \pmod{n} \equiv 2 \pmod{n}$

 $f^+(v_i)=i-3,6 \le i \le n-1.$

Therefore the sum at each vertex is distinct. Therefore $DC(C_6@S_n)=Z_n$ where n is odd.

Theorem 3.6

 $C_{12}@S_n$ graph whose distinct magic spectrum is Z_n

Proof

Let C_n be the Cycle graph.

Where n=12

To prove that $C_{12}@S_n$ graph has magic spectrum.

Next, let us take n=12, we get C_{12} graph.

 C_{12} @S_n is a distinct congruence magic graph.

Let the integer set be $Z_{22} = \{0,1,2,3,4,5,\dots,21\}$

Construction:-

Since by using the definition of labeling, we label the edges by 1,2,3,4,5,...21 from \mathbb{Z}_{22}

Verification:-

$$f(v_1 v_2)=3$$
, $f(v_2 v_3)=18$, $f(v_3 v_4)=4$, $f(v_4 v_5)=19$, $f(v_5 v_6)=5$, $f(v_6 v_7)=20$,

$$f(v_7 v_8)=21, f(v_8 v_9)=15, f(v_9 v_{10})=1, f(v_{10} v_{11})=16, f(v_{11} v_{12})=2, f(v_{12} v_1)=17,$$

$$f(v_7 v_{13}) = 6, f(v_7 v_{14}) = 7, f(v_7 v_{15}) = 8, f(v_7 v_{16}) = 9, f(v_7 v_{17}) = 10, f(v_7 v_{18}) = 11,$$

$$f(v_7 v_{19})=12, f(v_7 v_{20})=13, f(v_7 v_{21})=14$$

$$f^+(v_1)=20, f^+(v_2)=21, f^+(v_3)=22, f^+(v_4)=23,$$

$$f^+(v_5)=24$$
, $f^+(v_6)=25$, $f^+(v_7)=131$, $f^+(v_8)=36$

$$f^{+}(v_{9})=16, f^{+}(v_{10})=17, f^{+}(v_{11})=18, f^{+}(v_{12})=19$$

$$f^+(v_{13})=6, f^+(v_{14})=7, f^+(v_{15})=8, f^+(v_{16})=9$$

$$f^+(v_{17})=10, f^+(v_{18})=11, f^+(v_{18})=12, f^+(v_{20})=13$$

$$f^{+}(v_{21})=14$$
,

Therefore all are distinct

Congruency:-

$$20 \equiv \underline{20} \pmod{21}$$

$$21 \equiv \underline{\mathbf{0}} \pmod{21}$$

$$22 \equiv \mathbf{1} \pmod{21}$$

$$23 \equiv 2 \pmod{21}$$

$$24 \equiv 3 \pmod{21}$$

$$25 \equiv \underline{\mathbf{4}} \pmod{21}$$

Volume 13, No. 3, 2022, p. 1397-1404

https://publishoa.com

ISSN: 1309-3452

 $131 \equiv \underline{\mathbf{5}} \pmod{21}$

 $36 \equiv \underline{15} \pmod{21}$

 $16 \equiv \underline{\mathbf{16}} \pmod{21}$

 $17 \equiv \underline{17} \pmod{21}$

 $18 \equiv \underline{18} \pmod{21}$

 $19 \equiv \underline{19} \pmod{21}$

 $6 \equiv \underline{\mathbf{6}} \pmod{21}$

 $7 \equiv \underline{7} \pmod{21}$

 $8 \equiv \mathbf{8} \pmod{21}$

 $9 \equiv 9 \pmod{21}$

 $10 \equiv 10 \pmod{21}$

 $11 \equiv \underline{\mathbf{11}} \pmod{21}$

 $12 \equiv \underline{12} \pmod{21}$

 $13 \equiv \underline{\mathbf{13}} \pmod{21}$

 $14 \equiv 14 \pmod{21}$

Therefore the sum at each vertex is distinct. Therefore $DC(C_{12}@S_n)=Z_n$ where n is odd.

Theorem 3.7

 $C_{10}@S_n$ graph whose distinct magic spectrum is Z_n

Proof

Let C_n be the Cycle graph.

Where n=10

To prove that $C_{10}@S_n$ graph has magic spectrum.

Next, let us take n=10, we get C_{10} graph.

 $C_{2n}@S_n$ is a distinct congruence magic graph.

Let the integer set be $Z_{18} = \{0,1,2,3,4,5,..........17\}$

Construction:-

Since by using the definition of labeling, we label the edges by $1,2,3,4,5,\dots 17$ from Z_{18}

Verification:-

$$f(v_1 \ v_2) = 14$$
, $f(v_2 \ v_3) = 3$, $f(v_3 \ v_4) = 15$, $f(v_4 \ v_5) = 4$, $f(v_5 \ v_6) = 16$, $f(v_6 \ v_7) = 17$,

$$f(v_7 v_8)=12, f(v_8 v_9)=1, f(v_9 v_{10})=13, f(v_{10} v_1)=2, f(v_6 v_{11})=5, f(v_6 v_{12})=6,$$

$$f(v_6v_{13})=7, f(v_6v_{14})=8, f(v_6v_{15})=9, f(v_6v_{16})=10, f(v_7v_{17})=11,$$

$$f^{+}(v_{1})=16, f^{+}(v_{2})=17, f^{+}(v_{3})=18, f^{+}(v_{4})=19,$$

$$f^{+}(v_{5})=20, f^{+}(v_{6})=89, f^{+}(v_{7})=29, f^{+}(v_{8})=13$$

$$f^+(v_9)=14$$
, $f^+(v_{10})=15$, $f^+(v_{11})=5$, $f^+(v_{12})=6$

$$f^+(v_{13})=7$$
, $f^+(v_{14})=8$, $f^+(v_{15})=9$, $f^+(v_{16})=10$

Volume 13, No. 3, 2022, p. 1397-1404

https://publishoa.com ISSN: 1309-3452

$$f^{+}(v_{17})=11$$

Therefore all are distinct

Congruency:-

- $16 \equiv \underline{\mathbf{16}} \pmod{17}$
- $17 \equiv \underline{\mathbf{0}} \pmod{17}$
- $18 \equiv \underline{\mathbf{1}} \pmod{17}$
- $19 \equiv \underline{2} \pmod{17}$
- $20 \equiv \underline{3} \pmod{17}$
- $89 \equiv 4 \pmod{17}$
- $29 \equiv 12 \pmod{17}$
- $13 \equiv 13 \pmod{17}$
- $14 \equiv \underline{\mathbf{14}} \pmod{17}$
- $15 \equiv \underline{\mathbf{15}} \pmod{17}$
- $5 \equiv \underline{\mathbf{5}} \pmod{17}$
- $6 \equiv \underline{\mathbf{6}} \pmod{17}$
- $7 \equiv \underline{7} \pmod{17}$
- $8 \equiv 8 \pmod{17}$
- 9≡**9** (mod 17)
- $10 \equiv \underline{\mathbf{10}} \pmod{17}$
- $11 \equiv \underline{\mathbf{11}} \pmod{17}$

Therefore the sum at each vertex is distinct. Therefore $DC(C_{12}@S_n)=Z_n$ where n is odd.

Next,Let C_n be the Cycle graph.

Where n=8

To prove that $C_8@S_n$ graph has magic spectrum.

Next, let us take n=8, we get C_8 graph.

 $C_8@\,S_n$ is a distinct congruence magic graph.

Let the integer set be $Z_{14} = \{0,1,2,3,4,5,\dots 13\}$

Construction:-

Since by using the definition of labeling, we label the edges by 1,2,3,4,5,...13 from Z_{14}

Verification:-

$$f(v_1 \ v_2) = 2$$
, $f(v_2 \ v_3) = 11$, $f(v_3 \ v_4) = 3$, $f(v_4 \ v_5) = 12$, $f(v_5 \ v_6) = 13$, $f(v_6 \ v_7) = 9$,

$$f(v_7 v_8)=1, f(v_8 v_1)=10, f(v_5 v_9)=4, f(v_5 v_{10})=5, f(v_5 v_{11})=6,$$

$$f(v_5 v_{12})=7, f(v_5 v_{13})=8$$

$$f^+(v_1)=12$$
, $f^+(v_2)=13$, $f^+(v_3)=14$, $f^+(v_4)=15$,

$$f^{+}(v_{5})=55$$
, $f^{+}(v_{6})=22$, $f^{+}(v_{7})=10$, $f^{+}(v_{8})=11$

Volume 13, No. 3, 2022, p. 1397-1404 https://publishoa.com

ISSN: 1309-3452

$$f^+(v_9)=4$$
, $f^+(v_{10})=5$, $f^+(v_{11})=6$, $f^+(v_{12})=7$

 $f^{+}(v_{13})=8$

Therefore all are distinct

Congruency:-

- $12 \equiv \underline{12} \pmod{13}$
- $13 \equiv \mathbf{0} \pmod{13}$
- $14 \equiv \underline{\mathbf{1}} \pmod{13}$
- $15 \equiv \underline{2} \pmod{13}$
- $55 \equiv 3 \pmod{13}$
- $22 \equiv 9 \pmod{13}$
- $10 \equiv 10 \pmod{13}$
- $11 \equiv \underline{11} \pmod{13}$
- $4 \equiv 4 \pmod{13}$
- $5 \equiv 5 \pmod{13}$
- $6 \equiv 6 \pmod{13}$
- $7 \equiv \underline{7} \pmod{13}$
- 8≡ **8**(mod 13)

Therefore the sum at each vertex is distinct. Therefore $DC(C_8@S_n)=Z_n$ where n is odd.

Theorem 3.8

The conjecture that the even cycle C_{2n} @S_n whose distinct magic spectrum is Z_n.

Conclusion

The graphs whose distinct magic spectrum is Z_n . More general graphs like stars ,cycles,paths,etc., are also discussed. Main applications of this labeling is network theory,coding theory,etc. The conjecture that the even cycle C_{2n} attached with stars whose distinct magic spectrum is Z_n .

REFERENCES

- [1] A.Ahmed, A. Q.Baig and M.Imran, On super edge-magicness of graphs, Utilitas Math., to appear.
- [2] E.T.Baskoro and A.A.G.Ngurah, On super edge-magic total labelings, Bull. Inst. Combin. Appil., 37 (2003), 82-87.
- 3] E.T.Baskoro, I.W.Sudarsana and Y.M.Cholily, How to construct new super edge-magic graphs from some old ones, J. Indones. Math. Soc. (MIHIM), 11:2 (2005), 155-162.
- [4] M.Baˇca, Y.Lin and F.A.Muntaner-Batle, Super edge-antimagiclabelings of the path-like trees, Utilitas Math., 73 (2007), 117–128.
- [5] M.Ba ca and M.Miller, Super Edge-Antimagic Graphs, Brown Walker Press, Boca Raton, Florida USA, (2008).
- [6] H.Enomoto, A.S.Llado, T.Nakamigawa and G.Ringle, Super edge-magic graphs, SUT J. Math., 34 (1980), 105-109.
- [7] R.M.Figueroa-Centeno, R.Ichishima, and F.A.Muntaner-Batle, The place of super edgemagiclabeling among other classes of labeling, Discrete Math., 231 (2001), 153–168.
- [8] R.M.Figueroa-Centeno, R.Ichishima and F.A.Muntaner-Batle, On super edge-magic graph, ArsCombin., 64 (2002), 81–95.

Volume 13, No. 3, 2022, p. 1397-1404 https://publishoa.com

ISSN: 1309-3452

- [9] J.A.Gallian, A dynamic survey of graph labeling, Elec. J. Combin., 17 (2014).
- 10] M.Hussain, E.T.Baskoro and Slamin, On super edge-magic total labeling of banana trees, Utilitas Math., 79 (2009), 243-251.
- [11] M.Javaid, M.Hussain, K.Ali and H. Shaker, Super edge-magic total labeling on subdivision of trees, Utilitas Math., to appear.
- [12] A.Kotzig and A.Rosa, Magic valuations of finite graphs, Canad. Math. Bull., 13 (1970), 451-461. [13] A.Kotzig and A.Rosa, Magic valuation of complete graphs, Centre de Recherches Mathematiques, Universite de Montreal, (1972), CRM-175.
- [14] S.M.Lee and Q.X.Shah, All trees with at most 17 vertices are super edge-magic, 16th MCCCC Conference, Carbondale, University Southern Illinois, November (2002).
- [15] A.A.G.Ngurah, R.Simanjuntak and E.T.Baskoro, On (super) edge-magic total labeling of subdivision of K1,3, SUT J. Math., 43 (2007), 127-136.