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1. Introduction

In 1965, Zadeh [14], made a great contribution to the field of mathematics by proposing the concept of fuzzy
sets. In the year 1986, Atanassov [13] extended these fuzzy sets to intuitionistic fuzzy sets which have made a definite
change and promoted the field of applied research. These two ideas actually paved a great path that leads to several
generalized metric spaces. Huang and Zhang [12] defined cone metric spaces which generalized the metric spaces by
replacing the real numbers by an ordering Banach space. Tarkan Oner et. al. [11] introduced these spaces over fuzzy
sets.

Mohamed and Ranjith [10] came up with intuitionistic fuzzy cone metric spaces in the year 2017. In 2019,
Jeyaraman and Sowndrarajan [8] defined intuitionistic generalized fuzzy cone metric spaces and proved common fixed
point theorems for (®, y)-weak contractions in these spaces. The idea of fuzzy contractive mapping was introduced by
Gregori and Sapena [6], and, they have also extended the Banach’s fixed point theorem with fuzzy contractive mappings.
These ideas and results lead the way to extend the Banach contraction theorem in the intuitionistic generalized fuzzy
cone metric spaces. We accomplish the work with new definitions which inherit the existing ideas.

2. Preliminaries

Definition 2.1 [12]
Let E be a real Banach space and C be a subset of E. C is called a cone if and only if
(i) ¢ isclosed, nonempty, andiC # 0,
(i) abeRab=0c,c, EC = ac, + bc, €C,
(iii) cecand—ceC=c=0.

The cones considered here are with nonempty interiors.

Definition 2.2 [8]

A 5-tuple (X, M,V *,0) is said to be an Intuitionistic Generalized Fuzzy Cone Metric Space, (briefly,
IGFCMS), if Cis a cone of E, X is an arbitrary set, = is a continuous t-norm, ¢ is continuous t-conorm and M, V" are
fuzzy sets in X3 x int(C) satisfying the following conditions:

Forall x,y,z,a € X and t, s € int(C),

(i) ME,y,2,t) + N(x,y,z,t) <1,
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@iy MEyzt)>0,
(”I) M(X'Y'Z't)=1<:)X=y=z,
(iv) My zt) =M(p{xy z},t), where p is a permutation function,
v) MEyzt+s)=M(Exyat)*M(a,zzt),
(vi) M(Exy,z.): int(C) — (0,1] is continuous,
(vi) N(x,y,2zt) >0,
(viii) ¥x,y,zt) =0 x=y =z,
(ix) NEvyzt) =N(pi{xy z}t), where p is a permutation function
xX) NEyzt+s) NEYyat)oN(azzt),
xi) N(xvy,z.):int(C) = (0,1] is continuous.
Then (M, V) is called an intuitionistic generalized fuzzy cone metric on X. The functions M (x,y,zt) and
N(x,y,z,t) denote the degree of nearness and the degree of nonnearness between x,y and z with respect to t,
respectively.

Example 2.3

Let E = R? and consider the cone € = {(c;,c;) ER?: ¢; = 0,¢c, = 0}in E. LetX = R and the norms * and o
be defined by a * b = ab and a ¢ b = max{a, b}. Define the functions M': X3 x int(€) — [0,1] and
N:X3 x int(€) — [0,1] by

[x=yl+ly—zl+lz—x|

e -1
Tyt A4 N (%Y, 2,8) = —mp e
e IIell e IIell

forall x,y,z € Xand t € int(C). Then (X, M, N ,x,0) is an IGFCMS.

Mx,y,z,t) =

3. Main Results

Definition 3.1
An IGFCMS (X, M, IV, *,0) is called a symmetric IGFCMS if, for all x,y € X and t € int(C), M and IV satisfy
the following conditions:

(M (x,ly,y,t) — 1) = (M—(y,lx,x,t) — 1) and V(x,y,y,t) = N, x,x,t).

Definition 3.2
Let (X, M,V,*,0) be an IGFCMS and f:X — X be a self-mapping. Then f is said to be a intuitionistic

generalized fuzzy cone contractive if there exists ¢ € (0,1) such that (m - 1) <c (m - 1) and
N, f), f(2),t) <cN(x,y,zt) foreach x,y,z € X and t € int(C).

Definition 3.3
Let (X, M, V',*,0) be an IGFCMS. M and V" are said to be triangular if, for all x,y,z,« € X and t € int(C),

(M(xz/,z,t) - 1) S (m - 1) + (]V[(ﬂjz,z,t) - 1)’
N(x,y,z,t) Ny, ut)+N(u,zzt).

Definition 3.4

Let (X, M, V,,0) be an IGFCMS. Forx € X,r > 0and t € int(C), the open ball B-(x,r,t) with center at
x and radius r is defined by
Be(x,rt) ={yeX : M(x,y,y,t) >1—r,N(x,y,yt) <r}

Lemma 3.5 [4]
For each ¢, € int(C) and ¢, € int(C), there exists ¢ € int(C) such that ¢; — ¢ € int(C) and
¢, — ¢ € int(C).
Theorem 3.6
Let (X, M, V',*,0) be an IGFCMS. Then 7. defined below is a topology:
Te={DSX:x€D < 3Ar € (0,1),t € int(C) such that B-(x,r,t) € D}.
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Proof
(i) Itisobviousthat® € to and X € 7.
(i)  Suppose D; € toand D, € 7o and x € D;ND,. Thenx € D, and x € D,.
=3nnr, €(0,1)andtyt, € int(C) such that
Be(x,711,t,) € Dy and Be(x, 13, t,) € D,
By lemma 3.5, 3 t € int(C) such thatt; — t € int(C), t, — t € int(C).
Let r = min{r, 7, }. Then Bo(x,7,t) € Be(x, 7y, t, )NBe(x, 75, t;) € D1 ND,.
Hence D;ND, € 1¢.

(iii) LetD; € 7. foreachj € J, anindex set and let x € Uj¢; D;.
Then x € D;, for some j, € J.
= 37 € (0,1) and ¢t € int(C) such that Be(x,7,t) < Dj, .
AsD;, © Uje; D;, we have that Be(x, 7, t) < Uje; D;.
Thus U]'E]D]' € Te.
From (i), (ii) and (iii), 7. is a topology.

Remark [11]
For any r; >, , there exists r; such that r; x5 = r, and for any r, there exists rz € (0,1) such that
5 * 15 = 1,, Where 1y,7,,73,7, 75 € (0,1).

Theorem 3.7
Let (X, M, V',*,0) be an IGFCMS. Then (X, t¢) is Hausdorff.
Proof

Letx,yeXandx #y. Then0 < M(x,y,y,t) <land 0 < N(x,y,y,t) < 1.
Let M (x,y,y,t) =1, and N (x,y,y,t) =r,. Take r = max{r;, r,}.
Now, for each ry, € (r, 1), there exists 3,1, € (0,1) such that
mxr2rpand(l—nr)e(l—-—n)<1-r1.
t t
Let s = max{rs;,r,}. Suppose B (x, 1-— TL’E) NBe (y, 1-— rZ’E) + Q.
Then3 z € Be (x,1—11,2) NBe (¥,1 — 1, 5) and we have that
en3z €Be(x,1-1,; ¢ (.1 —1y,7) and we have tha

t t
41 :‘M(x!y’y!t) Z‘M(xlyizig) *M(Z,y,y,g)
ZTS*T52T3*T32T0>T1,and
t t
n=Nyyt) SN(x,y,z,;)oN(z,y,y,;)
SA-7r)o(1-mr)20-n)oe(1-n)=20-1r)<n.

This is a contradiction. Hence B, (x, 1- rl‘,é) NB; (y, 1- rz,é) =0Q.
Therefore (X, t¢) is Hausdorff.

Definition 3.8
Let (X, M,V *,0) be an IGFCMS, x € X and {x,, } be a sequence in X.
(i)  {x,}is said to converge to x if for all t € int(C), lim (; - 1) =0and lim NM(x,,x,x,t) =0. Itis
M (xp,x,%,t) n-oo

n—oo

denoted by lim x,, = x or by x,, » x asn — oo.
n—oo
(i) {x,}issaid to be a Cauchy sequence if for all t € int(C) and m € N, we have that

lim (; — 1) = 0and lim N (X 4m, X, X, t) = 0.
n—-oo

n—-oo \M (Xn+mXnxn.t)
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(iii) (X, M, V,x,0) is called complete IGFCMS if every Cauchy sequence in X converges.

Remark

The convergence of sequences in an IGFCMS is considered in the sense of the topology defined here.
Therefore, each converging sequence in an IGFCMS has a unique limit and this makes the definition of convergence
meaningful.

Definition 3.9

Let (X, M, V,*,0) be an IGFCMS. A sequence {x,} in X is fuzzy cone contractive if there exists ¢ € (0,1) such
that

)y ey
M(Snr5n+1;sn+1rt) M (Sp—1,5n,5n.t)

N(Sn' Sn+1 Sn+1s t) < CN(Sn—l! Sn» Sns t)
forall t € int(C).

Lemma 3.10

An IGFCMS (X, M, IV',,0) is symmetric.
Proof

Letx,y € Xand t € int(C). Then,

lin{} M Xy, t+r1) > lin&(]v[(x, xx,1) * M(x,y,y,1),
r— r—
limM(y,y,xt+1) 2 im(M(y,y,y,r) * My, %%1))
r- r—
= MK, xy,t) = MKy yt) and M(y,y,x,t) = M(y,xx,1)

lin{} NExyt+r) < lin&(]\f(x, X x1) o N(xy,y,1),
r— r—
lim ¥ (y,y,% t+1) < Im(V (7,5,5,1) © ¥ (5,%,%, D)
r— r—
= NExy)<NExyytadN(,yxt) <Ny, xxt)

Hence M (x,y,y,t) = M(y,x,x,t) and N (x,y,y,) = N (¥, %% 1).

Lemma 3.11

Let (X, M, V',*,0) be an IGFCMS where M and 2V are triangular. Then any fuzzy cone contractive sequence in
X is a Cauchy sequence.

Proof

Let the sequence {s,,} be fuzzy cone contractive X. Then there exists ¢ € (0,1) such that

1 1
(M(Sn;5n+1r5n+1't) B 1) s¢ (M(sn—lrsn'sn't) B 1) (3111)
N(Sp, Sna1 Snes t) < N (Sp_1, Sny Snu ) (3.11.2)
Now, M and JV are triangular. By Lemma 3.10, for m > n > ngy, ny, € N,

1 1 1
S S, D (S S, O S
(M(sn,sn,sm,t) ) < M (sn.,Sn.Sn+1,t) + M (sn+1,Sn+1,Sm.t) )

1 1
)t (1)
(M(Snrsnr5n+1't) + M (Sn+1.Sn+1,Sn+2,t)
— 1 1
— 1)
+ (M (Sn+2,Sn+2,Smt)

N(Sn; Sn» Smo t) < N(Snv S Sn+1» t) + N(Sn+1v Sn+1,Sm» t)
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< (N(Sn' Sny Sn+1s t) + N(sn+1: Sn+1 Sn+2, t))
- +N(sn+2'sn+2'smv t)

Continuing the process, and, using (3.11.1) and (3.11.2), we finally arrive at

1 1
e
( 1 _ 1) < (M(Sann‘5n+1‘t) + M(Sn+1,Sn+1.5n+2:t)
M (Sn,Sn.Smot) - (; — 1)
+ + M (Sm—-1,5m—1,5m.t)
<" (s~ U+ + " G~ 1)
=c M (50,50,51,t) 1 + te M (s0,50,51,t) 1

= (" 4+ c™D) (; 1)

M (50,50,51,)

< S (1) (3.11.3)
~ 1-c \M(50,50,51,t) ! B
N(Sn' Sn» Smo t) < N(Sn' Snsr Sn+1s t) + N(sn+1' Sn+1) Smo t) +-t N(Sm—li Sm-1,Sm» t)
< CnN(SOISOISll t) + et Cm_lN(SOJ SOlsllt)

— (Cn + o4 Cm_l)N(SO, SO' S1» t)

n

< =N (50,50, 51, ) (3.11.4)
From (3.11.3) and (3.11.4), we have that
1
(m— 1) - 0 and NV (s,, Sp, Sy t) @ 0asn — oo,
Therefore {s,,} is a Cauchy sequence.
Theorem 3.12
Let (X, M, V',%,0) be a complete IGFCMS where M and V" are triangular. If T:X — X is such that for all
x,y,Z € Xand t € int(C),
1 1 1
2! (M(x,y,z,t) - 1) + €2 (]Vl‘(x,l“x,l“x,t) - 1) + Cs (M(y,l"z,l"z,t) - 1)
1 1 1
(M(rx,ry,rz,t) B 1) = te (M(y.ry,ry,t) - 1) +Cs (M(z,rz,rz,t) - 1)

+Ce (m - 1) t (M(y,[l‘x,z,t) - 1)

Ny, z,t) + N (x, Tx, I'x,t) + csN(y, 'z, 'z, t)
+e, Ny, Ty, Ty, t) + csN(z,'z, Tz, t)
+cg N (2, Ty, Ty, t) + c;N(y,I'x, z,t)

(3.12.1)

N(Tx, Ty, Tz t) <

(3.12.2)

where ¢; € [0,4],4 =1,...,6 and ¥.¢_, ¢, < 1. Then I" has a fixed point and such a point is unique if ¢; + ¢, < 1.
Proof

Let s, € X be arbitrary. Generate a sequence {s,,} with s,, = I's,,_; forn € N.

integer m such that s,,,,; = s,,, then I's,,, = s, and s,,, becomes a fixed point of I".
Suppose s,, # s,_4 foranyn € N.

From (3.12.1),

If there exists a nonnegative

1 1
ST P
M (sp.Sn+1,Sn+1.t) M(Tsp-1,Tsplspt)
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1 1 1
2! (]\/[(sn_l,sn,sn,t) - 1) + €2 (M(sn_l,l"sn_l,l"sn_l,t) - 1) + €3 (M(sn,an,an,t) - 1)\
1 1
= t G (M(sn,rsn,l"sn,t) - 1) tCs (M(sn,rsn,l"sn,t) - 1)

1 1
+Ce (M(sn,l"sn,l"sn,t) - 1) to (M(sn,rsn_l,sn,t) - 1)

1 1 1
SR YA JO T
@ (M(Sn—l’sn’sn’t) ta M (sp—-1,5n5n,t) + e M (sp,Sn+1.5n+1,t)

1 1
_) A S o S
4\ M (sp.Sn+1,5ne1) 5 M (sn.Sn+1.5n+1.t)
1

1
) el )
+Ce (M(Snr5n+1‘5n+1rt) t o M (sp,Sn.Snt)

= {(c1 +c3) (; 1) + (c3 + cates +cg) (% 1)}

M (Sp—1,5n,5n,t) M (sn.Sn+1,Sn+1,8)

Hence we have that (; 1) <—ara ( ! 1). (3.12.3)

M (Sn,Sn+1,Sn+1,t) T 1-(c3+cgtes+ce) \ M (Sp—1,5n,5n.t)
c1tcy
1—(c3+cqt+cg+cg)

Grommmmmo~ V= Gromsmms — 1) (3124)

Putc = Then ¢ < 1 and (3.12.3) becomes

From (3.12.2),
N(Snﬁsn+115n+1't) =< N(an—l' an' an' t)

N (Sp_1, Spy Sy t) + N (Sp_1, Spy Siu t) + 3N (5, 'Sy, sy, t)
<SS+ N (s, TSy, Ty, t) + cs N (S, TSy, ISy, t) + ¢ N (Sp, 'Sy, ISy, t)
+C7N(STU S‘ru S‘ru t)
CIN(Sn—l' Sn» Sy t) + CZN(Sn—ll Sn» Sns t) + C3N(Sn, Sn+1 Sn+1» t)
=+ NV (Sn Snt St £) + N (S Snt Snrs £) + 6N (S St Snr, )
+C7N(Sn1 Sn: Snl t)
= {(Cl + CZ)N(Sn—l' Sn» Sns t) + (C3 + C4-+C5 + CG)N(Sn, Sn+1 Sn+1) t)}
Hence, we have that,

c1+cy
< 172
N(Sn' Sn+1rSn+1s t) = 1—(c3+catcs+ce) N(Sn—lt Sn» Sns t)
= N (Sp, Snat, Sna1, t) < N (Sp_1, Sy Spy ) (3.12.5)

(3.12.4) and (3.12.5) make the sequence {s,,} is fuzzy cone contractive.
Hence by Lemma 3.11, {s,,} is Cauchy in X.

As X is complete, there exists s € X such that

. 1 ) L.
lim (M(Sn,s',s',t) - 1) =0and TILI_EEON(SW $,$,t) =0. (3.12.6)

n—-oo

By repeated application of (3.12.4) and (3.12.5), we obtain that

Gommoms V=" Gonms

N(Sn: Sn+115n+1:t) < CnN(SO' Sl,Sl,t).
1

i (o
M(sn.Sn+1,Sn+1.t)

n—-oo

- 1) =0 and imN(s,, Syyq,Spis,t) = 0. (3.12.7)
n—-oo

Now, (5e—"res~ 1) = Geganrres — 1)
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1 1 1
! (M(sn,s',s',t) - 1) te (M(sn,an,an,t) - 1) t6 (M(s‘,rs',rs',t) - 1)
1 1
t (M(s,rs,rs',t) - 1) tCs (M(s',rs,rs,t) - 1)
1 1
+s (seamimn ~ U+ Gaarosn — 1)
1 1 1
2! (M(sn,s,s,t) - 1) Tt (M(sn,sn+1,sn+1,t) - 1) te (M(s',rs,rs,t) - 1)
1 1
- t G (M(s‘,rs',rs',t) - 1) *Cs (M(s‘,rs',rs',t) - 1)

+es (s~ D+ Gramss — 1)

- d(m—l) asn —» cowhered = c3 + ¢, + ¢5 + ¢,
since by (3.12.6) and (3.12.7).

Hence, lim sup,_ (; 1) <d (; 1).

M (spa1.T8T5,8) M($,T$,T5,)

IA

Similarly, lim sup, N (Sp41, S, I35,t) < dAN(S,I's,T's,t).
As M and IV are triangular,

1 1 1
(M(FSZ,FS',S',t) - 1) s (M(rs',rs',sn+1,t) - 1) + (M(5n+1,$,,s',t) - 1)’ (3'12'8)
N(T$,T5,5,t) S NTS$,TS,Spe1,t) + N(Spiq,$,,5,1). (3.12.9)
From (3.12.6) to (3.10.9), we can bring that

1 1 .. . . . .
(Mi(rs',rs',s',t) — 1) <d (Mi(s,l“s,rs',t) - 1), NS, $,T$,t) < dN(S, T3, TS, t).
1 . . . -
ﬁ(m—l)—o, N(rS,FS,S,t)—OSlnced<1.
=T =3

Thus, we can conclude that $ is a fixed point of I'.
Suppose I'§ = §. Then from (3.12.1),
1 1 1
2! (]V[($,§,§,t) N 1) Tt (M(s;,rs',rs',t) - 1) te (M(§,F§,F§,t) - 1)
1 1 1
(M(Fs',r§,r§,t) - 1) = te (M(S’.FS'.FS‘,t) N 1) *Cs (M(§,F§,F§,t) - 1)
1 1
+Ce (M(S‘,I"S’,I"S’,t) - 1) T (M(§,Fs',§,t) B 1)
1 1
= (Jvr(s',s',s',t) - 1) <(ater) (M(s,s',s',t) - 1)'

1 .
= (M(S_'S.S_t) —1)=0ife,+c, <1,

Similarly, N (s,5,5,t) = 0.

Hence, we can conclude that I" has a unique fixed pointif ¢; + ¢, < 1.

Example 3.13
Let X = |0, o) with metric d defined by d(x,y) = |x — y| forall x,y € X and let ¢ = R*.
Define the t-norm * and the t-conorm ¢ by a * b = min{a, b} and a o b = max{a, b}. Define the M and V' by

- ¢ _ U(x—yl+ly—zl+lz-x])
Mxy,2,t) = Sy DN ey 20 = O L e
forall x,y,z € X and t € int(C) where [ = 10.

Then it is clear that (X, M, V',,0) is a complete IGFCMS and that M and V" are triangular.
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%x +3, x€e[01],

3

Consider the self-map I': X — X given by I'x = ;
JX+3, x€ [1, o).

1 5 1 5
Then (m— 1) = Z(W_ 1) and N(Fx,Fy,FZ, t) > ZN(X,y,Z, t)When X,y,Z € [0,1] Hence

' is not fuzzy cone contractive. Therefore, we cannot use the contraction theorem to assure the existence of fixed points.

But here I' satisfies the conditions (3.12.1) and (3.12.2) with ¢; = % c, = g C3 =C4=Cs = X

20
¢ =0,¢; = . Therefore I" has a unique fixed point and this point is x = 14.
20

Corollary 3.14
Let (X, M,V ,*,0)be a complete IGFCMS where M and V" are triangular. If T:X — X is such that for all
x,y,z € X, t € int(C),

( 1 _ ) < 2! (M(x,ly,z,t) - 1) te (M(x,rlx,rx,t) - 1) +
M (rx,r'y,r'z,t) - 1 1
Cs (M(y,Fz,Fz,t) - 1) + Ca (M(y,Fx,z,t) - 1)

aN(x,y,z,t) + ;N (x,Ix,x, t) +}
N, Iz, Iz, t) + cuN(y,I'x, 2, t)

where ¢; € [0,4>], ¢ =1,..,4 and ¢; +c; +c3 < 1. Then I has a fixed point and such a point is unique if
1+, <1
Corollary 3.15

Let (X, M,V ,*,0)be a complete IGFCMS where M and V" are triangular. If T:X — X is such that for all
x,y,Z€ X, t € int(C),

N(Tx, 'y, T'zt) S{

(- _)SCl(m_1)+cz(m—l)+c3(m_l)+

M(I'x,ly,lz,t) ( 1 _ ) (;_ ) (;_ ) 7
“\MGryryn L)+ M(z,I'z,Tz,t) 1)+ ¢ M(z Ty, I'yt) 1

N(x, Ty, I'z,t) < { aN(x,y,z,t) + ;N (x,I'x, T'x,t) + ;N (y,I'z,T'z,t) + }

N, Ty, Ty, t) + csN(z,T'z, Tz, t) + ceN(z, Ty, Ty, t)
where ¢c; € [0,4],4 =1,...,6 and ¥¢_, c; < 1. Then I" has a unique fixed point.

Corollary 3.16

Let (X, M, \V,*,0) be a complete IGFCMS where M and V" are triangular. If I': X — X satisfies (3.12.1) and
(3.12.2) with Y:7_, ¢; < 1, then I has a unique fixed point.

The following theorem gives the generalized contractive condition which considers all the possible restrictions.

Theorem 3.17
Let (X, M,V ,%,0) be a complete IGFCMS where M and IV are triangular. If I': X — X is such that for all
x,vy,Z € X, t€int(C),

s (serzn 1) * 2 Gierman ~ U+ G~ U+
Ca (]Vl‘(x le rx,t) 1) tes (m - 1) +c (m - 1> +
( (I“xl“yzt) )+CS (m_1)+c9(m_l>+
10 (seam ~ 1)+ e Gegms — U+ 2 (gremas — 1) |
s Grmyms — 1)+ 4 (gmams — 1)

15 Gryrams — 1) + 16 G — 1)

IA

Geemrsrs— 1)

(3.17.1)
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Ny, z,t) + ;N (x, Tx, z,t) + cs N (x,x,T'x, t) +
N (e, Tx, Tx,t) + csN(, Ty, z,t) + ceN(y,[z,2,t) +
¢ N (Tx, Ty, z,t) + cgN(IT'x,Tz,y,t) + coN (y,y, 'y, t)
+c1oN (2,2, Tz, t) + ¢t Ny, Ty, Ty, t) + c; ;N (2, Tz, Tz, t) |’
+c13N (2, Ty, Ty, t) + cuN(y, Iz, Tz, t)
+es NIy, Tz, x,t) + ¢, N (x, Tz, Tz, t)

N(Tx, Ty, Tz t) <

(3.17.2)
where ¢; € [0,+x],4 =1,..,16 and ¢; + -+ + ¢4 + 2(c15 + ¢16) < 1. Then I' has a unique fixed point.

Proof

Let s, € X be arbitrary. Generate a sequence {s, } with s,, = I's,,_; forn € N. If there exists a nonnegative
integer m such that s,,,; = s, then I's,,, = s,,, and s,,, becomes a fixed point of I".

Suppose s,, # s,_, forany n € N.

As M and V" are triangular and by Lemma (3.10),

s ) =G 1)
M (Sp+1,Sn+1,5n-1,t) M (Sp-1,Sn—1.5n+1,t)

1 1
<(—————- — 1) 17.
- (M(Sn—lnsn—lisn-t) 1) + (M(5n15n+1-5n+1:f) 1) (3 17 3)
N(Sn+1 Sns1rSn-1t) < N (Sp—1,Sn—1, Sns1, )
< N(Sn—ll Sn—1Sn» t) + N(Sn' Sn+1 Sn+1s t)' (3174)
1 1 1
— 1)< (— . — 7.
(M(Sn—115n15n+1rt) 1) - (M(sn—bsn.sn.f) 1) + (M(Sn.5n+1.5n+1.f) 1) (3 5)
N(Sn—l' Sy Sn+1s t) < N(Sn—D Sno Sns t) + N(Sn: Sn+1Sn+1 t)- (3176)

Using (3.17.1) and (3.17.2) as in Theorem (3.12), together with (3.17.3) to (3.17.6), we arrive at

( 1 ) c1++captcis+Cye ( 1 1)
M (sp.Sn+1.Sn+1.t) T 1-(cstte1s)  \M(sp—1,5n.5n.0) '
Ci1++CytCi5+Crg

N(s, s s t) <
(n' n+1°n+1» )— 1—(C5+"‘+C16)

N (Sp—1,Sn> Sps £)-

Putting ¢ = S5 F4rs¥s the apove inequality becomes
1-(cs++C16)
1 1
(M(Sn:5n+1‘5n+1:t) B 1) sc (M(Sn—ltsn:sn;t) B 1), (3177)
N(Sp, Spa1r Sna1r t) < N (Sp_1, Sny Sp t)- (3.17.8)

(3.17.5) and (3.17.6) made the sequence {s,,} fuzzy cone contractive.
Hence by Lemma (3.11), {s,,} is Cauchy in X.

As X is complete, there exists § € X such that

. 1 _ . C N
lim (m - 1) =0and 1111_>I1010N(Sn, 5,8,t)=0. (3.17.9)

n-oo

By repeated application of (3.17.7) and (3.17.8), we obtain that

1
(ot )ee(t 1)
M (sn.Sn+1,Sn+1,t) M (s0,51,51,t)

N(Sn’sn+1'sn+1't) < CnN(SO'Slﬂsll t),

= Jim (-——————=1) =0 and lim N (s, S, Sns1,£) = 0. (3.17.10)

n—oo \M(sSp,Sn+1,5n+1.t) n-oo

From (3.17.1),

(1) = (i)
M (spp1.TSTS,E) T \MTspIsrse)

<d(

1

WD 1) where d = ¢c5 + -+ + ¢q5.
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Hence, lim sup, (; 1) <d (; 1).

M (sp41,T8,TS,t) - M(I'$,Is,$,t) -
Similarly, lim supp N (Spi1, 'S, T5,t) < dN(T3,Ts, 3, t).
As M and V" are triangular,

1 1 1
(]\/[(s',Fs',Fs',t) - 1) s (M(Fs',FS,sn+1,t) - 1) + (M(sn+1,$,s',t) - 1)’ (3.17.11)
N, T$,T$,t) S NS, TS, S41,t) + N(Spe1, S, S, 1), (3.17.12)
From (3.17.9), to (3.17.12), we can bring that
1 1 . . . . . .
(m— 1) <d (m— 1), N(S,FS,FS,t) < dN(S,I—'S,I—'S,t).
1 . . .
- (m—l) = 0, N(S,FS,FS,t) =0asd <1.
=TIs=3.

Thus, we can conclude that $ is a fixed point of I".
Suppose I'§ = §. Then from (3.17.1), (3.17.2) and by Lemma (3.10),

1 , 1
(M(s’,§,§,t) - 1) =d (M($,§,§,t) 1)’
N(S,5,5t) <d N(,§, 8, t),

where d' = ¢; + ¢, + ¢; + cg + ¢15 + ¢14. These inequalities imply that

1 L . ,
(M(s,s&t) — 1) =0,N(s,88,t) =0 since d'<1.

Thus, we can conclude that I has a unique fixed point.

Corollary 3.18

Let (X, M, V,x,0) be a complete IGFCMS where M and IV are triangular. If I': X — X is such that for all

x,y,zZ€ X, t €int(C),

(o ) < & Geayrn ~ 1)+ Grarms ~ U+ & Gz — U

]V[(Fx,Fy,[‘z,t)_ ( 1 _ ) ( 1 _ ) 1 ) ’
+es M@y, zzt) 1)+ecs M(Ty,lzx,t) 1)+ce (Jv[(x,ry,z,t) 1

Ny, z,t) + ;N (x, Tx,z,t) + csN(T'x, Ty, z,t) +}

I'x, 'y, T <
N(Ix, Iy, I'z,t) < {C4N(y, Iz, Tz, t) + cc Ny, Tz, x,t) + cgN(x, Ty, z,t)

where ¢; € [0,+x],4 =1,...,.6 and ¢; + c;+c3 + ¢4, + 2(cs + ¢) < 1. Then I' has a unique fixed point.

Conclusion

This work provided new definitions by inheriting some existing ideas to the intuitionistic generalized fuzzy cone

metric space. We constructed some fixed point theorems as an extension of Banach contraction theorem by giving a
general form of contractive conditions for self-mappings under which these mappings have fixed points.
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