JOURNAL OF ALGEBRAIC STATISTICS
Volume 13, No. 3, 2022, p. 1313-1323
https://publishoa.com

ISSN: 1309-3452

On Generalized Cesaro Summability Method In Neutrosophic Normed
Spaces Using Two- Sided Taubarian Conditions

U. Praveena! & M. Jeyaraman?

1 Research Scholar, P.G. and Research Department of Mathematics, Raja Doraisingam Govt. Arts College, Sivagangai, Affiliated to
Alagappa University, Karaikudi, Tamilnadu, India.

1E-mail: upraveenasvg@gmail.com

2P.G. and Research Department of Mathematics, Raja Doraisingam Govt. Arts College, Sivagangai, Affiliated to Alagappa University,
Karaikudi, Tamilnadu, India.

E-mail: jeya.math@gmail.com. ORCID ; https://orcid.org/0000-0002-0364-1845

ABSTRACT:

We define the concept of Cesaro summability method in Neutrosophic normed spaces and prove a related Tauberian
theorem. Also, we define slowly oscillating sequences in Neutrosophic normed spaces, prove related theorems and that
Cesaro summability of slowly oscillating sequences implies ordinary convergence in Neutrosophic normed spaces.
Finally, we give an analogue of classical two - sided Tauberian theorem.
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1. Introduction

The theory of fuzzy sets was generalized from classical sets by [12] Zadeh in 1965. Which was further
generalized to intuitionstic fuzzy sets by Atanassov [2]. This theory deals with a situation that may be imprecise or
vague or uncertain by attributing a degree of membership and a degree of non-membership to a certain object several
literature work on their corresponding sequence space can be found in 2004.

The idea of neutrosophic sets was introduced by [11] Smarandache as an extension of the intuitionstic fuzzy set.
For the situation when the aggregate of the components is 1, in the wake of satisfying the condition by applying the
Neutrosophic set operators, different outcomes can be acquired by applying the intuitionistic fuzzy operators, since the
operators disregard the indeterminacy, while the neutrosophic operators are taked into the cognizance of the
indeterminacy at similar level as truth membership and falsehood non-membership. Using the idea of neutrosophic sets,
the notion of neutrosophic bipolar vague soft set and its application to decision making problems were defined.
Summability theory and matrix transformation have been necessary modes in developing the theory and matrix
transformation have been necessary modes in developing the theory of non-converging sequences. Recently, Jeyaraman
et al. [4] introduced the notion of Hyers-Ulam-Rassias stability for functional equation in neutrosophic normed spaces.

The aim of this paper is to provide researchers with an introduction to summability theory and Taubarian theory
for Neutrosophic normed spaces, in order to handle sequences which fail to converges ordinarily in the Neutrosophic
normed spaces and to recover the convergence. We defined Cesaro Summability method in Neutrosophic normed
spaces and give two- sided Taubarian conditions under which Cesaro Summability implies ordinary convergence in the
space. Next, we define the concept of slowly oscillating sequence for neutrosophic normed space a concept which plays
a vitual role in the development of classical Tauberian theory and compare the concept in neutrosophic normed space
with that in classical normed spaces. Finally, we also give Tauberian conditions of slowly oscillating type and of
Hardy’s two- sided type by means of the concept of slowly oscillating sequence and g-boundedness in Neutrosophic
normed spaces.

2. Preliminaries

In this section, we give some preliminaries for Neutrosophic Normed Spaces [NNS].
Definition 2.1:

The (V,u,v,w) is said to be an NNS if V is a real vector space and p,vand w are fuzzy setsonV X R

Satisfying the following conditions: For every x,y €V ands,t € R.

a) 0<ulxt)<1 0<v(xt)<1, O0<w(xt)<1forallteR,

b) u(x,t)+v(x,t)+ w(xt) =3 fort €RT,

c) u(x,t) =0 forall non-positive real number t,

d) u(x,t)=1 forall t e R* ifandonlyif x =0,

e) nlex,t) = u(x,ﬁ) forall t € R* andc # 0,

f) nix+yt+s)=minfulx0),uy, )}
g) gim u(x,t) =1 and ltm(} u(x,t) =0,
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h) v(x,t) =1 for all non-positive real number t,
i) v(x,t)=0 forall t e Rt ifandonlyif x =0,

) viex,t)=v (x,i) forall t € R* and ¢ # 0,

el
K) v(x+yt+s)<max{v(xt),v(y,s)}
)} gim v(x,t) =0 and ltirr(} v(x,t) =1,
m) w(x,t) =1 for all non-positive real number t,
n) w(xt)=0 forall t e R* ifandonlyif x =0,
0) w(cx,t) =w (xﬁ) forall t € R* and ¢ # 0,

p) wkx+yt+s)<max{wlxt)w(y,s)}
q) gl_)rg w(x,t) =0 and ltl_r)r(} w(x,t) =1.
In this case, we will call (u,v,w) an NNS on V. It is easy to see that for every x € V the functions p(x,.),
v(x,.) and w(x,.) are non-decreasing, non-increasing and non-increasing on R respectively.
Example 2.2:
Let (V,|Il) be anormed space po,v, and wpand V X R be F-sets on defined by

0 t<o0 0 t<o0
llo(x; t) = { t t> 0} B Vo(x, t) = { B4 t> 0} and
e+l |l t+|1x]|
0 t<o0
wo(x, t) = {M £ 0}. Then (pg, vy, wg) IS NN on V.
t
Theorem 2.3:

Let (V,u v, ) be anormed space. Assume further that u(x,t) > 0 for all t> 0 impliesx = 0.
Define |[[x||, = inf{t > 0: u(x,t) > a, v(x,t) <1 —aand w(xt) <1— a}, where a € (0,1).
Then {||x]|: a € (0,1)} is an ascending family of norms on V.
We note that these norms are called a-norms on V corresponding to (or including by) the Neutrosophic norm
(W, v, w) onV.
Next, we give some concepts concerning sequences in a NNS.
Definition 2.4:
A sequence(x,,) is said to be convergent to x € V in the NNS (V,u,v,w) and denoted by x,, — x, if for each
t > 0 and each € € (0,1) there exists n, € N such that
uoe, —x,t) >1—¢, vix, —xt) <eg and w(x, —x,t) <¢e forall n=n,.
Definition 2.5:
A sequence (x,) inan NNS (V,u,v,w) issaid to be Cauchy if for each t > 0 and each
€ € (0,1) there exists ny, € N such that p(x, —x,,t) > 1 —¢&,v(x, —x,,t) <¢ and w(x, —x,t) <e for all
k,n>n,.
Definition 2.6:
A sequence (x,) in an NNS  (V,wv,w) is G-Cauchy if lim W(xpip — X t) =1,
lim v(xn+p — Xp, t) =0 and Ilim cu(xnﬂ[J — Xp, t) =0 foreacht >0 andp € N.

n—oo
n—-oo

This definition is equivalent to }}ﬂ,‘o Wxper — X t) =1, Alj{}o v(Xp4e1 — Xp,t) = 0 and rlll_r)rolo wW(Xpy1 — xp,t) =0, for
each t > 0.
We note that every convergent sequence is Cauchy and every Cauchy sequence is G-Cauchy in a NNS.
Next, we remind the concept of boundedness and g-boundedness in an NNS.
Definition 2.7:
Let (v,u,v,w) bean NNS and A be a any subset of V.
(M A is called bounded if there exist some r € (0,1) and t, > 0 such that
ulx, ty) >1—7r, vix,ty) <r and w(x,ty) <r,forevery x € A.
(i) A is said to be g-bounded if rllgrolo @a(t) =1, 1111_{2 Y,(t) =0, and ,li_r&{%“(t) =0 where @,(t) =
inf{u(x,t):x € A}, Y, (t) = sup{v(x,t):x € A}, and €,4(t) = sup{v(x,t):x € A}.
It is obvious that a sequence NNS (u,v,w) is bounded if and only if there exists some t, >0 and r €
(0,1) such that p(x,, ty) >1—1, vix, t,) <r and w(x,,t,) < r for every positive interger n and g-bounded if and
only if }Lrg 11211\\’] ulx,, 1) =1, tlim inf v(x,,1) = 0 and tlim inf w(x,,1) =0.

—o0 neN -0 neN
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3. Cesaro Summability Method In Neutrosophic Normed Spaces
Now, we define Cesaro Summability method in NNS and give related Taberian theorems.
Definition 3.1:
Let (x,) be a sequence in an NNS (V,u,v,w). The arithmetic means o, of (x,) is defined by o, =

ﬁ(x + a)" = Y i_xx. We say that (x,,) is Cesaro summableto ¢ € N if lim o, = 4.

n—-oo
First, we will show that Cesaro summability method is regular in an NNS.
Theorem 3.2:
Let (x,) beasequenceinan NNS (V,u,v,w). If (x,) is convergentto £ € V, then (x,) is cesaro summable
to <.
Proof:
Let (x,) beasequence inan NNS (V,u,v,w) and (x,) isconvergenttof € V.Fixt > 0. Thene >0

e There exists n, € N such that p (xn -4, g) >1—-¢,v (xn -4, g) < gand
w(xn —f,g) <e¢ for n>n,.
e There exist n, € Nsuch that H(Z WG =), ("H)t) >1—¢

(n+1)t +1)t
v (ZZ‘;O(xk —9), n2 ) ) >¢ and w (Zkzo(xk -9), (nz ) >¢
Forn > n, inview of the facts that

lim p (Sio (e — 0,75%) = 1,

n+ 1)t n+ 1)t
lim v Z(xk—{’),( > ) =0 and lim w Z(xk ( ) =0

n—-oo

Then, we have

h (o oo = 6) = 0 (S Thao(ri = O, t) = Rzl = 6, (1 + DD

= min | Y- 0,55 '“<Z(xk—f>.(n+zl)t>
k=0 k=0

> mini Z(xk - g),w '”(Z(xk _p), (n —Zno)t>
k=0 k=0

Nno
(n + 1)t t
(S0, (-,
= i 2 2
= min k=0

t t
u(xn0+2 — 3,5) ) e u(xn — f,z)
>1-—¢,

v (i Zho e = €,) = v (75 ZhooCt = 0,1) = Vet = ), (1 + DO

o 1 n 1
<max<{v Z(xk—f),(n-; )t ,v(Z(xk—f),(n-; )t>

k=0 k=0

o 1 n _n,
< max<{v Z(xk—f),y ,v(Z(xk—f),w)

k=0

( (xk -7, (n+1)t) v(xn0+1 —1”,2),

v (xn0+2 -4, é), WV (xn -4, %)
o (i ot = €)= o (T o = 0,8) = (ool = 0, (2 + DY)

< max < ¢ and
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i (n+ Dt § (n+ 1t
<max{w (xp — ), ——— ,w( (x —i’),—)
kZO k 2 Z k

2
k=0
<maxiw Z(xk - {))’(n+T1)t , W (Z(xk - {’),M>
k=0 k=0

(n+1)
w (Zzozo(xk - -f), n-; t) , W (xn0+1 - {); g) ,
t t
w (.X'no+2 - ‘g,z), ) (Xn - {),E)
Whenever n > max{ng, n,}, which completes the proof.
However, Cesaro Summability of a sequence in NNS does imply convergence which can be seen by following example.
Example 3.3:

Consider sequence (x,,) = ((=1)™*1) in NNS (R, o, vo, wo) Where pg,vo and w, are as in Example (2.2).
Then, since

< max <eg.

. ) 1 ) t
Jim oo ) = i o (=57 ¢) T ]
2n+1
| 1
lim vy (05, t) = lim v, (— ,t) = lim Zntl 0 and
n-oo n-oo 2n+1 n-oo t+ | 1
2n+1
| 1
. s _ — T 2n+11 _
Jim wo(0gn, £) = lim w°< 2n + 1't) Tim —=% 0

We have g,,, = o and since,
t
llm u0(02n+1, t) = llm }10(0, t) = llm —_— = 1,
n—-oo n—-oo n-ot +
0
lim vy (05, t) = lim vy(0,t) = lim —— =0 and
n—-oo n-oo n-ooo t + 0

lim 0y(030,) = Jim 00(0,6) = Jim 2 = 0
We have g,,,; = 0 which implies that lim g, = 0.. Hence sequence (x,) is Cesaro Summable to 0. However,
sequence (x,) is not convergent since x,, 15011 and x5,4, — 1 in view of the facts that lim py(xy, — (—1),t) =
lim (=1 — (=1),6) =1, o
T lim vy (= (—1),6) = lim vg(—1 — (=1),6) =0 and

Tim @y (py — (—1),£) = lim wg(—1 — (=1),£) = 0.
Let " o

lim Ho(Xapn41 — 1,8) = li_r& R(1—-1,¢8) =1,

Tlll_r)n Vo(Xone1 — 1,8) = rllim 1,(1-1,t) =0 and

31:: wo (X241 — 1,8) =nrll—i;r0130 wo(1—1,¢) =0.

Form this point, we investigate conditions ensured that a sequence which is Cesaro summable is convergent. For this,
we need the following lemmas.

Lemma 3.4:
Let us define (1) for every 4 > 0 by (1) = 2 — [A].. then, the following statement hold:
® IfA>1, then 1, >n foreach n € N \ {0} withn = (1)~L.
(i) If0 <A< 1,then i, <n foreachn € N \ {0} with A, = [4,].

Lemma 3.5:

We have the following statements:

. . 31-1 p) An+1 22
(M LetA <1, foreachn € N \ {0} withn > 01 we have < o <t
(i)  1F0<a<1, foreachneN \{0} with n> (1)~ wehave 0 <2 <2,
Theorem 3.6:

Let (x,) be a sequence in an NNS (V,,v,w). If (x,) is Cesaro summable to ¢ € V then it convergence to
¢ ifand only if forall t > 0.
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sup 1im p (5 Zhnea Gk = X)) = 1,

A>1 Do®

inf lim v (An—_nzkznﬂ(xk —Xp) ,t) =0,

A>1n-oo

1
1nf lim oo( p—

1 n—-o

Proof

—xn),t) =0.

(3.6.1)

(3.6.2)
(3.6.3)

Let (x,) beasequencein NNS (V,u,v,®) and be Cesaro summableto £ € V.

Necessity, (x,) converges?. Fix t > 0. Forany 1 > 1 by lemma (3.4) for each n € N \ {0} with n > (1)71.
(3.6.4)

We can write x;, — g, = ’1”“ (Ufln —X).
3/1 1
By lemma (3.5) for n > 2o e have
A, +1 t t
(G 0= o)) =\ o= on g |2 | e on g )
Ap—n A-1
A, +1 t t
(/1 _n(a,ln an) )=v aln_a”'71n+1 <v O = O 57— and
Ay —n A—-1
A, +1 t t
w (ln (a,ln an),t> =l o, =~ ooy S| 0, = On 57
Ap—n A—-1
. . ) An+1 ; An+1
Since (a,,) is Cauchy llrg> u (An—fn (Uan - an), t) =1, Tlll_)rgjv (M—fn (J,ln - crn), t) =0
and i‘l{}o“’ (— (Uzn O'n),t) = —0,) > 0.

So, by (3.64) lim u(—zﬁ"m(xk —x,), t) -1,

n—-oo

lim v (An;—nziin"'l(xk Xn), t) =0 and lim w

n—oo

Consequently, (3.6.1), (3.6.2) and (3.6.3) are proved.
Sufficiency, suppose that (3.6.1), (3.6.2) and (3.6.3) are satisfied.

Fix t > 0 for given € > 0, we have:

(_Zk 1k — xn),t) =0.

e Thereexist A > 1and n, € N such that u(—Zk o1k — xn),g) >1-—c¢,

V(o O = %) 5) <

e Thereexists n; € N such that p
w (an —{’,5) <e¢g forn>n,.

e Thereexistsn, € N suchthat p

An+1
v( z (a,ln Un),g) <eand w
An+1

U(xn f, t) - “(xn —optop—4, t)

2
= (0, - o) -5

. An+1 t 1
2 min{u (2 (01, = 00).5) (55
>1-—¢

v(xn—f,t)=v(xn—cfn+an—ft)

Ap+1
=v( (a;‘n On
Smax{v()‘ -

o

<& and

w(x, —4,t) = wlx, —op, +0, — 4, t)

- (}Ln+1 (Jln Un) -

¢
and w (M—-n2k=n+1(x" — Xp) ,5) <g,foralln > n,.

(an—€,§)>1—£, v(o*n—{’,%)>1—eand

(A"H (o2, — ) >1-c¢,

(Ufln ,) = 0. Hence, we get

A
k1n+1(xk - xn) + On — 10, t)

—xn)+an—£’,t)

Zk n+1(xk - xn) + On — f, t)

Un) ) (An—nzk n+1(xk xn)é):V(O_n -4,

—Xn),g),u(ffn—l’,

t

3

o))
(m (02, — n),;) < ¢, in view of the fact that

8]

)}
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< max {0 (52 53, 00,0 (55 Bt~ x0.8) 0 (o = )
< &,
For n > max {ny, ny, n,}, which completes the proof.
In the case of 0 < A < 1 by using lemma (3.4) we have the following equality:
n
A, +1 1
Xn —0p = n— ﬂ ( 0/1,1)+n_/1n Z (xk_xk)-
k=An+1

Using a similar argument in theorem (3.6) and equality (3.4), we give the following theorem. The proof is very similar to
that of theorem (3.6) and hence, it is omitted.
Theorem 3.7:

Let (x,) be asequence inan NNS (V, v, w). If (x,) is Cesaro summable to £ € V, then it converges to ¢ if
and only if for all t > 0.
sup lim 28 (n—lkn er;:n+1(xn - Xk) ) t) = 1!

0<A<1 =0

; ; 1 §yn _ —
05121 r{1_)r£10\) (n Yk=n+1(En xk),t) =0 and
Jinf lim w(n—zk w1 (tn — %), ) = 0.
4. Slowly Oscillating sequence in Neutrosophic Normed Spaces
We now introduce oscillating sequences in NNS and obtain related results.
Definition 4.1:
A sequence (x,) in NNS (V,u,v,w) is saidto be slowly oscillating if
sup lim inf m1n y(xn — X, t) =1, (4.1.2)
0<i<1 no® n<ks
05121 llgl_)gonf ngl{lg} v(x, —x,t) =0, (4.1.2)
inf lim inf min w(x, — x,t) =0. (4.1.3)

0<A<1 n-oo n<ksipn
Forall t > 0, where 4, denotes the integer part of the product A,,.
“;Zpl" in (4.1.1), ”;f " in (4.1.2) and “;Zf ”in (4.1.3) can be replaced by ” 15
Slow oscillation condition in an NNS can be rewritten as follows:

A sequence (x,) is slowly oscillating if and only if for all t > 0 and for all € € (0,1) there exist A > 1and n, €
N, depending on t and € such that p(x,, —x,,t) > 1—¢, v(x, —x,t) < € and
w (X, — x,t) < & whenever ny <n<k<A4a,.
Theorem 4.2:

Let (x,) be a sequence in NNS (V,u,v,w). Foreach t> 0 conditions (4.1.1), (4.1.2), (4.1.3) of slowly

oscillation are equivalent to
sup lim 1nf}‘m}cn u(xy — x,,t) =1, (4.2.4)

0<A<1 N7®
0511£1 llrrrll_)iup Am%x v(xg — X, ) =0 (4.2.5)
Olalf lim sup Am%x WXy —x,t) =0 (4.2.6)

<A<l pooeo

llm "

inf
0<ai<1

inf

Respectively , « SUP "in (4.2.4), “O ci1<1

0<A< 1 ”in (4.2.5) and “

”in (4.2.6) can be replaced by ”

lim .
A1

Proof:

We will show that (4.1.1) and (4.2.4) , (4.1.2) and (4.2.5) are equivalent, and equivalence of (4.1.3) and (4.2.6)
can be done similarly. Fix t > 0.
Let f(1) = lim inf min ,u(xk —x,,t) and

g (3) = lim inf min ,u(xk X ).

A n—eo [ ]<n<k

Where 4 > 1. Then, for any 4 > 1 there exist an increasing sequence (n,,) such that
f(A) =lim min ,u(xk xnp,t).
np

p-ooo np<ksip

There also exists a sequence k,, € (np, [Anp]) such that
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min X — X ,t)= (x —-X ,t).
np<kslnp#( k np u k np

Here, we note that k, € (1, [1,,|) implies n, € ([2], ;).
Then, we get g (%) = lim inf Eniinr; ) 1 — X, t)

g

< Jim (e, =) = limy i b (= x0,00) =/
Now, £(2) =lim sup max v(xi ~x,,t) and

n-oo N

g G) = lim sup[r]nax v(xy — xn,t). Where 2 > 1. Then, for any 4 > 1, there exist an decreasing sequence (n,) such
n-oo 7 <ns<k

that f(1) =lim max v (xk — xnp,t).

p—oo np<ksﬂnp

There also exists a sequence k,, € (np, [Anp]) such that

max V(X — X t)ZV(X — X t).
np<ksin, k np’ k Ty’

Here, we note that k,, € (np, [Anp]) implies n,, € ([%”],kp). Then, we get

g G) =lim sup _max v(xy —x,t) = lim max v (xkp —x,,t
k- [i]<n5k p—© [kTP]<nsk

> i —_ =1i —_ =
> gl_rLloV (ka X, t) Lliréo np&r}l{:gﬂp v (xk Xn,y» t) f.
Now, f(4) =lim sup max w(x, — x,,t) and
n<ks<ip

n—-oo

1
=) =lim sup max w(x; — x,, t).
9 (}“) n—oo P [i]<n5k * "

Where A > 1. Then, for any A > 1, there exist an deccreasing sequence (n,) such that

A) =lim max w(x - X ,t).
f@ P00 np<ksin, k p

There also exists a sequence k,, € (n,,, [Anp]) such that

max w(x — X t)=w(x — X t).
np<ksin, k np’ k np’

Here, we note that k,, € (np, [Anp]) implies n,, € ([%”],k,,). Then, we get

L i .
g (Z) =lim sup max w(x; — x,,t) = lim Jnax @ (xkp - X, t)
o [fense o [Efene

> lima)(x - X ,t) =lim max a)(x - ,t) =f(1).
p—ooo kp p p—ooo np<ksﬂ,np k p f( )

On the other hand, changing the roles of f(1) and g G) applying the same procedure, we also get

9(3) = F@). Hence, forany 2> 1, we have f(2) = g(3), which implies equivalent of (4.1.1) and (4.2.4), (4.1.2)

and (4.2.5) and (4.1.3) and (4.2.6).
Example 4.3:

Consider NNS (IR, po, Vo, wo) Where p,,v, and w, are as in Example (2.2). Sequence x, = }Ll;l_ is slowly
oscillating in (R, po, vy, wg) by the following:
Fixt > 0. Given ¢ € (0,1) choose A = % +1. Thenforl<n<k< A, ,wehave

t
Ho (X — xp, t) = > =1-g¢,
t+ |x — xpl te
n t+1_£
| | te
X — X -
Vo(xXp — X, t) = k n 1 tfs =¢ and
t+ e —xnl 4y
—€
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| | te

X — Xn T—¢ €

—x,,t) = = .

wo (X — xp, t) ; . T—; o ) t

In view of the fact that |x — xu| = X = Zfpsr; < %” <--1<2-1= 1—_2 . which implies (x,,) is slowly
oscillating in NNS (R, pg, Vo, wg)-

Theorem 4.4:

Let (V,[I*]) be a normed space (V,uy, Vo, wo) be NNS in example (2.2). A sequence (x) is slowly
oscillating in (V, ||-]) if and only if (x,) is slowly oscillating in (V, po, vg, @g)-
Proof:
Let (x,,) be slowly oscillating in (V,||-]]). Givent > 0and e € (0,1). We define
&y = & > 0. Thenthere exists A > 1 and n, € N such that ||x, — x, || < €.
t

>t =1—¢

whenever ny, <n <k <2,. So, po(xx —xp,t) = Tl e

Vo = X, 1) = 1= o (g — X, 1) < &,V (g — X, 1) =

— 1< .
Vo(xk — X, t) 1—¢
Whenever n, < n < k < A4,,. This means that (x,,) is slowly oscillating in (V, no, vg, @g)-
Conversely, if (x,,) is slowly oscillating in (V, g, vo, wg), given € € (0,1/2) there exist A >1 and ny € N such

that po(xx — x,, 1) = m > 1— ¢ whenever np <n<k<A4,.

So, we have ||x;, — x, || < é < 2e.
Whenever n, < n < k < A,. We conclude that (x,,) is slowly oscillating in (V, ||-|D.
It is obvious that the following implication hold:
Cauchy = Slow oscillating = G-Cauchy.
Above implication cannot be reverted in general which can be seen by the following example.
Example 4.5:

Consider NNS (R, pg, Vg, wg) and po, vy and w, arein example (2.2). By Theorem (4.4), the sequence
(x,) given by x, = Z’;:l% is G-Cauchy but is not slowly oscillating and the sequence (y,,) given by y,, = ZZ=1% is
slowly oscillating but is not Cauchy.
Theorem 4.6:

Let (V, v, w) be an NNS satisfying condition (2.1) and (x,) be a sequence in V. (x,) is slowly oscillating
(V,u,v,w) ifandonly if (x,) isslowly oscillating in (V,||-|l,) foreach a € (0,1).
Proof:

Leta € (0,1) and s > 0 are given. Assume that (x,,) slowly oscillating (V, 1, v, w).
Then, fore =1 —a thereexistA >1 andny, <n < k <4, we obtain
Ho(xy —xp,8) > 1—¢€, vo(xp —xp,5) <& and wo(xy — xp,8) < €.

(>0l —xp,t) >, v, —x,t)<1—a and
”xk_xn”a—lnf{ Wi —x,,t) <1—a }<S
This means that (x,,) is slowly oscillating in (V, ||-|[,)-
Conversely, choose a € (0,1) and let (x,,) be aslowly oscillating sequence in (V, |||l .)-
Then, for s > 0 there exist sequence in NNS (V,u,v,w) and n, € N such that
(> 0ulx, —xp,t) > a, v, —x,t)<1—a and

P =l = mf{ ol —x,t) <1l—a } <5
Whenever ny <n <k <2, Thus p(x, —x,,s)>a, v(x, —x,,s) <1—aand
w(xg —xp,5) <1 —a. Whenever ny <n<k<4, Sinces and «a were arbitrary, (x,) is slowly oscillating
WV, 1w, v, w).
Theorem 4.7:

Let (x,) besequence in NNS (V,u, v, w). If (x,) is a slowly oscillating the (3.6.1), (3.6.2) and (3.6.3) are
satisfied.
Proof:

Let (x,) be sequence slowly oscillating sequence in NNS (V,u,v,w). Fix t > 0. Then, for given ¢ €
(0,1) thereexistA > 1 andny € N such that pu(x, —x,,t) >1—¢ , v(x, —x,t) <e and w(x —x,t) <e,
whenever ng <n <k < 4,.
Hence, we have

An An
1
w1 2, Gemmd b =n| ) G )+ (=t

k=n+1 k=n+1

= min{u(xrwl — Xn, t)v u(xn+2 — Xn t): iy u(xln — Xn, t)}
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>1-— ¢,
An An
1
v D Ge—x.t | =v| Y =)+ Gy -t
Ap—n
k=n+1 k=n+1
< max{v(xn+1 — X, ), V(Xpyg — Xp, t), ...,v(xan — Xp, t)},
< e and
An An
1
w D Ge—x e =0 D G x) + G-t
Ap—n
k=n+1 k=n+1
< max{w (41 — % t), @(Xns2 — Xn, t), ...,w(x;ln —xp,t)},
< &

whenever ny, < n < k < A,, which completes the proof.
By theorem (3.6) and theorem (4.7), we can formulate the following result.
Theorem 4.8:

Let (x,) be sequence in NNS (V,u,v,w). If (x,) is Cesaro Summable to L€ V and slowly oscillating, then
(x,) converges to .

Next, we prove a comparison theorem between the concepts of slow oscillation and g-boundedness of sequence
in NNS.
Theorem 4.9:

Let (x,) besequence in NNS (V,u,v,w). If {n(x, —x,_1)} is g-bounded then (x,) is slowly oscillating.
Proof:

Given €€ (0,1). By (2.2), there exist M, > 0 such that
t>M, = igli\; u(n(xe, — xp-1),t) >1—¢, supv(n(x, —x,-1),t) <& and

n neN

supw(n(x, —x,-1),t) <e&. Foreacht > 0,
nenN
ifwetake 2 < 14-—, thenny <n <k <1,

&€

k
. t
e —xp,t) =q Z (x]- - xj—1); t]= i, H((xj - xj—l),m)
j=n+1 e

. . jt ) . nt
Jmin (10 =m0 5 ) 2 min w(iC —x-) )

- . . t - . . t
> i 1o =) )= min (G - 3-) =)

n
. t
> 7llrE1]£I u(n(xn - xn_l),ﬁ) >1-—c¢,

k
t
v(xg —xp,t) =V Z (x]- - xj_l),t < max u<(x]~ - xj_l)'m)

n+1sjsk
j=n+1

it nt
= max Vv (j(x]- - xj_l),k]—) < max v (j(x]- - xj_l)’m)

n+isjs<k -n n+1<js<k

t t
< max v|j(x— xj—l)'k_ < _max v (j(xj - xj—l)’m)
——n

n+1<js<k n+1<j<k
n
t
< supv (n(xn - xn_l),ﬂ) <& and
neN
‘ t
w(x, —xp,t) =w (xj - x]-_l), t]< nfllgjxsk W <(x]- - xj_l),m)
j=n+1

it nt
= max w <j(xj - xj_l)'kj——n) < max w <j(xj - xj_l)’m)

n+1s<j<k n+is<j<k

- - | < max o (16 -3 )
< max wl|jlxi—x_4),—— < max wlj(x;—x_,),——
n+isj<k I J=1 k n n+is<jsk I 711

n
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t
< sup w (n(xn - xn_l),ﬂ) <e.
neN

This means that (x,,) is slowly oscillating.
In order to apply theorem (4.9) we consider the following example.
Example 4.10:

Let C [0,1] be the set of all continuous functions defined on [0,1] and let ||-|| be the norm on C[0.1] given by

Il = Iél[:(:)l)i]|f(x)|. Consider NNS (C[0.1], no, vo , wg ) Where py, vy and wy
X )

{n(f,, — f—1)} is g- bounded in view of the facts that

t
lim inf t) =1l f ,
A Jof wo(lfa = fu-1), ) = lim Infe—mpee— ]

= lim inf
t>coneNt + max |n(fn(x) Fac1 G|’
=i f ¢
= lim in
toooneNt + m[ax [n(xm — xn+1)|’
t . t
= fim Inf— e = lim e =1,
n+1
In(fn — fa-DIl

lim sup vo(n(f,, — f,,_1), t llmsu s
A sup vo(nlfo = faa), 8 = B SUD o o G F D

max |n(fn(x) — fac1 (X))
= lim sup

t>00 nen t + max In(fn(X) fac GO

max |n(x — x|
x€[0,1

= lim su
£ nEIN? t+ m[ax [n(x™ — xn*+1)|’

(L)n+1 1
= lim sup% =0 and

t—oco
neN t+(-55

lim sup wo(n(fp = fo-1),t) = llm sup M )
to® peN neN

maX In(fn(x) fn 1(x))|
= lim sup

t-® peN t
n_ xnt1)|

’

= lim#=0 and

are as in NNS (C[0.1], ug, Vo , @ ) and

Hence , sequence {f,,} is slowly oscillating two sided Tauberian theorem due to in view of theorem (4.8)

and (4.9).
5. Conclusions:

In the current paper, as an introduction to summability theory and Tauberian theory in NNS, we have defined
Cesaro Summability method in NNS, and proved a Tauberian theorem for Cesaro Summability method. Furthermore,
we have introduced the concept of slowly oscillating sequence in NNS, given its relationship with g-bounded sequences
and showed that slow oscillation and g-boundedness serves Tauberian conditions for Cesaro summability method in
NNS. In view of the results of this paper, different types of summability methods can be defined in NNS to tackle
problems where Cesaro method fails and the concepts of slow oscillation and g-boundedness in NNS can be used to

obtain Tauberian results for other convergence methods.
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