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ABSTRACT: 

We define the concept of Cesaro summability method in Neutrosophic normed spaces and prove a related   Tauberian   

theorem.  Also, we define slowly oscillating sequences in Neutrosophic normed spaces, prove related  theorems  and  that  

Cesaro  summability  of  slowly  oscillating sequences implies   ordinary convergence in Neutrosophic   normed  spaces.  

Finally, we give an analogue of classical two - sided Tauberian theorem. 
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1.  Introduction 

The theory of fuzzy sets was generalized from classical sets by [12] Zadeh in 1965.  Which was further  

generalized to intuitionstic fuzzy sets by Atanassov [2].  This theory deals with a situation that may be imprecise or 

vague or uncertain by attributing a degree of membership and a degree of non-membership to a certain object several 

literature work on their corresponding sequence space can be found in 2004. 

The idea of neutrosophic sets was introduced by [11] Smarandache as an extension of the intuitionstic fuzzy set.  

For the situation when the aggregate of the components is 1, in the wake of satisfying the condition by applying the 

Neutrosophic set operators, different outcomes can be acquired by applying the intuitionistic fuzzy operators, since the 

operators disregard the indeterminacy, while the neutrosophic operators are taked into the cognizance of the 

indeterminacy at similar level as truth membership and falsehood non-membership.  Using the idea of neutrosophic sets, 

the notion of neutrosophic bipolar vague soft set and its application to decision making problems were defined. 

Summability theory and matrix transformation have been necessary modes in developing the theory and matrix 

transformation have been necessary modes in developing the theory of non-converging sequences. Recently, Jeyaraman 

et al. [4] introduced the notion of Hyers-Ulam-Rassias stability for functional equation in neutrosophic normed spaces. 

The aim of this paper is to provide researchers with an introduction to summability theory and Taubarian theory 

for Neutrosophic normed spaces, in order to handle sequences which fail to converges ordinarily in the Neutrosophic 

normed spaces and to recover  the convergence.  We defined Cesaro Summability  method in Neutrosophic normed 

spaces and give two- sided Taubarian conditions under which Cesaro Summability implies ordinary convergence in the 

space.  Next, we define the concept of slowly oscillating sequence for neutrosophic normed space a concept which plays 

a vitual role in the development of classical  Tauberian theory   and compare the concept in neutrosophic  normed space 

with that in classical normed spaces.  Finally, we also give Tauberian conditions of slowly oscillating type and of 

Hardy’s two- sided type by means of the concept of slowly oscillating sequence and q-boundedness in Neutrosophic 

normed spaces. 

 

2. Preliminaries 

In this section, we give some preliminaries for Neutrosophic Normed Spaces [NNS]. 

Definition 2.1: 

The (𝑉, µ, 𝜈, 𝜔)  is  said to be an NNS if V is a real vector space  and µ , 𝜈 𝑎𝑛𝑑 𝜔  are  fuzzy sets on 𝑉 × ℝ   
Satisfying the following conditions:  For every 𝑥, 𝑦 ∈ 𝑉  and 𝑠, 𝑡 ∈ ℝ. 

a) 0 ≤ µ(𝑥, 𝑡) ≤ 1,   0 ≤ 𝜈(𝑥, 𝑡) ≤ 1 ,      0 ≤ 𝜔(𝑥, 𝑡) ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝑅+, 
b) µ(𝑥, 𝑡) + 𝜈(𝑥, 𝑡) + 𝜔(𝑥, 𝑡) ≥ 3 𝑓𝑜𝑟 𝑡 ∈ 𝑅+, 

c) µ(𝑥, 𝑡) = 0   for all non-positive real number t, 

d) µ(𝑥, 𝑡) = 1   for all  𝑡 ∈ 𝑅+  if and only if    𝑥 = 0, 

e) µ(𝑐𝑥, 𝑡) = µ (𝑥,
𝑡

|𝑐|
)   for all  𝑡 ∈ 𝑅+  and 𝑐 ≠ 0, 

f) µ(𝑥 + 𝑦, 𝑡 + 𝑠) ≥ 𝑚𝑖𝑛{µ(𝑥, 𝑡), µ(𝑦, 𝑠)}, 
g) lim

𝑡→∞
µ(𝑥, 𝑡) = 1  and lim

𝑡→0
µ(𝑥, 𝑡) = 0, 
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h) 𝜈(𝑥, 𝑡) = 1   for all non-positive real number t, 

i) 𝜈(𝑥, 𝑡) = 0   for all  𝑡 ∈ 𝑅+  if and only if    𝑥 = 0, 

j) 𝜈(𝑐𝑥, 𝑡) = 𝜈 (𝑥,
𝑡

|𝑐|
)   for all  𝑡 ∈ 𝑅+  and 𝑐 ≠ 0, 

k) 𝜈(𝑥 + 𝑦, 𝑡 + 𝑠) ≤ 𝑚𝑎𝑥{𝜈(𝑥, 𝑡), 𝜈(𝑦, 𝑠)}, 
l) lim

𝑡→∞
𝜈(𝑥, 𝑡) = 0  and lim

𝑡→0
𝜈(𝑥, 𝑡) = 1, 

m) 𝜔(𝑥, 𝑡) = 1   for all non-positive real number t, 

n) 𝜔(𝑥, 𝑡) = 0   for all  𝑡 ∈ 𝑅+  if and only if    𝑥 = 0, 

o) 𝜔(𝑐𝑥, 𝑡) = 𝜔 (𝑥,
𝑡

|𝑐|
)   for all  𝑡 ∈ 𝑅+  and 𝑐 ≠ 0, 

p) 𝜔(𝑥 + 𝑦, 𝑡 + 𝑠) ≤ max{𝜔(𝑥, 𝑡), 𝜔(𝑦, 𝑠)}, 
q) lim

𝑡→∞
𝜔(𝑥, 𝑡) = 0  and lim

𝑡→0
𝜔(𝑥, 𝑡) = 1.   

In this case, we will call   (µ, 𝜈, 𝜔)  an NNS on V.  It is easy to see that for every 𝑥 ∈ 𝑉  the  functions µ(𝑥, . ), 
𝜈(𝑥, . ) and 𝜔(𝑥, . ) are non-decreasing, non-increasing and non-increasing on ℝ  respectively. 

Example 2.2: 

Let (𝑉, ‖∙‖)    be a normed space  µ0, 𝜈0  𝑎𝑛𝑑   𝜔0and 𝑉 × ℝ  be F-sets on defined by  

µ0(𝑥, 𝑡) = {
0                 𝑡 ≤ 0
𝑡

𝑡+‖𝑥‖
                𝑡 > 0}  ,     𝜈0(𝑥, 𝑡) = {

0                 𝑡 ≤ 0
‖𝑥‖

𝑡+‖𝑥‖
                𝑡 > 0}    and  

𝜔0(𝑥, 𝑡) = {
0                 𝑡 ≤ 0
‖𝑥‖

𝑡
                𝑡 > 0

}.  Then (µ0, 𝜈0, 𝜔0) is NN on V. 

 

Theorem 2.3: 

Let  (V, µ, ν, ω)  be a normed space.  Assume further that µ(x, t) > 0  for  all   t > 0   implies x = 0.  
Define   ‖x‖α = inf{t > 0: µ(x, t) > 𝛼 , 𝜈(x, t) < 1 − 𝛼 𝑎𝑛𝑑  𝜔(x, t) < 1 − 𝛼},  where  α ∈ (0,1).   

Then {‖x‖α: α ∈ (0,1)} is an ascending family of norms on V. 

We note that these norms are called 𝛼-norms on V corresponding to (or including by) the Neutrosophic norm 
(µ, 𝜈, 𝜔)  on V. 

     Next, we give some concepts concerning sequences in a NNS. 

Definition 2.4: 

A sequence(𝑥𝑛)   is said to be convergent to 𝑥 ∈ 𝑉 in the NNS  (𝑉, µ, 𝜈, 𝜔)   and denoted by 𝑥𝑛 → 𝑥, if for each 

𝑡 > 0  and each 𝜀 ∈ (0,1)  there exists 𝑛0 ∈ ℕ  such that  

µ(𝑥𝑛 − 𝑥, 𝑡) > 1 − 𝜀,    𝜈(𝑥𝑛 − 𝑥, 𝑡) < 𝜀,  and 𝜔(𝑥𝑛 − 𝑥, 𝑡) < 𝜀  for all   𝑛 ≥ 𝑛0. 

Definition 2.5: 

A sequence (𝑥𝑛)   in an NNS  (𝑉, µ, 𝜈, 𝜔)   is said to be Cauchy if for each 𝑡 > 0  and each  

𝜀 ∈ (0,1) there exists 𝑛0 ∈ ℕ   such that  µ(𝑥𝑘 − 𝑥𝑛 , 𝑡) > 1 − 𝜀, 𝜈(𝑥𝑘 − 𝑥𝑛 , 𝑡) < 𝜀,    and  𝜔(𝑥𝑘 − 𝑥𝑛 , 𝑡) < 𝜀,   for all 

  𝑘, 𝑛 ≥ 𝑛0. 

Definition 2.6: 

A sequence (𝑥𝑛)  in an NNS  (𝑉, µ, 𝜈, 𝜔)  is G-Cauchy   if   lim
𝑛→∞

µ(𝑥𝑛+𝑝 − 𝑥𝑛 , 𝑡) = 1,  

 lim
𝑛→∞

𝜈(𝑥𝑛+𝑝 − 𝑥𝑛 , 𝑡) = 0     and     lim
𝑛→∞

𝜔(𝑥𝑛+𝑝 − 𝑥𝑛 , 𝑡) = 0   for each 𝑡 > 0   and 𝑝 ∈ ℕ. 

This definition is equivalent to lim
𝑛→∞

µ(𝑥𝑛+1 − 𝑥𝑛 , 𝑡) = 1,   lim
𝑛→∞

𝜈(𝑥𝑛+1 − 𝑥𝑛 , 𝑡) = 0 and lim
𝑛→∞

𝜔(𝑥𝑛+1 − 𝑥𝑛 , 𝑡) = 0,    for 

each  𝑡 > 0. 

    We note that every convergent sequence is Cauchy and every Cauchy sequence is G-Cauchy in a NNS. 

    Next, we remind the concept of boundedness and q-boundedness  in an NNS. 

Definition 2.7: 

Let  (𝑣, µ, 𝜈, 𝜔)   be an NNS and A be a any subset of V. 

(i) A is called bounded if there exist some 𝑟 ∈ (0,1) and 𝑡0 > 0  such that 

 µ(𝑥, 𝑡0) > 1 − 𝑟 ,    𝜈(𝑥, 𝑡0) < 𝑟  and   𝜔(𝑥, 𝑡0) < 𝑟, for every 𝑥 ∈ 𝐴. 
(ii) A is said to be q-bounded if lim

𝑛→∞
𝜑𝐴(𝑡) = 1, lim

𝑛→∞
𝜓𝐴(𝑡) = 0,     and lim

𝑛→∞
€𝐴(𝑡) = 0   where 𝜑𝐴(𝑡) =

𝑖𝑛𝑓{µ(𝑥, 𝑡): 𝑥 ∈ 𝐴}, 𝜓𝐴(𝑡) = 𝑠𝑢𝑝{𝜈(𝑥, 𝑡): 𝑥 ∈ 𝐴},   and   €𝐴(𝑡) = 𝑠𝑢𝑝{𝜈(𝑥, 𝑡): 𝑥 ∈ 𝐴}. 
It is obvious that a sequence NNS (µ, 𝜈, 𝜔) is bounded if and only if there exists some 𝑡0 > 0  and 𝑟 ∈

(0,1)  such that µ(𝑥𝑛, 𝑡0) > 1 − 𝑟 , 𝜈(𝑥𝑛 , 𝑡0) < 𝑟  and   𝜔(𝑥𝑛 , 𝑡0) < 𝑟 for every positive interger n and q-bounded if and 

only if lim
𝑡→∞

inf
𝑛∈ℕ

µ(𝑥𝑛 , 1) = 1,     lim
𝑡→∞

inf
𝑛∈ℕ

𝜈(𝑥𝑛 , 1) = 0  and   lim
𝑡→∞

inf
𝑛∈ℕ

𝜔(𝑥𝑛, 1) = 0. 
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3. Cesaro Summability Method In Neutrosophic Normed Spaces 
Now, we define Cesaro Summability method in NNS and give related Taberian theorems.   

Definition 3.1: 

Let (𝑥𝑛)  be a sequence in an NNS (𝑉, µ, 𝜈, 𝜔). The arithmetic means 𝜎𝑛  of (𝑥𝑛)  is defined by  𝜎𝑛 =
1

𝑛+1
(𝑥 + 𝑎)𝑛 = ∑ 𝑥𝑘 .

𝑛
𝑘=0  We say that  (𝑥𝑛)  is Cesaro summable to  ℓ ∈ ℕ  if lim

𝑛→∞
𝜎𝑛 = ℓ. 

First, we will show that Cesaro summability method is regular in an NNS. 

Theorem 3.2: 

Let  (xn)  be a sequence in an NNS   (V, µ, ν, ω).  If (xn)  is convergent to ℓ ∈ V,  then  (xn)  is cesaro summable 

to   ℓ. 

Proof: 

Let  (𝑥𝑛)  be a sequence in an NNS (𝑉, µ, 𝜈, 𝜔)   and (𝑥𝑛)  is convergent to ℓ ∈ 𝑉. Fix 𝑡 > 0.  Then 𝜀 > 0 

• There exists 𝑛0 ∈ ℕ  such that µ (𝑥𝑛 − ℓ,
𝑡

2
) > 1 − 𝜀 , 𝜈 (𝑥𝑛 − ℓ,

𝑡

2
) < 𝜀 and  

𝜔 (𝑥𝑛 − ℓ,
𝑡

2
) < 𝜀   for  𝑛 > 𝑛0. 

• There exist 𝑛1 ∈ ℕsuch that µ (∑ (𝑥𝑘 − ℓ),
(𝑛+1)𝑡

2

𝑛0
𝑘=0 ) > 1 − 𝜀,   

 𝜈 (∑ (𝑥𝑘 − ℓ),
(𝑛+1)𝑡

2

𝑛0
𝑘=0 ) > 𝜀    𝑎𝑛𝑑  𝜔 (∑ (𝑥𝑘 − ℓ),

(𝑛+1)𝑡

2

𝑛0
𝑘=0 ) > 𝜀. 

For 𝑛 > 𝑛1    in view of the facts that  

lim
𝑛→∞

µ (∑ (𝑥𝑘 − ℓ),
(𝑛+1)𝑡

2

𝑛0
𝑘=0 ) = 1,  

lim
𝑛→∞

𝜈 (∑(𝑥𝑘 − ℓ),
(𝑛 + 1)𝑡

2

𝑛0

𝑘=0

) = 0   and lim
𝑛→∞

𝜔(∑(𝑥𝑘 − ℓ),
(𝑛 + 1)𝑡

2

𝑛0

𝑘=0

) = 0. 

Then, we have 

µ (
1

𝑛+1
∑ 𝑥𝑘 − ℓ, 𝑡
𝑛
𝑘=0 ) = µ (

1

𝑛+1
∑ (𝑥𝑘 − ℓ), 𝑡
𝑛
𝑘=0 )  = µ(∑ (𝑥𝑘 − ℓ), (𝑛 + 1)𝑡

𝑛
𝑘=0 ) 

               ≥ 𝑚𝑖𝑛 {µ(∑(𝑥𝑘 − ℓ),
(𝑛 + 1)𝑡

2

𝑛0

𝑘=0

) , µ (∑(𝑥𝑘 − ℓ),
(𝑛 + 1)𝑡

2

𝑛

𝑘=0

)} 

               ≥ 𝑚𝑖𝑛 {µ(∑(𝑥𝑘 − ℓ),
(𝑛 + 1)𝑡

2

𝑛0

𝑘=0

) , µ (∑(𝑥𝑘 − ℓ),
(𝑛 − 𝑛0)𝑡

2

𝑛

𝑘=0

)} 

            ≥ 𝑚𝑖𝑛

{
 
 

 
 
µ(∑(𝑥𝑘 − ℓ),

(𝑛 + 1)𝑡

2

𝑛0

𝑘=0

) , µ (𝑥𝑛0+1 − ℓ,
𝑡

2
) ,

 µ (𝑥𝑛0+2 − ℓ,
𝑡

2
) , … µ (𝑥𝑛 − ℓ,

𝑡

2
) }

 
 

 
 

 

                                                   > 1 − 𝜀, 

𝜈 (
1

𝑛+1
∑ 𝑥𝑘 − ℓ, 𝑡
𝑛
𝑘=0 ) = 𝜈 (

1

𝑛+1
∑ (𝑥𝑘 − ℓ), 𝑡
𝑛
𝑘=0 )  = 𝜈(∑ (𝑥𝑘 − ℓ), (𝑛 + 1)𝑡

𝑛
𝑘=0 ) 

               < 𝑚𝑎𝑥 {𝜈 (∑(𝑥𝑘 − ℓ),
(𝑛 + 1)𝑡

2

𝑛0

𝑘=0

) , 𝜈 (∑(𝑥𝑘 − ℓ),
(𝑛 + 1)𝑡

2

𝑛

𝑘=0

)} 

                     < 𝑚𝑎𝑥 {𝜈 (∑(𝑥𝑘 − ℓ),
(𝑛 + 1)𝑡

2

𝑛0

𝑘=0

) , 𝜈 (∑(𝑥𝑘 − ℓ),
(𝑛 − 𝑛0)𝑡

2

𝑛

𝑘=0

)} 

                                                           ≤ 𝑚𝑎𝑥 {
𝜈 (∑ (𝑥𝑘 − ℓ),

(𝑛+1)𝑡

2

𝑛0
𝑘=0 ) , 𝜈 (𝑥𝑛0+1 − ℓ,

𝑡

2
) ,

 𝜈 (𝑥𝑛0+2 − ℓ,
𝑡

2
) , … 𝜈 (𝑥𝑛 − ℓ,

𝑡

2
)

} < 𝜀  𝑎𝑛𝑑    

𝜔 (
1

𝑛+1
∑ 𝑥𝑘 − ℓ, 𝑡
𝑛
𝑘=0 ) = 𝜔 (

1

𝑛+1
∑ (𝑥𝑘 − ℓ), 𝑡
𝑛
𝑘=0 )  = 𝜔(∑ (𝑥𝑘 − ℓ), (𝑛 + 1)𝑡

𝑛
𝑘=0 ) 
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                  < 𝑚𝑎𝑥 {𝜔(∑(𝑥𝑘 − ℓ),
(𝑛 + 1)𝑡

2

𝑛0

𝑘=0

) ,𝜔 (∑(𝑥𝑘 − ℓ),
(𝑛 + 1)𝑡

2

𝑛

𝑘=0

)} 

                  < 𝑚𝑎𝑥 {𝜔 (∑(𝑥𝑘 − ℓ),
(𝑛 + 1)𝑡

2

𝑛0

𝑘=0

) ,𝜔 (∑(𝑥𝑘 − ℓ),
(𝑛 − 𝑛0)𝑡

2

𝑛

𝑘=0

)} 

                                                         ≤ 𝑚𝑎𝑥 {
𝜔 (∑ (𝑥𝑘 − ℓ),

(𝑛+1)𝑡

2

𝑛0
𝑘=0 ) , 𝜔 (𝑥𝑛0+1 − ℓ,

𝑡

2
) ,

𝜔 (𝑥𝑛0+2 − ℓ,
𝑡

2
) , …𝜔 (𝑥𝑛 − ℓ,

𝑡

2
)

} < 𝜀 .  

Whenever   𝑛 > 𝑚𝑎𝑥{𝑛0, 𝑛1},   which completes the proof. 

However, Cesaro Summability of a sequence in NNS does imply convergence which can be seen by following example. 

Example 3.3: 

Consider sequence  (𝑥𝑛) = ((−1)
𝑛+1)  in NNS (ℝ, µ0, 𝜈0, 𝜔0) where   µ0, 𝜈0  and 𝜔0  are as in Example (2.2).  

Then, since 

lim
𝑛→∞

µ0(𝜎2𝑛, 𝑡) = lim
𝑛→∞

µ0 (−
1

2𝑛 + 1
, 𝑡) = lim

𝑛→∞

𝑡

𝑡 + |−
1

2𝑛 + 1
|
= 1, 

lim
𝑛→∞

𝜈0(𝜎2𝑛, 𝑡) = lim
𝑛→∞

𝜈0 (−
1

2𝑛 + 1
, 𝑡) = lim

𝑛→∞

|−
1

2𝑛 + 1
|

𝑡 + |−
1

2𝑛 + 1
|
= 0   𝑎𝑛𝑑 

lim
𝑛→∞

𝜔0(𝜎2𝑛, 𝑡) = lim
𝑛→∞

𝜔0 (−
1

2𝑛 + 1
, 𝑡) = lim

𝑛→∞

|−
1

2𝑛 + 1
|

𝑡
= 0. 

We have 𝜎2𝑛 → ∞  and since, 

lim
𝑛→∞

µ0(𝜎2𝑛+1, 𝑡) = lim
𝑛→∞

µ0(0, 𝑡) = lim
𝑛→∞

𝑡

𝑡 + 0
= 1, 

lim
𝑛→∞

𝜈0(𝜎2𝑛, 𝑡) = lim
𝑛→∞

𝜈0(0, 𝑡) = lim
𝑛→∞

0

𝑡 + 0
= 0   𝑎𝑛𝑑 

lim
𝑛→∞

𝜔0(𝜎2𝑛, 𝑡) = lim
𝑛→∞

𝜔0(0, 𝑡) = lim
𝑛→∞

0

𝑡
= 0. 

We have 𝜎2𝑛+1 → 0   which implies that  lim
𝑛→∞

𝜎𝑛 = 0.. Hence sequence (𝑥𝑛)  is Cesaro Summable to 0.  However, 

sequence (𝑥𝑛) is not convergent since 𝑥2𝑛 → −1   and 𝑥2𝑛+1 → 1 in view of the facts that  lim
𝑛→∞

µ0(𝑥2𝑛 − (−1), 𝑡) =

lim
𝑛→∞

µ0(−1 − (−1), 𝑡) =1, 

lim
𝑛→∞

𝜈0(𝑥2𝑛 − (−1), 𝑡) = lim
𝑛→∞

𝜈0(−1 − (−1), 𝑡) =0   𝑎𝑛𝑑 

lim
𝑛→∞

𝜔0(𝑥2𝑛 − (−1), 𝑡) = lim
𝑛→∞

𝜔0(−1 − (−1), 𝑡) =0. 

Let 

lim
𝑛→∞

µ0(𝑥2𝑛+1 − 1, 𝑡) = lim
𝑛→∞

µ0(1 − 1, 𝑡) =1, 

lim
𝑛→∞

𝜈0(𝑥2𝑛+1 − 1, 𝑡) = lim
𝑛→∞

𝜈0(1 − 1, 𝑡) = 0      𝑎𝑛𝑑  

lim
𝑛→∞

𝜔0(𝑥2𝑛+1 − 1, 𝑡) = lim
𝑛→∞

𝜔0(1 − 1, 𝑡) =0. 

Form this point, we investigate conditions ensured  that a sequence which is Cesaro summable is convergent.  For this, 

we need the following lemmas. 

Lemma 3.4: 

Let us define 〈𝜆〉 for every 𝜆 > 0  by  〈𝜆〉 = 𝜆 − [𝜆]..  then,  the following statement hold: 

(i) If 𝜆 > 1,  then  𝜆𝑛 > 𝑛  for each   𝑛 ∈ ℕ  \ {0}  with 𝑛 ≥ 〈𝜆〉−1. 
(ii) If 0 < 𝜆 < 1, then 𝜆𝑛 < 𝑛  for each 𝑛 ∈ ℕ  \ {0} with 𝜆𝑛 = [𝜆𝑛]. 

Lemma 3.5: 

We have the following statements: 

(i) Let 𝜆 < 1,  for each 𝑛 ∈ ℕ  \ {0}   with 𝑛 ≥
3𝜆−1

𝜆(𝜆−1
 ,  we have  

𝜆

𝜆−1
<

𝜆𝑛+1

𝜆𝑛−𝑛
<

2𝜆

𝜆−1
. 

(ii) If  0 < 𝜆 < 1,  for each 𝑛 ∈ ℕ  \ {0}    with  𝑛 > 〈𝜆〉−1 we have 0 <
𝜆𝑛+1

𝜆𝑛−𝑛
<

2𝜆

𝜆−1
. 

Theorem 3.6: 

Let (xn) be a sequence in an NNS  (V, µ, ν, ω) .  If (xn)  is Cesaro summable to  ℓ ∈ V then it convergence to 

ℓ if and only if for all t > 0. 
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sup
λ>1

lim
n→∞

μ (
1

λn−n
∑ (xk − xn)
n
k=n+1 , t) = 1,                            (3.6.1) 

inf
λ>1

lim
n→∞

ν (
1

λn−n
∑ (xk − xn)
n
k=n+1 , t) = 0,                               (3.6.2) 

 
  
inf
λ>1

lim
n→∞

ω(
1

λn−n
∑ (xk − xn)
n
k=n+1 , t) = 0.                          (3.6.3) 

Proof:  

Let  (𝑥𝑛)  be a sequence in NNS  (𝑉, µ, 𝜈, 𝜔) and be Cesaro summable to ℓ ∈ 𝑉. 

 Necessity, (𝑥𝑛)  convergesℓ.  Fix 𝑡 > 0. For any 𝜆 > 1 by lemma (3.4) for each  𝑛 ∈ ℕ  \ {0} with  𝑛 ≥ 〈𝜆〉−1 .  

We can write 𝑥𝑘 − 𝜎𝑛 =
𝜆𝑛+1

𝜆𝑛−𝑛
(𝜎𝜆𝑛 − 𝜎𝑛) −

1

𝜆𝑛−𝑛
∑ (𝑥𝑘 − 𝑥𝑛)
𝜆𝑛
𝑘=𝑛+1 .                             (3.6.4) 

By lemma (3.5) for   𝑛 ≥
3𝜆−1

𝜆(𝜆−1)
   , we have  

µ (
𝜆𝑛 + 1

𝜆𝑛 − 𝑛
(𝜎𝜆𝑛 − 𝜎𝑛), 𝑡) = µ(𝜎𝜆𝑛 − 𝜎𝑛,

𝑡

𝜆𝑛 + 1
𝜆𝑛 − 𝑛

) ≥ µ(𝜎𝜆𝑛 − 𝜎𝑛,
𝑡

2𝜆
𝜆 − 1

), 

𝜈 (
𝜆𝑛 + 1

𝜆𝑛 − 𝑛
(𝜎𝜆𝑛 − 𝜎𝑛), 𝑡) = 𝜈(𝜎𝜆𝑛 − 𝜎𝑛,

𝑡

𝜆𝑛 + 1
𝜆𝑛 − 𝑛

) ≤ 𝜈(𝜎𝜆𝑛 − 𝜎𝑛 ,
𝑡

2𝜆
𝜆 − 1

)    𝑎𝑛𝑑 

𝜔 (
𝜆𝑛 + 1

𝜆𝑛 − 𝑛
(𝜎𝜆𝑛 − 𝜎𝑛), 𝑡) = 𝜔(𝜎𝜆𝑛 − 𝜎𝑛,

𝑡

𝜆𝑛 + 1
𝜆𝑛 − 𝑛

) ≤ 𝜔(𝜎𝜆𝑛 − 𝜎𝑛,
𝑡

2𝜆
𝜆 − 1

). 

Since (𝜎𝑛)  is Cauchy  lim
𝑛→∞

µ (
𝜆𝑛+1

𝜆𝑛−𝑛
(𝜎𝜆𝑛 − 𝜎𝑛), 𝑡) = 1 ,  

lim
𝑛→∞

𝜈 (
𝜆𝑛+1

𝜆𝑛−𝑛
(𝜎𝜆𝑛 − 𝜎𝑛), 𝑡) = 0   

and  lim
𝑛→∞

𝜔 (
𝜆𝑛+1

𝜆𝑛−𝑛
(𝜎𝜆𝑛 − 𝜎𝑛), 𝑡) = 0.   Which means that   

𝜆𝑛+1

𝜆𝑛−𝑛
(𝜎𝜆𝑛 − 𝜎𝑛) → 0.   

So, by (3.6.4) lim
𝑛→∞

µ (
1

𝜆𝑛−𝑛
∑ (𝑥𝑘 − 𝑥𝑛)
𝜆𝑛
𝑘=𝑛+1 , 𝑡) = 1,  

 lim
𝑛→∞

𝜈 (
1

𝜆𝑛−𝑛
∑ (𝑥𝑘 − 𝑥𝑛)
𝜆𝑛
𝑘=𝑛+1 , 𝑡) = 0  and lim

𝑛→∞
𝜔 (

1

𝜆𝑛−𝑛
∑ (𝑥𝑘 − 𝑥𝑛)
𝜆𝑛
𝑘=𝑛+1 , 𝑡) = 0.  

Consequently,  (3.6.1), (3.6.2) and (3.6.3) are proved. 

Sufficiency, suppose that (3.6.1), (3.6.2) and (3.6.3) are satisfied.  

Fix 𝑡 > 0 for given 𝜀 > 0 , we have: 

• There exist 𝜆 > 1 and 𝑛0 ∈ ℕ such that      µ (
1

𝜆𝑛−𝑛
∑ (𝑥𝑘 − 𝑥𝑛)
𝜆𝑛
𝑘=𝑛+1 ,

𝑡

3
) > 1 − 𝜀, 

𝜈 (
1

𝜆𝑛−𝑛
∑ (𝑥𝑘 − 𝑥𝑛)
𝜆𝑛
𝑘=𝑛+1 ,

𝑡

3
) < 𝜀 and 𝜔 (

1

𝜆𝑛−𝑛
∑ (𝑥𝑘 − 𝑥𝑛)
𝜆𝑛
𝑘=𝑛+1 ,

𝑡

3
) < 𝜀 , for all 𝑛 > 𝑛1. 

• There exists   𝑛1 ∈ ℕ   such that µ (𝜎𝑛 − ℓ,
𝑡

3
) > 1 − 𝜀,   𝜈 (𝜎𝑛 − ℓ,

𝑡

3
) > 1 − 𝜀 and  

𝜔 (𝜎𝑛 − ℓ,
𝑡

3
) < 𝜀   for 𝑛 > 𝑛1. 

• There exists 𝑛2 ∈ ℕ   such that   µ (
𝜆𝑛+1

𝜆𝑛−𝑛
(𝜎𝜆𝑛 − 𝜎𝑛),

𝑡

3
) > 1 − 𝜀 ,   

               𝜈 (
𝜆𝑛+1

𝜆𝑛−𝑛
(𝜎𝜆𝑛 − 𝜎𝑛),

𝑡

3
) < 𝜀  and  𝜔 (

𝜆𝑛+1

𝜆𝑛−𝑛
(𝜎𝜆𝑛 − 𝜎𝑛),

𝑡

3
) < 𝜀,  in view of the fact that  

              
𝜆𝑛+1

𝜆𝑛−𝑛
(𝜎𝜆𝑛 − 𝜎𝑛) → 0. Hence, we get 

µ(𝑥𝑛 − ℓ, 𝑡) = µ(𝑥𝑛 − 𝜎𝑛 + 𝜎𝑛 − ℓ, 𝑡) 

                       = µ(
𝜆𝑛+1

𝜆𝑛−𝑛
(𝜎𝜆𝑛 − 𝜎𝑛) −

1

𝜆𝑛−𝑛
∑ (𝑥𝑘 − 𝑥𝑛)
𝜆𝑛
𝑘=𝑛+1 + 𝜎𝑛 − ℓ, 𝑡) 

                       ≥ 𝑚𝑖𝑛 {µ (
𝜆𝑛+1

𝜆𝑛−𝑛
(𝜎𝜆𝑛 − 𝜎𝑛),

𝑡

3
) , µ (

1

𝜆𝑛−𝑛
∑ (𝑥𝑘 − 𝑥𝑛)
𝜆𝑛
𝑘=𝑛+1 ,

𝑡

3
) , µ (𝜎𝑛 − ℓ,

𝑡

3
)} 

                      > 1 − 𝜀,  
𝜈(𝑥𝑛 − ℓ, 𝑡) = 𝜈(𝑥𝑛 − 𝜎𝑛 + 𝜎𝑛 − ℓ, 𝑡) 

                    = 𝜈 (
𝜆𝑛+1

𝜆𝑛−𝑛
(𝜎𝜆𝑛 − 𝜎𝑛) −

1

𝜆𝑛−𝑛
∑ (𝑥𝑘 − 𝑥𝑛)
𝜆𝑛
𝑘=𝑛+1 + 𝜎𝑛 − ℓ, 𝑡) 

                    ≤ 𝑚𝑎𝑥 {𝜈 (
𝜆𝑛+1

𝜆𝑛−𝑛
(𝜎𝜆𝑛 − 𝜎𝑛),

𝑡

3
) , 𝜈 (

1

𝜆𝑛−𝑛
∑ (𝑥𝑘 − 𝑥𝑛)
𝜆𝑛
𝑘=𝑛+1 ,

𝑡

3
) , 𝜈 (𝜎𝑛 − ℓ,

𝑡

3
)} 

                    <  𝜀   and 

𝜔(𝑥𝑛 − ℓ, 𝑡) = 𝜔(𝑥𝑛 − 𝜎𝑛 + 𝜎𝑛 − ℓ, 𝑡) 

                      = 𝜔 (
𝜆𝑛+1

𝜆𝑛−𝑛
(𝜎𝜆𝑛 − 𝜎𝑛) −

1

𝜆𝑛−𝑛
∑ (𝑥𝑘 − 𝑥𝑛)
𝜆𝑛
𝑘=𝑛+1 + 𝜎𝑛 − ℓ, 𝑡) 



JOURNAL OF ALGEBRAIC STATISTICS 
Volume 13, No. 3, 2022, p. 1313-1323 
https://publishoa.com 
ISSN: 1309-3452 
 

1318 
 

                     ≤ 𝑚𝑎𝑥 {𝜔 (
𝜆𝑛+1

𝜆𝑛−𝑛
(𝜎𝜆𝑛 − 𝜎𝑛),

𝑡

3
) , 𝜔 (

1

𝜆𝑛−𝑛
∑ (𝑥𝑘 − 𝑥𝑛)
𝜆𝑛
𝑘=𝑛+1 ,

𝑡

3
) , 𝜔 (𝜎𝑛 − ℓ,

𝑡

3
)} 

                      <  𝜀. 
For  𝑛 > 𝑚𝑎𝑥 {𝑛0, 𝑛1, 𝑛2} , which completes the proof. 

In the case of  0 < 𝜆 < 1  by using lemma (3.4) we have the following equality: 

𝑥𝑛 − 𝜎𝑛 =
𝜆𝑛 + 1

𝑛 − 𝜆𝑛
(𝜎𝑛 − 𝜎𝜆𝑛) +

1

𝑛 − 𝜆𝑛
∑ (𝑥𝑘 − 𝑥𝑘)

𝑛

𝑘=𝜆𝑛+1

. 

Using a similar argument in theorem (3.6) and equality (3.4), we give the following theorem.  The proof is very similar to 

that of theorem (3.6) and hence, it is omitted. 

Theorem 3.7: 

Let  (xn) be a sequence in an NNS  (V, µ, ν, ω). If  (xn) is Cesaro summable to ℓ ∈ V, then it converges to ℓ if 
and only if for all t > 0. 

sup
0<𝜆<1

lim
n→∞

μ (
1

n−λn
∑ (xn − xk)
n
k=n+1 , t) = 1, 

inf
0<𝜆<1

lim
n→∞

ν (
1

n−λn
∑ (xn − xk)
n
k=n+1 , t) = 0    and 

inf
0<𝜆<1

lim
n→∞

ω(
1

n−λn
∑ (xn − xk)
n
k=n+1 , t) = 0. 

 

4 . Slowly Oscillating sequence in Neutrosophic Normed Spaces 
We now introduce oscillating sequences in NNS and obtain related results. 

Definition 4.1: 

A sequence (𝑥𝑛)  in NNS (𝑉, µ, 𝜈, 𝜔)   is  said to be slowly oscillating if  

sup
0<𝜆<1

lim inf
𝑛→∞

min
𝑛<𝑘≤𝜆𝑛

𝜇(𝑥𝑛 − 𝑥𝑘 , 𝑡) = 1,                         (4.1.1) 

inf
0<𝜆<1

lim inf
𝑛→∞

   min
𝑛<𝑘≤𝜆𝑛

 𝜈(𝑥𝑛 − 𝑥𝑘 , 𝑡) = 0,                                 (4.1.2) 

inf
0<𝜆<1

lim inf
𝑛→∞

   min
𝑛<𝑘≤𝜆𝑛

 𝜔(𝑥𝑛 − 𝑥𝑘 , 𝑡) = 0.                                         (4.1.3) 

For all  𝑡 > 0 , where 𝜆𝑛  denotes the integer part of the product 𝜆𝑛 . 

“
𝑠𝑢𝑝
𝜆 > 1

” in (4.1.1),  “
𝑖𝑛𝑓
𝜆 > 1

” in (4.1.2)  and “
𝑖𝑛𝑓
𝜆 > 1

” in (4.1.3)  can be replaced by  ” 
𝑙𝑖𝑚

𝜆 → 1+
". 

Slow oscillation condition in an NNS can be rewritten as follows: 

    A sequence (𝑥𝑛)   is slowly oscillating if and only if for all 𝑡 > 0  and for all 𝜀 ∈ (0,1)  there exist 𝜆 > 1 and 𝑛0 ∈
ℕ , depending on 𝑡 and 𝜀 such that  µ(𝑥𝑛 − 𝑥𝑘 , 𝑡) > 1 − 𝜀 , 𝜈(𝑥𝑛 − 𝑥𝑘 , 𝑡) <  𝜀 𝑎𝑛𝑑  
 𝜔(𝑥𝑛 − 𝑥𝑘 , 𝑡) < 𝜀,  whenever  𝑛0 ≤ 𝑛 < 𝑘 ≤ 𝜆𝑛 . 
Theorem 4.2: 

Let  (xn) be a sequence in NNS (V, µ, ν, ω).  For each   t > 0   conditions (4.1.1), (4.1.2), (4.1.3)  of  slowly 

oscillation are equivalent to  

sup
0<𝜆<1

lim inf
n→∞

min
λn<𝑘≤𝑛

μ(xk − xn, t) = 1,              (4.2.4) 

inf
0<𝜆<1

lim sup
n→∞

   max
λn<𝑘≤𝑛

 ν(xk − xn, t) = 0                              (4.2.5) 

inf
0<𝜆<1

lim sup
n→∞

   𝑚𝑎𝑥
λn<𝑘≤𝑛

ω(xk − xn, t) = 0                                       (4.2.6) 

Respectively ,     “
sup

0 < 𝜆 < 1
” in  (4.2.4),  “

inf
0 < 𝜆 < 1

” in (4.2.5)  and “
inf

0 < 𝜆 < 1
” in (4.2.6)  can be replaced by  ” 

lim
λ → 1−

". 

 

Proof: 

We will show that (4.1.1) and (4.2.4) , (4.1.2) and (4.2.5)  are equivalent, and equivalence of (4.1.3) and (4.2.6) 

can be done similarly.  Fix 𝑡 > 0. 
 Let 𝑓(𝜆) = lim inf

𝑛→∞
min

𝑛<𝑘≤𝜆𝑛
𝜇(𝑥𝑘 − 𝑥𝑛 , 𝑡)  and  

 𝑔 (
1

𝜆
) = lim inf

𝑛→∞
min

[
𝑘

𝜆
]<𝑛≤𝑘

𝜇(𝑥𝑘 − 𝑥𝑛 , 𝑡). 

Where 𝜆 > 1.  Then, for any 𝜆 > 1 there exist an increasing sequence (𝑛𝑝)  such that  

𝑓(𝜆) = lim 
𝑝→∞

min
𝑛𝑝<𝑘≤𝜆𝑛𝑝

𝜇 (𝑥𝑘 − 𝑥𝑛𝑝 , 𝑡). 

There also exists a sequence 𝑘𝑝 ∈ (𝑛𝑝, [𝜆𝑛𝑝])  such that  
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min
𝑛𝑝<𝑘≤𝜆𝑛𝑝

𝜇 (𝑥𝑘 − 𝑥𝑛𝑝 , 𝑡) = 𝜇 (𝑥𝑘 − 𝑥𝑛𝑝 , 𝑡). 

Here, we note that 𝑘𝑝 ∈ (𝑛𝑝, [𝜆𝑛𝑝])  implies  𝑛𝑝 ∈ ([
𝑘𝑝

𝜆
] , 𝑘𝑝).   

Then, we get 𝑔 (
1

𝜆
) = lim inf

𝑘→∞
min

[
𝑘

𝜆
]<𝑛≤𝑘

𝜇(𝑥𝑘 − 𝑥𝑛 , 𝑡)   

      ≤ lim
𝑝→∞

min
[
𝑘𝑝

𝜆
]<𝑛≤𝑘

𝜇 (𝑥𝑘𝑝 − 𝑥𝑛, 𝑡) 

                                ≤ lim
𝑝→∞

𝜇 (𝑥𝑘𝑝 − 𝑥𝑛𝑝 , 𝑡)  = lim 
𝑝→∞

min
𝑛𝑝<𝑘≤𝜆𝑛𝑝

𝜇 (𝑥𝑘 − 𝑥𝑛𝑝 , 𝑡) = 𝑓(𝜆). 

Now,  𝑓(𝜆) = lim sup
𝑛→∞

max
𝑛<𝑘≤𝜆𝑛

𝜈(𝑥𝑘 − 𝑥𝑛 , 𝑡) and  

𝑔 (
1

𝜆
) = lim sup

𝑛→∞
max

[
𝑘

𝜆
]<𝑛≤𝑘

𝜈(𝑥𝑘 − 𝑥𝑛, 𝑡). Where 𝜆 > 1.  Then, for any 𝜆 > 1, there exist an decreasing sequence (𝑛𝑝)  such 

that  𝑓(𝜆) = lim 
𝑝→∞

max
𝑛𝑝<𝑘≤𝜆𝑛𝑝

𝜈 (𝑥𝑘 − 𝑥𝑛𝑝 , 𝑡). 

There also exists a sequence 𝑘𝑝 ∈ (𝑛𝑝, [𝜆𝑛𝑝])  such that   

max
𝑛𝑝<𝑘≤𝜆𝑛𝑝

𝜈 (𝑥𝑘 − 𝑥𝑛𝑝 , 𝑡) = 𝜈 (𝑥𝑘 − 𝑥𝑛𝑝 , 𝑡). 

Here, we note that 𝑘𝑝 ∈ (𝑛𝑝, [𝜆𝑛𝑝])  implies 𝑛𝑝 ∈ ([
𝑘𝑝

𝜆
] , 𝑘𝑝).  Then, we get  

𝑔 (
1

𝜆
) = lim sup

𝑘→∞
max

[
𝑘

𝜆
]<𝑛≤𝑘

𝜈(𝑥𝑘 − 𝑥𝑛, 𝑡)   ≥ lim
𝑝→∞

max
[
𝑘𝑝

𝜆
]<𝑛≤𝑘

𝜈 (𝑥𝑘𝑝 − 𝑥𝑛 , 𝑡) 

           ≥ lim
𝑝→∞

𝜈 (𝑥𝑘𝑝 − 𝑥𝑛𝑝 , 𝑡)  = lim 
𝑝→∞

max
𝑛𝑝<𝑘≤𝜆𝑛𝑝

𝜈 (𝑥𝑘 − 𝑥𝑛𝑝, 𝑡)  = 𝑓(𝜆). 

Now, 𝑓(𝜆) = lim sup
𝑛→∞

max
𝑛<𝑘≤𝜆𝑛

𝜔(𝑥𝑘 − 𝑥𝑛 , 𝑡) and  

𝑔 (
1

𝜆
) = lim sup

𝑛→∞
max

[
𝑘

𝜆
]<𝑛≤𝑘

𝜔(𝑥𝑘 − 𝑥𝑛 , 𝑡). 

Where 𝜆 > 1.  Then, for  any 𝜆 > 1, there exist an deccreasing sequence (𝑛𝑝)  such that  

𝑓(𝜆) = lim 
𝑝→∞

max
𝑛𝑝<𝑘≤𝜆𝑛𝑝

𝜔 (𝑥𝑘 − 𝑥𝑛𝑝 , 𝑡). 

There also exists a sequence 𝑘𝑝 ∈ (𝑛𝑝, [𝜆𝑛𝑝])  such that  

max
𝑛𝑝<𝑘≤𝜆𝑛𝑝

𝜔 (𝑥𝑘 − 𝑥𝑛𝑝, 𝑡) = 𝜔 (𝑥𝑘 − 𝑥𝑛𝑝, 𝑡). 

Here, we note that 𝑘𝑝 ∈ (𝑛𝑝, [𝜆𝑛𝑝])  implies 𝑛𝑝 ∈ ([
𝑘𝑝

𝜆
] , 𝑘𝑝).  Then, we get  

𝑔 (
1

𝜆
) = lim sup

𝑘→∞
max

[
𝑘

𝜆
]<𝑛≤𝑘

𝜔(𝑥𝑘 − 𝑥𝑛 , 𝑡) ≥ lim
𝑝→∞

max
[
𝑘𝑝

𝜆
]<𝑛≤𝑘

𝜔 (𝑥𝑘𝑝 − 𝑥𝑛 , 𝑡) 

          ≥ lim
𝑝→∞

𝜔 (𝑥𝑘𝑝 − 𝑥𝑛𝑝 , 𝑡)  = lim 
𝑝→∞

max
𝑛𝑝<𝑘≤𝜆𝑛𝑝

𝜔 (𝑥𝑘 − 𝑥𝑛𝑝, 𝑡)  = 𝑓(𝜆). 

On the other hand, changing the roles of  𝑓(𝜆) and  𝑔 (
1

𝜆
) applying the same procedure, we also get 

 𝑔 (
1

𝜆
) ≥  𝑓(𝜆).  Hence, for any  𝜆 > 1 , we have 𝑓(𝜆) =  𝑔 (

1

𝜆
),  which implies equivalent of (4.1.1) and (4.2.4), (4.1.2) 

and (4.2.5) and (4.1.3) and (4.2.6). 

Example 4.3: 

Consider NNS  (ℝ, µ0, 𝜈0, 𝜔0) where   µ0, 𝜈0  and 𝜔0  are as in Example (2.2). Sequence  𝑥𝑛 = ∑
1

𝑗

𝑛
𝑗=1   is slowly 

oscillating in  (ℝ, µ0, 𝜈0, 𝜔0) by the following: 

     Fix 𝑡 > 0.  Given 𝜀 ∈ (0,1)  choose 𝜆 =
𝑡𝜀

1−𝜀
+ 1.     Then for 1 < 𝑛 < 𝑘 <  𝜆𝑛  , we have 

µ0(𝑥𝑘 − 𝑥𝑛 , 𝑡) =
𝑡

𝑡 + |𝑥𝑘 − 𝑥𝑛|
>

𝑡

𝑡 +
𝑡𝜀
1 − 𝜀

= 1 − 𝜀, 

𝜈0(𝑥𝑘 − 𝑥𝑛 , 𝑡) =
|𝑥𝑘 − 𝑥𝑛|

𝑡 + |𝑥𝑘 − 𝑥𝑛|
<

𝑡𝜀
1 − 𝜀

𝑡 +
𝑡𝜀
1 − 𝜀

= ε     and 
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𝜔0(𝑥𝑘 − 𝑥𝑛, 𝑡) =
|𝑥𝑘 − 𝑥𝑛|

𝑡
<  

𝑡𝜀
1 − 𝜀
𝑡

=
𝜀

1 − 𝜀
  . 

In view of the fact that  |𝑥𝑘 − 𝑥𝑛| = 𝑥𝑛 = ∑
1

𝑗

𝑛
𝑗=𝑛+1 <

𝑘−𝑛

𝑛
<

𝑘

𝑛
− 1 < 𝜆 − 1 =

𝑡𝜀

1−𝜀
  ,   which implies (𝑥𝑛)  is slowly 

oscillating in NNS (ℝ, µ0, 𝜈0, 𝜔0). 
Theorem 4.4: 

Let (V, ‖∙‖)    be a normed space  (V, µ0, ν0, ω0) be NNS in example (2.2).  A sequence (xn)  is slowly 

oscillating in (V, ‖∙‖)  if and only if (xn)  is slowly oscillating in (V, µ0, ν0, ω0). 
Proof: 

Let (𝑥𝑛) be slowly oscillating in (𝑉, ‖∙‖).   Given 𝑡 > 0 and 𝜀 ∈ (0,1).    We define 

 𝜀0 =
𝑡𝜀

1−𝜀
> 0.  Then there exists 𝜆 > 1  and 𝑛0 ∈ ℕ  such that  ‖𝑥𝑘 − 𝑥𝑛‖ < 𝜀0.  

whenever   𝑛0 ≤ 𝑛 < 𝑘 ≤ 𝜆𝑛.  So,  µ0(𝑥𝑘 − 𝑥𝑛 , 𝑡) =
𝑡

𝑡+ ‖𝑥𝑘−𝑥𝑛‖
>

𝑡

𝑡+𝜀0
= 1 − 𝜀, 

𝜈0(𝑥𝑘 − 𝑥𝑛 , 𝑡) = 1 − µ0(𝑥𝑘 − 𝑥𝑛, 𝑡) < 𝜀 , 𝜈0(𝑥𝑘 − 𝑥𝑛 , 𝑡) =
1

𝜈0(𝑥𝑘 − 𝑥𝑛 , 𝑡)
− 1 <

𝜀

1 − 𝜀
  . 

Whenever  𝑛0 ≤ 𝑛 < 𝑘 ≤ 𝜆𝑛.  This means that (𝑥𝑛)  is slowly oscillating in (V, µ0, 𝜈0, 𝜔0). 
     Conversely,  if (𝑥𝑛) is slowly oscillating in (V, µ0, 𝜈0, 𝜔0),  given 𝜀 ∈ (0,1/2)  there exist 𝜆 > 1  and 𝑛0 ∈ ℕ  such 

that µ0(𝑥𝑘 − 𝑥𝑛 , 1) =
1

1+ ‖𝑥𝑘−𝑥𝑛‖
> 1 − 𝜀  whenever  𝑛0 ≤ 𝑛 < 𝑘 ≤ 𝜆𝑛.   

So, we have ‖𝑥𝑘 − 𝑥𝑛‖ <  
𝜀

1−𝜀
< 2𝜀. 

Whenever  𝑛0 ≤ 𝑛 < 𝑘 ≤ 𝜆𝑛.  We conclude that  (𝑥𝑛)  is slowly oscillating in (𝑉, ‖∙‖).    
It is obvious that the following implication hold:  

Cauchy ⇒ Slow oscillating ⇒ G-Cauchy. 

Above implication cannot be reverted in general which can be seen by the following example. 

Example 4.5:  

Consider NNS  (ℝ, µ0, 𝜈0, 𝜔0)  and µ0,   𝜈0    𝑎𝑛𝑑   𝜔0   are in example (2.2).  By Theorem (4.4), the sequence 

(𝑥𝑛)  given  by 𝑥𝑛 = ∑
1

√𝑘

𝑛
𝑘=1   is G-Cauchy but is not slowly oscillating and the sequence (𝑦𝑛) given by 𝑦𝑛 = ∑

1

𝑘

𝑛
𝑘=1   is 

slowly oscillating but is not Cauchy. 

Theorem 4.6: 

             Let (V, µ, ν, ω) be an NNS satisfying condition (2.1)  and (xn)  be a sequence in V.  (xn)  is slowly oscillating 

(V, µ, ν, ω)  if and only if  (xn)   is slowly oscillating in  (V, ‖∙‖α)  for each α ∈ (0,1). 
Proof: 

Let 𝛼 ∈ (0,1) and 𝑠 > 0 are given.  Assume that (𝑥𝑛) slowly oscillating (𝑉, µ, 𝜈, 𝜔).   
Then,  for 𝜀 = 1 − 𝛼  there exist 𝜆 > 1  and 𝑛0 ≤ 𝑛 < 𝑘 ≤ 𝜆𝑛   we obtain  

µ0(𝑥𝑘 − 𝑥𝑛 , 𝑠) > 1 − 𝜀 ,   𝜈0(𝑥𝑘 − 𝑥𝑛 , 𝑠) < 𝜀    and  𝜔0(𝑥𝑘 − 𝑥𝑛, 𝑠) < 𝜀. 

‖𝑥𝑘 − 𝑥𝑛‖𝛼 = 𝑖𝑛𝑓 {
𝑡 > 0: µ(𝑥𝑘 − 𝑥𝑛 , 𝑡) > 𝛼,   𝜈(𝑥𝑘 − 𝑥𝑛 , 𝑡) < 1 − 𝛼    𝑎𝑛𝑑

  𝜔(𝑥𝑘 − 𝑥𝑛 , 𝑡) < 1 − 𝛼 
} < 𝑠 

This means that (𝑥𝑛)  is slowly oscillating in  (𝑉, ‖∙‖𝛼). 
    Conversely, choose  𝛼 ∈ (0,1)  and let (𝑥𝑛)  be a slowly oscillating sequence in (𝑉, ‖∙‖𝛼).  
Then, for 𝑠 > 0 there exist sequence in NNS  (𝑉, µ, 𝜈, 𝜔)  and 𝑛0 ∈ ℕ  such that 

‖𝑥𝑘 − 𝑥𝑛‖𝛼 = 𝑖𝑛𝑓 {
𝑡 > 0: µ(𝑥𝑘 − 𝑥𝑛 , 𝑡) > 𝛼,   𝜈(𝑥𝑘 − 𝑥𝑛 , 𝑡) < 1 − 𝛼    𝑎𝑛𝑑

  𝜔(𝑥𝑘 − 𝑥𝑛 , 𝑡) < 1 − 𝛼 
} < 𝑠. 

Whenever  𝑛0 ≤ 𝑛 < 𝑘 ≤ 𝜆𝑛.   Thus  µ(𝑥𝑘 − 𝑥𝑛 , 𝑠) > 𝛼 ,  𝜈(𝑥𝑘 − 𝑥𝑛 , 𝑠) < 1 − 𝛼 and 

𝜔(𝑥𝑘 − 𝑥𝑛 , 𝑠) < 1 − 𝛼. Whenever  𝑛0 ≤ 𝑛 < 𝑘 ≤ 𝜆𝑛.  Since s  and  𝛼 were arbitrary,  (𝑥𝑛)  is slowly oscillating   
(𝑉, µ, 𝜈, 𝜔). 
Theorem 4.7: 

Let (xn)   be sequence in NNS  (V, µ, ν, ω).  If  (xn) is a slowly oscillating the (3.6.1),  (3.6.2) and (3.6.3)  are 

satisfied. 

Proof: 

Let   (𝑥𝑛)   be  sequence slowly oscillating sequence in NNS (𝑉, µ, 𝜈, 𝜔).  Fix  𝑡 > 0.  Then, for given   𝜀 ∈
(0,1)  there exist 𝜆 > 1   and 𝑛0 ∈ ℕ  such that  µ(𝑥𝑘 − 𝑥𝑛 , 𝑡) > 1 − 𝜀  ,  𝜈(𝑥𝑘 − 𝑥𝑛 , 𝑡) < 𝜀      and   𝜔(𝑥𝑘 − 𝑥𝑛 , 𝑡) < 𝜀 ,  

whenever  𝑛0 ≤ 𝑛 < 𝑘 ≤ 𝜆𝑛 .    
Hence, we have 

µ(
1

𝜆𝑛 − 𝑛
∑ (𝑥𝑘 − 𝑥𝑛)

𝜆𝑛

𝑘=𝑛+1

, 𝑡) = µ( ∑ (𝑥𝑘 − 𝑥𝑛)

𝜆𝑛

𝑘=𝑛+1

+ (𝜆𝑛 − 𝑛)𝑡) 

                                                          ≥ 𝑚𝑖𝑛{µ(𝑥𝑛+1 − 𝑥𝑛 , 𝑡), µ(𝑥𝑛+2 − 𝑥𝑛, 𝑡), … , µ(𝑥𝜆𝑛 − 𝑥𝑛 , 𝑡)} 
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                                                   > 1 −  𝜀, 

𝜈 (
1

𝜆𝑛 − 𝑛
∑ (𝑥𝑘 − 𝑥𝑛)

𝜆𝑛

𝑘=𝑛+1

, 𝑡) = 𝜈 ( ∑ (𝑥𝑘 − 𝑥𝑛)

𝜆𝑛

𝑘=𝑛+1

+ (𝜆𝑛 − 𝑛)𝑡) 

 

                                                          ≤ 𝑚𝑎𝑥{𝜈(𝑥𝑛+1 − 𝑥𝑛 , 𝑡), 𝜈(𝑥𝑛+2 − 𝑥𝑛 , 𝑡), … , 𝜈(𝑥𝜆𝑛 − 𝑥𝑛 , 𝑡)}, 

                                                   <  𝜀     and  

𝜔(
1

𝜆𝑛 − 𝑛
∑ (𝑥𝑘 − 𝑥𝑛)

𝜆𝑛

𝑘=𝑛+1

, 𝑡) = 𝜔( ∑ (𝑥𝑘 − 𝑥𝑛)

𝜆𝑛

𝑘=𝑛+1

+ (𝜆𝑛 − 𝑛)𝑡) 

                                                    ≤ 𝑚𝑎𝑥{𝜔(𝑥𝑛+1 − 𝑥𝑛, 𝑡), 𝜔(𝑥𝑛+2 − 𝑥𝑛 , 𝑡), … , 𝜔(𝑥𝜆𝑛 − 𝑥𝑛 , 𝑡)}, 

                                                          <  𝜀. 

whenever   𝑛0 ≤ 𝑛 < 𝑘 ≤ 𝜆𝑛 ,  which completes the proof. 

By theorem (3.6) and theorem (4.7), we can formulate the following result. 

Theorem 4.8: 

Let (𝑥𝑛)   be sequence in NNS  (𝑉, µ, 𝜈, 𝜔).  If  (𝑥𝑛) is Cesaro Summable to ℓ∈ 𝑉 and slowly oscillating, then 

(𝑥𝑛)  converges to ℓ. 

    Next, we prove a comparison theorem between the concepts of slow oscillation and q-boundedness of sequence 

in NNS. 

Theorem 4.9: 

Let (xn)   be sequence in NNS  (V, µ, ν, ω).  If  {n(xn − xn−1)}  is q-bounded then (xn)   is slowly oscillating. 

Proof: 

Given   𝜀 ∈ (0,1).  By (2.2),  there exist 𝑀𝜀 > 0 such that 

𝑡 > 𝑀𝜀 ⇒ inf
𝑛∈ℕ

µ(𝑛(𝑥𝑛 − 𝑥𝑛−1), 𝑡) > 1 − 𝜀,   sup
𝑛∈ℕ

𝜈(𝑛(𝑥𝑛 − 𝑥𝑛−1), 𝑡) < 𝜀   𝑎𝑛𝑑      

sup
𝑛∈ℕ

𝑤(𝑛(𝑥𝑛 − 𝑥𝑛−1), 𝑡) < 𝜀.  For each 𝑡 > 0,   

if we take  𝜆 < 1 +
𝑡

 𝑀𝜀
 ,  then 𝑛0 < 𝑛 < 𝑘 ≤ 𝜆𝑛 

µ(𝑥𝑘 − 𝑥𝑛 , 𝑡)     = µ( ∑ (𝑥𝑗 − 𝑥𝑗−1), 𝑡

𝑘

𝑗=𝑛+1

) ≥ min
𝑛+1≤𝑗≤𝑘

µ((𝑥𝑗 − 𝑥𝑗−1),
𝑡

𝑘 − 𝑛
) 

  = min
𝑛+1≤𝑗≤𝑘

µ (𝑗(𝑥𝑗 − 𝑥𝑗−1),
𝑗𝑡

𝑘 − 𝑛
) ≥ min

𝑛+1≤𝑗≤𝑘
µ (𝑗(𝑥𝑗 − 𝑥𝑗−1),

𝑛𝑡

𝑘 − 𝑛
) 

≥ min
𝑛+1≤𝑗≤𝑘

µ(𝑗(𝑥𝑗 − 𝑥𝑗−1),
𝑡

𝑘
𝑛
− 𝑛

) ≥ min
𝑛+1≤𝑗≤𝑘

µ (𝑗(𝑥𝑗 − 𝑥𝑗−1),
𝑡

𝜆 − 1
) 

                                  ≥ inf
𝑛∈ℕ

µ (𝑛(𝑥𝑛 − 𝑥𝑛−1),
𝑡

𝜆−1
) > 1 − 𝜀, 

𝜈(𝑥𝑘 − 𝑥𝑛 , 𝑡)     = 𝜈 ( ∑ (𝑥𝑗 − 𝑥𝑗−1), 𝑡

𝑘

𝑗=𝑛+1

) ≤ max
𝑛+1≤𝑗≤𝑘

µ((𝑥𝑗 − 𝑥𝑗−1),
𝑡

𝑘 − 𝑛
) 

= max
𝑛+1≤𝑗≤𝑘

𝜈 (𝑗(𝑥𝑗 − 𝑥𝑗−1),
𝑗𝑡

𝑘 − 𝑛
) ≤ max

𝑛+1≤𝑗≤𝑘
𝜈 (𝑗(𝑥𝑗 − 𝑥𝑗−1),

𝑛𝑡

𝑘 − 𝑛
) 

 ≤ max
𝑛+1≤𝑗≤𝑘

𝜈 (𝑗(𝑥𝑗 − 𝑥𝑗−1),
𝑡

𝑘
𝑛
− 𝑛

) ≤ max
𝑛+1≤𝑗≤𝑘

𝜈 (𝑗(𝑥𝑗 − 𝑥𝑗−1),
𝑡

𝜆 − 1
) 

                           ≤ 𝑠𝑢𝑝
𝑛∈ℕ

𝜈 (𝑛(𝑥𝑛 − 𝑥𝑛−1),
𝑡

𝜆−1
) < 𝜀       𝑎𝑛𝑑 

𝜔(𝑥𝑘 − 𝑥𝑛 , 𝑡)     = 𝜔 ( ∑ (𝑥𝑗 − 𝑥𝑗−1), 𝑡

𝑘

𝑗=𝑛+1

) ≤ max
𝑛+1≤𝑗≤𝑘

𝜔((𝑥𝑗 − 𝑥𝑗−1),
𝑡

𝑘 − 𝑛
) 

    = max
𝑛+1≤𝑗≤𝑘

𝜔 (𝑗(𝑥𝑗 − 𝑥𝑗−1),
𝑗𝑡

𝑘 − 𝑛
) ≤ max

𝑛+1≤𝑗≤𝑘
𝜔 (𝑗(𝑥𝑗 − 𝑥𝑗−1),

𝑛𝑡

𝑘 − 𝑛
) 

     ≤ max
𝑛+1≤𝑗≤𝑘

𝜔(𝑗(𝑥𝑗 − 𝑥𝑗−1),
𝑡

𝑘
𝑛
− 𝑛

) ≤ max
𝑛+1≤𝑗≤𝑘

𝜔 (𝑗(𝑥𝑗 − 𝑥𝑗−1),
𝑡

𝜆 − 1
) 
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                                   ≤ 𝑠𝑢𝑝
𝑛∈ℕ

𝜔 (𝑛(𝑥𝑛 − 𝑥𝑛−1),
𝑡

𝜆−1
) < 𝜀. 

This means that (𝑥𝑛)   is  slowly oscillating. 

In order to apply theorem (4.9) we consider the following example. 

Example 4.10: 

Let C [0,1]  be the set of all continuous functions defined on [0,1]  and let ‖∙‖  be the norm on C[0.1]    given by 

‖𝑓‖ = max
𝑥∈[0,1]

|𝑓(𝑥)|.   Consider NNS (C[0.1], µ0, 𝜈0  , 𝜔0 ) where µ0, 𝜈0  and 𝜔0   are as in NNS (C[0.1], µ0, 𝜈0  , 𝜔0 )  and  

{𝑛(𝑓𝑛 − 𝑓𝑛−1)}  is q- bounded in view of the facts that  

lim
𝑡→∞

inf
𝑛∈ℕ

 µ0(𝑛(𝑓𝑛 − 𝑓𝑛−1), 𝑡) = lim
𝑡→∞

inf
𝑛∈ℕ

𝑡

𝑡 + ‖𝑛(𝑓𝑛 − 𝑓𝑛−1)‖
   , 

                                                      = lim
𝑡→∞

inf
𝑛∈ℕ

𝑡

𝑡 + max
𝑥∈[0,1]

|𝑛(𝑓𝑛(𝑥) − 𝑓𝑛−1(𝑥))|
, 

                                                      = lim
𝑡→∞

inf
𝑛∈ℕ

𝑡

𝑡 + max
𝑥∈[0,1]

|𝑛(𝑥𝑛 − 𝑥𝑛+1)|
, 

                                                = lim
𝑡→∞

inf
𝑛∈ℕ

𝑡

𝑡+(
𝑛

𝑛+1
)
𝑛+1 = lim

𝑡→∞

𝑡

𝑡+1/𝑒
= 1  , 

lim
𝑡→∞

𝑠𝑢𝑝
𝑛∈ℕ

 𝜈0(𝑛(𝑓𝑛 − 𝑓𝑛−1), 𝑡) = lim
𝑡→∞

𝑠𝑢𝑝
𝑛∈ℕ

‖𝑛(𝑓𝑛 − 𝑓𝑛−1)‖

𝑡 + ‖𝑛(𝑓𝑛 − 𝑓𝑛−1)‖
 , 

                                                       = lim
𝑡→∞

sup
𝑛∈ℕ

max
𝑥∈[0,1]

|𝑛(𝑓𝑛(𝑥) − 𝑓𝑛−1(𝑥))|

𝑡 + max
𝑥∈[0,1]

|𝑛(𝑓𝑛(𝑥) − 𝑓𝑛−1(𝑥))|
 , 

                                                      = lim
𝑡→∞

𝑠𝑢𝑝
𝑛∈ℕ

max
𝑥∈[0,1]

|𝑛(𝑥𝑛 − 𝑥𝑛+1)|

𝑡 + max
𝑥∈[0,1]

|𝑛(𝑥𝑛 − 𝑥𝑛+1)|
, 

                                               = lim
𝑡→∞

𝑠𝑢𝑝
𝑛∈ℕ

(
𝑛

𝑛+1
)
𝑛+1

𝑡+(
𝑛

𝑛+1
)
𝑛+1 = lim

𝑡→∞

1

𝑒

𝑡+
1

𝑒

= 0  and  

lim
𝑡→∞

𝑠𝑢𝑝
𝑛∈ℕ

 𝜔0(𝑛(𝑓𝑛 − 𝑓𝑛−1), 𝑡) = lim
𝑡→∞

𝑠𝑢𝑝
𝑛∈ℕ

‖𝑛(𝑓𝑛 − 𝑓𝑛−1)‖

𝑡
   , 

                                                      = lim
𝑡→∞

sup
𝑛∈ℕ

max
𝑥∈[0,1]

|𝑛(𝑓𝑛(𝑥) − 𝑓𝑛−1(𝑥))|

𝑡
 , 

                                                      = lim
𝑡→∞

𝑠𝑢𝑝
𝑛∈ℕ

max
𝑥∈[0,1]

|𝑛(𝑥𝑛 − 𝑥𝑛+1)|

𝑡
 , 

                                               = lim
𝑡→∞

sup
𝑛∈ℕ

(
𝑛

𝑛+1
)
𝑛+1

𝑡
 = lim

𝑡→∞

1/𝑒

𝑡
= 0  and  

Hence ,  sequence {𝑓𝑛}  is slowly oscillating two sided Tauberian theorem due to in view of theorem (4.8)  

 and (4.9). 

5 . Conclusions: 

In the current paper, as an introduction to summability theory and Tauberian theory in NNS, we have defined 

Cesaro Summability method in NNS, and proved a Tauberian theorem for Cesaro Summability method.  Furthermore, 

we have introduced the concept of slowly oscillating sequence in NNS, given its relationship with q-bounded sequences 

and showed that slow oscillation and q-boundedness serves Tauberian conditions for Cesaro summability method in 

NNS.  In view of the results of this paper, different types of summability methods can be defined in NNS to tackle 

problems where Cesaro method fails and the concepts of slow oscillation and q-boundedness in NNS can be used to 

obtain Tauberian results for other convergence methods. 
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