F-average eccentric graphs

T.Sathiyanandham ${ }^{1}$ and S.Arockiaraj ${ }^{2}$
${ }^{1,2}$ Assistant Professor, Department of Mathematics, Government Arts and Science College, Sivakasi-626 124, Tamilnadu, India. Email id: sathiyan.maths@gmail.com, psarockiaraj@gmail.com.

Abstract

The F-average eccentric graph $A E_{F}(G)$ of a graph G has the vertex set as in G and any two vertices u and v are adjacent in $A E_{F}(G)$ if either they are at a distance $\left\lfloor\frac{e(u)+e(v)}{2}\right\rfloor$ while G is connected or they are in different components while G is disconnected. A graph G is called a F-average eccentric graph if $A E_{F}(H) \cong G$ for some graph H. The main aim of this paper is to find a necessary and sufficient condition for a graph to be a F-average eccentric graph.

AMS (2000) subject classifications: 05C12
Keywords: F-average eccentric vertex, F-average eccentric graph labeling

1 Introduction

Throughout this paper, a graph means a non trivial simple graph. For other graph theoretic notation and terminology, we follow $[7,8]$. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. $d(v)$ denotes the degree of a vertex $v \in V(G)$, the order of G is $|V(G)|$ and the size is $|E(G)|$. The distance $d(u, v)$ between a pair of vertices u and v is the length of a shortest path joining them. The eccentricity $e(u)$ of a vertex u is the distance to a vertex farthest from u. The radius $r(G)$ of G is the minimum eccentricity among the eccentricities of the vertices of G and the diameter $d(G)$ of G is the maximum eccentricity among the eccentricities of the vertices of G. Nestled in between is the average eccentricity; this was introduced by [7] (as eccentric mean). A graph G for which $r(G)=d(G)$ is called a self-centered graph of radius $r(G)$. Double star $S(n, m)$ was introduced by Grossman et al., [6]. The double star $S(n, m)$, where $n \geq m \geq 0$, is the graph consisting of the union of two stars $K_{1, n}$ and $K_{1, m}$ together with a line joinig their centers. A vertex v is called an eccentric vertex of a vertex u if $d(u, v)=e(u)$. A vertex v of G is called an eccentric vertex of G if it is the eccentric vertex of some vertex of G. Let $S_{i}(G)$ denote a subset of the vertex set of G such that $e(u)=i$ for all $u \in$ $V(G)$. The eccentric graph [2] based on G is denoted by G_{e} whose vertex set is $V(G)$ and two vertices u and v are adjacent in G_{e} if $d(u, v)=\min \{e(u), e(v)\}$. In [5], the radial graph $R(G)$ based on G has the vertex set as in G and two vertices are adjacent if the distance between them is equal to the radius of G when G is connected. If G is disconnected, then two vertices are adjacent in $R(G)$ if they are in different components of G. A graph G is called a radial graph if $R(H)=G$ for some graph H. In this paper, we introduce a new graph called F-average eccentric graph. Two vertices u and v of a graph are said to be F-average eccentric to each other if $d(u, v)=\left\lfloor\frac{e(u)+e(v)}{2}\right\rfloor$. The F-average eccentric graph of a graph G, denoted by $A E_{F}(G)$, has the vertex set as in G and any two vertices u and v are adjacent in $A E_{F}(G)$ if either they are at a distance $d(u, v)=$ $\left\lfloor\frac{e(u)+e(v)}{2}\right\rfloor$ while G is connected or they are in different components while G is disconnected. A graph G is called a F-average eccentric graph if $A E_{F}(H) \cong G$ for some graph H. The notion of F-average eccentric graph is different from antipodal graph, eccentric graph and radial graph, since $S(2,1)$ is a F-average eccentric graph but not an antipodal graph, $P_{4} \cup K_{1}$ is a F-average eccentric graph but not an eccentric graph and P_{4} is a

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1239-1247
https://publishoa.com
ISSN: 1309-3452
F-average eccentric graph but not a radial graph. In this paper, we obtain a necessary and sufficient condition for a graph to be a F-average eccentric graph.

Theorem A[8] If $d(G) \geq 3$, then $d(\bar{G}) \leq 3$.
Theorem B[8] If $d(G) \geq 4$, then $d(\bar{G}) \leq 2$.
Theorem C[8] If $r(G) \geq 3$, then $r(\bar{G}) \leq 2$.

Theorem D[7] If $r(G)=d(G) \geq 3$, then $r(\bar{G})=d(\bar{G})=2$.
Theorem $\mathrm{E}[5]$ For cycle $C_{n}, n \geq 4, R\left(C_{n}\right)=\frac{n}{2} K_{2}$ if n is even and $R\left(C_{n}\right) \cong C_{n}$ if n is odd.
Theorem $\mathrm{F}[5]$ Let G be a graph of order n. Then $R(G)=\bar{G}$ if and only if either $S_{2}(G)=V(G)$ or G is the union of complete graphs.

Let $F_{11}, F_{12}, F_{22}, F_{23}, F_{24}, F_{3}$ be the set of all connected graphs G for which $r(G)=d(G)=1, r(G)=$ 1 and $d(G)=2, \quad r(G)=d(G)=2, \quad r(G)=2 \quad$ and $\quad d(G)=3, \quad r(G)=2 \quad$ and $\quad d(G)=4, \quad r(G) \geq 3$ respectively and F_{4} be the set of all disconnected graphs.

F-average eccentric graph of some classes of graphs

Observation 2.1. If G is either a self centered graph or a disconnected graph, then $A E_{F}(G)=R(G)=A(G)=$ G_{e}.

Proposition 2.2. Let P_{n} be any path on $n \geq 1$ vertices. Then

$$
A E_{F}\left(P_{n}\right)= \begin{cases}P_{n}, & \text { if } n=1,2 \\ C_{n}, & \text { if } n=3 \\ P_{4} \cup \bar{K}_{n-4}, & \text { if } n \geq 4\end{cases}
$$

Proof. When $n=1,2, A E_{F}\left(P_{n}\right)=P_{n}$ and $A E_{F}\left(P_{n}\right)=C_{n}$ if $n=3$. Let G be a path $v_{1} v_{2} v_{3} \ldots v_{n}$ with $n \geq 4$ vertices. Then $e\left(v_{i}\right)=n-i$ for $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, e\left(v_{i}\right)=i-1$ for $\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n$ and $d\left(v_{i}, v_{j}\right)=j-i$ for $1 \leq i, j \leq n$. This implies that $d\left(v_{1}, v_{n}\right)=n-1=\left\lfloor\frac{e\left(v_{1}\right)+e\left(v_{n}\right)}{2}\right\rfloor, d\left(v_{1}, v_{n-1}\right)=n-2=\left\lfloor\frac{e\left(v_{1}\right)+e\left(v_{n-1}\right)}{2}\right\rfloor$. Assume that $i<j$. If $1 \leq i, j \leq\left\lceil\frac{n}{2}\right\rceil$, then $d\left(v_{i}, v_{j}\right)=j-i=(n-i)-(n-j)<\left\lceil\frac{e\left(v_{i}\right)+e\left(v_{j}\right)}{2}\right\rceil$. If $2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil$ and $\left\lceil\frac{n}{2}\right\rceil+$ $1 \leq j \leq n-1$, then $\left\lfloor\frac{e\left(v_{i}\right)+e\left(v_{j}\right)}{2}\right\rfloor=\left\lfloor\frac{(n-i)+(j-1)}{2}\right\rfloor>j-i=d\left(v_{i}, v_{j}\right)$. If $j \neq n-1$, then $d\left(v_{1}, v_{j}\right)=j-1<$ $\left\lfloor\frac{(n-1)+(j-1)}{2}\right\rfloor=\left\lfloor\frac{e\left(v_{1}\right)+e\left(v_{j}\right)}{2}\right\rfloor$. By graph symmetry, the F-average eccentric pairs in G are $\left(v_{n-1}, v_{1}\right),\left(v_{1}, v_{n}\right),\left(v_{n}\right.$, v_{2}) and the remaining pairs are not F-average eccentric pairs in G. These F-average eccentric pairs of vertices form the graph $A E_{F}(G)$. In $A E_{F}(G), v_{2} v_{n} v_{1} v_{n-1}$ is a path on 4 vertices and the remaining vertices form $\bar{K}_{n-4} . \square$

When $n \geq 6$ and n is even, $A E_{F}\left(P_{n}\right)=P_{4} \cup \bar{K}_{n-4}, A\left(P_{n}\right)=P_{2} \cup \bar{K}_{n-2}$ and $\left(P_{n}\right)_{e}=S\left(\frac{n}{2}-1, \frac{n}{2}-1\right)$ and $R\left(P_{n}\right)=\frac{n}{2} K_{2}$. So $A E_{F}(G)$ need not be isomorphic to $A(G), G_{e}$ and $R(G)$.

Proposition 2.3. Let C_{n} be any cycle on $n \geq 3$ vertices. Then

$$
A E_{F}\left(C_{n}\right) \cong \begin{cases}\frac{n}{2} K_{2}, & \text { if } n \text { iseven } \\ C_{n}, & \text { if } n \text { isodd } .\end{cases}
$$

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the n vertices of the cycle C_{n}. If $n=3$, then $r\left(C_{3}\right)=1$ and $e\left(v_{i}\right)=1$ for $i=$ $1,2,3$. Hence $A E_{F}\left(C_{3}\right) \cong C_{3}$. If $n \geq 4$, then the result follows from Observation 2.1 and Theorem E .

Observation 2.4. Let G_{i} be a connected graph with r_{i} vertices for $i=1,2, \ldots, n$. If G is the union of $G_{1}, G_{2}, \ldots, G_{n}$, then $A E_{F}(G)=K_{r_{1}, r_{2}, \ldots, r_{n}}$.

Proposition 2.5. $A E_{F}\left(K_{r_{1}, r_{2}, \ldots, r_{n}}\right)=K_{r_{1}} \cup K_{r_{2}} \cup \ldots \cup K_{r_{n}}$ where $r_{1}, r_{2}, \ldots, r_{n} \geq 2$.
Proof. Let $V_{1}, V_{2}, \ldots, V_{n}$ be the n partitions of $V\left(K_{\left.r_{1}, r_{2}, \ldots, r_{n}\right)}\right)$ for which $\left|V_{1}\right|=r_{1},\left|V_{2}\right|=r_{2}, \ldots,\left|V_{n}\right|=r_{n}$. Then $e(u)=2$ for all $u \in V\left(K_{r_{1}, r_{2}, \ldots, r_{n}}\right)$. Let $u \in V_{i}$ for any $i=1,2, \ldots, n$. Then every vertex in $V_{i}-\{u\}$ is a F-average eccentric vertex of u and the remaining vertices of $K_{r_{1}, r_{2}, \ldots, r_{n}}$ are the non F-average eccentric vertices of u. Hence $A E_{F}\left(K_{r_{1}, r_{2}, \ldots, r_{n}}\right)=K_{r_{1}} \cup K_{r_{2}} \cup \ldots \cup K_{r_{n}}$.

Theorem 2.6. For any graph G on n vertices, a vertex is a full degree vertex in $A E_{F}(G)$ if and only if either it is an isolated vertex or a full degree vertex or a non full degree vertex adjacent to the full degree vertices only in G.
Proof. If v is an isolated vertex in G, then v is the full degree vertex in $A E_{F}(G)$. If v is a full degree vertex in G, then for any $u v \in E(G),|e(u)-e(v)| \leq 1$. This implies that $\left[\frac{e(u)+e(v)}{2}\right]=1=d(u, v)$ whenever $u v \in E(G)$. Therefore $u v \in E\left(A E_{F}(G)\right)$ whenever $u v \in E(G)$. Hence v is the full degree vertex in $A E_{F}(G)$. Let G be a connected graph having full degree vertices. If w is a non full degree vertex adjacent to any of full degree vertices in G, then $d(w, u)=2=\left\lfloor\frac{e(w)+e(u)}{2}\right\rfloor$ for each non full degree vertex u in G and $d(w, v)=1=\left\lfloor\frac{e(w)+e(v)}{2}\right\rfloor$ for each full degree vertex v in G. Then w is a full degree vertex in $A E_{F}(G)$

Suppose v is a full degree vertex in $A E_{F}(G)$. If G is a disconnected graph having m components say $H_{1}, H_{2}, \ldots, H_{m}$ with $\left|H_{i}\right|=n_{i}>1$ for $i=1,2, \ldots, m$, then by Observation $2.4, A E_{F}(G)=K_{n_{1}, n_{2}, \ldots, n_{m}}$, a contracdiction. Hence v is an isolated vertex in G. Let G be a connected graph with no full degree vertex. Then $e(u) \geq 2$ for all $u \in V(G)$. Therefore $u v \notin E\left(A E_{F}(G)\right)$ whenever $u v \in E(G)$. Thus $A E_{F}(G)$ has no full degree vertex, a contradiction. Hence G should have a full degree vertex. Let w be a full degree vertex in G. Suppose v is not a full degree vertex in G. Then $v w \in E(G)$. If v is adjacent to at least one non full degree vertex u in G, then $v u \notin E\left(A E_{F}(G)\right)$, a contradiction to the fact that v is a full degree vertex in $A E_{F}(G)$. Thus v is adjacent to the full degree vertices only in G.

Theorem 2.7. Let G be a graph on n vertices. If G has $r \geq 1$ number of full degree vertices $v_{1}, v_{2}, \ldots, v_{r}$, then $A E_{F}(G)=K_{r}+\left(\overline{G-\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}}\right)$.
Proof. Let $v_{1}, v_{2}, \ldots, v_{r}, v_{r+1}, \ldots, v_{n}$ be the vertices of G and let $w v \in E\left(A E_{F}(G)\right)$. If either w or $v \in$ $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$, then $w v=w v_{j} \in E(G)$ for some j. If none of w and v is in $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$, then $e(w)=$ $e(v)=2$. Since $w v \in E\left(A E_{F}(G)\right), w v \notin E(G)$. Therefore $w v \notin E\left(G-\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}\right)$ and hence $w v \in$ $E\left(\overline{G-\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}}\right)$

Suppose $w v \in E\left(K_{r}+\left(\overline{G-\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}}\right)\right)=E\left(\overline{G-\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}}\right) \cup\left\{u v_{j} \in E(G): u \in V(G), 1 \leq j \leq\right.$ $r\}$. If $w v=u v_{i}$ for $u \in V(G)$ and $v_{i} \in\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$, then $d\left(u, v_{i}\right)=1=\left\lfloor\frac{e(u)+e\left(v_{i}\right)}{2}\right]$ and hence $w v \in$ $E\left(A E_{F}(G)\right)$. If $w v \in E\left(\overline{G-\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}}\right)$, then $w v \notin E\left(G-\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}\right)$. This implies that $w v \notin E(G)$. Then $d(w, v)=2=\left\lfloor\frac{e(w)+e(v)}{2}\right\rfloor$ and hence $w v \in E\left(A E_{F}(G)\right)$. Thus $A E_{F}(G)=K_{r}+\left(\overline{G-\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}}\right)$.

Corollary 2.8. If $F_{m, n}=\bar{K}_{m}+P_{n}$ is a fan graph on $m+n \geq 2$ vertices for any positive integers m and n, then

$$
A E_{F}\left(F_{m, n}\right)= \begin{cases}K_{n+1}, & \text { if } n=1,2,3 \text { and } m=1 \\ K_{1}+\bar{P}_{n}, & \text { if } n>3 \text { and } m=1 \\ K_{m+n}, & \text { if } n=1,2 \text { and } m>1 \\ \left(K_{m} \cup P_{2}\right)+K_{1}, & \text { if } n=3 \text { and } m>1 \\ K_{m} \cup \bar{P}_{n}, & \text { if } n>3 \text { and } m>1\end{cases}
$$

Proof. Follows from Theorem 2.7.

Corollary 2.9. Let $W_{n}=K_{1}+C_{n}$ be a wheel graph on $n \geq 3$ vertices. Then $A E_{F}\left(W_{n}\right)=K_{1}+\bar{C}_{n}$.
Proof. If $r=1$, then by Theorem 2.7, $A E_{F}\left(W_{n}\right)=K_{1}+\bar{C}_{n}$.
Theorem 2.10. Let G be a graph. Then $A E_{F}(G)=K_{m}+K_{r_{1}, r_{2}, \ldots, r_{l}}$ for any positive integers m, l, r_{i} and $1 \leq i \leq$ l if and only if any one of the following holds
(1) G is disconnected with exactly $l+m$ components and it has at least m isolated vertices
(2) G is connected and it has m full degree vertices so that the deletion of these full degree vertices in G forms a disconnected graph with l components in which each component is complete.
Proof. If (1) holds, then by Observation 2.4, $A E_{F}(G)=K_{m}+K_{r_{1}, r_{2}, \ldots, r_{l}}$ for any positive integers m, l, r_{i} and $1 \leq$ $i \leq l$. Suppose (2) holds. Let $\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$ be the set of all full degree vertices of G where $s \geq m$. Then $G-$ $\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$ has at most l complete components, say $K_{r_{1}}, K_{r_{2}}, \ldots, K_{r_{l}}$. By Theorem 2.6, each v_{i} is a full degree vertex in $A E_{F}(G)$. Let $x, y \in V\left(K_{r_{i}}\right)$ and $z \in V\left(K_{r_{j}}\right)(j \neq i)$. Then $e(x)=e(y)=e(z)=2$. Since $x y \in$ $E\left(K_{r_{i}}\right)$ and $x z \notin E(G), x y \notin E\left(A E_{F}(G)\right)$ and $x z \in E\left(A E_{F}(G)\right)$. Hence $A E_{F}(G)=K_{m}+K_{r_{1}, r_{2}, \ldots, r_{l}}$ for any positive integers m, l, r_{i} and $1 \leq i \leq l$.

Suppose $A E_{F}(G)=K_{m}+K_{r_{1}, r_{2}, \ldots, r_{l}}$ for any positive integers m, l, r_{i} and $1 \leq i \leq l$. Assume that $r_{1} \leq$ $r_{2} \leq \ldots \leq r_{l}$. If G is disconnected having no isolated vertex, by Observation $2.4, A E_{F}(G)$ is a complete $t(\geq$ 2)-partite graph having no full degree vertex, a contradiction. If G is disconnected with at most $m-1$ isolated vertices, then by Theorem 2.6, $A E_{F}(G)$ has at most $m-1$ full degree vertices, a contradiction. So G should have at least m isolated vertices. Let $H_{1}, H_{2}, \ldots, H_{m}, H_{m+1}, \ldots, H_{t}$ be the components of G so that $\left|H_{i}\right|=1$ for $1 \leq i \leq m,\left|H_{m+i}\right|=s_{i}$ for $1 \leq i \leq t-m$ and $s_{1} \leq s_{2} \leq \ldots \leq s_{t-m}$. If $t>m+l(<m+l)$, then by Observation 2.4, $A E_{F}(G)=K_{m}+K_{s_{1}, s_{2}, \ldots, s_{m+l}, s_{m+l+1}, \ldots, s_{t}}\left(K_{m}+K_{s_{1}, s_{2}, \ldots, s_{t-m}}\right)$, a contradiction to the assumption of $A E_{F}(G)$. In G, if $t=m+l$ and $r_{j} \neq s_{j}$ for some j, then it arises a contradiction to the assumption of $A E_{F}(G)$. If G is connected with no full degree vertex, then by Theorem $2.6, A E_{F}(G)$ has no full degree vertex, a contradiction. If the number of full degree vertices in G is fewer than m, then by Theorem 2.6, $A E_{F}(G)$ has at most $m-1$ full degree vertices, a contradiction. Therefore G should have at least m full degree vertices. Let $\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$ be the set of all full degree vertices of G where $s \geq m$. Take $G_{0}=G-\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$. If G_{0} is complete, then all the vertices of G are full degree vertices, by Theorem 2.7, $A E_{F}(G)$ is complete, a contradiction. If G_{0} is connected and non complete, by Theorem 2.7, $A E_{F}(G)=K_{s}+\overline{G_{0}}$, a contradiction. So G_{0} is disconnected. If G_{0} has a non complete component H, then by Theorem $2.7, E(\bar{H}) \subseteq E\left(A E_{F}(G)\right)$, a contradiction. Hence each component of G_{0} is complete. Let $H_{1}, H_{2}, \ldots, H_{t}(t>l)$ be the complete components of G_{0} with $\left|H_{i}\right|=r_{i}$ for $1 \leq i \leq t$. Since eccentricity of each vertex in H_{i} is $2, x y \in E\left(A E_{F}(G)\right)$ for all $x \in$ $V\left(H_{i}\right), y \in V\left(H_{j}\right), i \neq j$ and $1 \leq i, j \leq t$. Therefore $K_{r_{1}, r_{2}, \ldots, r_{l}, r_{l+1}, \ldots, r_{t}}$ is a subgraph of $A E_{F}(G)$, a contradiction. Thus G_{0} has at most l components in which each component is complete.

Proposition 2.11. Let $L_{n}=P_{n} \times P_{2}$ be a ladder with $n \geq 1$ steps. Then

$$
A E_{F}\left(L_{n}\right) \cong \begin{cases}K_{2}, & \text { if } n=1 \\ 2 K_{2}, & \text { if } n=2 \\ C_{6}, & \text { if } n=3 \\ 2 P_{4} \cup \bar{K}_{2(n-4)}, & \text { if } n \geq 4\end{cases}
$$

Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices on the path in L_{n} of length $n-1$. If $n=1$, then $L_{1}=K_{2}$ and $A E_{F}\left(L_{1}\right) \cong K_{2}$. If $n=2$, then $L_{2}=C_{4}$ and $A E_{F}\left(L_{2}\right) \cong 2 K_{2}$. If $n=3$, then the F-average eccentric pairs in L_{3} are $\left(u_{1}, v_{3}\right),\left(v_{3}, u_{2}\right),\left(u_{2}, v_{1}\right),\left(v_{1}, u_{3}\right),\left(u_{3}, v_{2}\right)$ and $\left(v_{2}, u_{1}\right)$. Hence $A E_{F}\left(L_{3}\right) \cong C_{6}$. Let G be a ladder with $n \geq 4$ steps. Then $e\left(u_{i}\right)=e\left(v_{i}\right)=n+1-i$ for $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, e\left(u_{i}\right)=e\left(v_{i}\right)=i$ for $\left\lceil\frac{n}{2}\right\rceil+$ $1 \leq i \leq n, \quad d\left(u_{i}, u_{j}\right)=d\left(v_{i}, v_{j}\right)=j-i$ and $d\left(u_{i}, v_{j}\right)=|j-i|+1$. This implies that $d\left(u_{1}, v_{n}\right)=n=$
$\left\lfloor\frac{e\left(u_{1}\right)+e\left(v_{n}\right)}{2}\right\rfloor$ and $d\left(u_{1}, v_{n-1}\right)=n-1=\left\lfloor\frac{e\left(u_{1}\right)+e\left(v_{n-1}\right)}{2}\right\rfloor$. Assume that $i<j$. If $1 \leq i, j \leq\left\lceil\frac{n}{2}\right\rceil$, then $d\left(u_{i}, u_{j}\right)=$ $j-i<\left\lfloor\frac{(n+1-i)+(n+1-j)}{2}\right\rfloor=\left\lfloor\frac{e\left(u_{i}\right)+e\left(u_{j}\right)}{2}\right\rfloor$ and $d\left(u_{i}, v_{j}\right)=|j-i|+1<\left\lfloor\frac{(n+1-i)+(n+1-j)}{2}\right\rfloor=\left\lfloor\frac{e\left(u_{i}\right)+e\left(v_{j}\right)}{2}\right\rfloor$. If $2 \leq i \leq$ $\left\lceil\frac{n}{2}\right\rceil$ and $\left\lceil\frac{n}{2}\right\rceil+1 \leq j \leq n-1$, then $d\left(u_{i}, u_{j}\right)=j-i<\left\lfloor\frac{(n+1-i)+j}{2}\right\rfloor=\left\lfloor\frac{e\left(u_{i}\right)+e\left(u_{j}\right)}{2}\right\rfloor$ and $d\left(u_{i}, v_{j}\right)=|j-i|+1<$ $\left\lfloor\frac{(n+1-i)+j}{2}\right\rfloor=\left\lfloor\frac{e\left(u_{i}\right)+e\left(v_{j}\right)}{2}\right\rfloor$. If $j \neq n-1$, then $d\left(u_{1}, u_{j}\right)=j-1<\left\lfloor\frac{n+j}{2}\right\rfloor=\left\lfloor\frac{e\left(u_{1}\right)+e\left(u_{j}\right)}{2}\right\rfloor, d\left(u_{1}, v_{j}\right)=j<\left\lfloor\frac{n+j}{2}\right\rfloor=$ $\left[\frac{e\left(u_{1}\right)+e\left(v_{j}\right)}{2}\right]$. If $i=j$, then $d\left(u_{i}, v_{j}\right)<\left[\frac{e\left(u_{i}\right)+e\left(v_{j}\right)}{2}\right]$. By graph symmetry, the F-average eccentric pairs in G are $\left(v_{n-1}, u_{1}\right),\left(u_{1}, v_{n}\right),\left(v_{n}, u_{2}\right),\left(u_{n-1}, v_{1}\right),\left(v_{1}, u_{n}\right),\left(u_{n}, v_{2}\right)$ and the remaining pairs in G are not F-average eccentric pairs in G. Let $P_{1}: v_{n-1} u_{1} v_{n} u_{2}$ and $P_{2}: u_{n-1} v_{1} u_{n} v_{2}$ be two paths. Thus $A E_{F}(G)$ is the union of P_{1}, P_{2} and $\bar{K}_{2(n-4)}$.

$3 \quad F$-average eccentric graphs

Proposition 3.1. If $r(G) \geq 2$, then $A E_{F}(G) \subseteq \bar{G}$.
Proof. By the definition, $V\left(A E_{F}(G)\right)=V(\bar{G})=V(G)$. If $e=u v \in E\left(A E_{F}(G)\right)$ but does not belong to $E(\bar{G})$, then $u v \in E(G)$ and by the definition, either $e(u)=1$ or $e(v)=1$, a contradiction. Therefore $E\left(A E_{F}(G)\right) \subseteq$ $E(\bar{G})$ and hence $A E_{F}(G) \subseteq \bar{G}$.

Theorem 3.2. For any graph G on n vertices, $A E_{F}(G)=G$ if and only if $G \in F_{11}$.
Proof. Suppose $A E_{F}(G)=G$. If G is disconnected with $r \geq 2$ components, then by Observation 2.4, $A E_{F}(G)$ is a complete r partite graph, a contradiction. So G is connected. If $r(G) \geq 2$, then by Proposition 3.1, $A E_{F}(G) \subseteq \bar{G}$, a contradiction. If $G \in F_{12}$, then by Theorem 2.7, $A E_{F}(G) \neq G$, a contradiction. Suppose $G \in F_{11}$. Then by Theorem 2.10, $A E_{F}(G)=K_{n}=G$.

Proposition 3.3. For any graph $G \in F_{22}, A E_{F}(G)=\bar{G}$.
Proof. Follows from Observation 2.1 and Theorem F.

Proposition 3.4. Every complete graph G of order $n \geq 1$, is a F-average eccentric graph.
Proof. Follows from Theorem 2.10.

Proposition 3.5. $K_{l}+\bar{K}_{n}$ is a F-average eccentric graph, for any positive integers l and n.
Proof. Follows from Theorem 2.10.
Proposition 3.6. $A E_{F}(G)=K_{m}+K_{r_{1}, r_{2}, \ldots, r_{l}}$ is a F-average eccentric graph, for any positive integers m, l, r_{i} and $1 \leq i \leq l$.
Proof. Follows from Theorem 2.10.

Proposition 3.7. Every path P_{n} is a F-average eccentric graph, for any positive integer n.
Proof. When $n=1,2, P_{n}$ is a F-average eccentric graph of itself. When $n=3, A E_{F}\left(K_{1} \cup K_{2}\right)=P_{3}$. Let $v_{1} v_{2} v_{3} v_{4}$ be a P_{4} path. Then the eccentricities of $v_{1}, v_{2}, v_{3}, v_{4}$ in P_{4} are $3,2,2,3$ respectively and the eccentricities of $v_{1}, v_{2}, v_{3}, v_{4}$ in \bar{P}_{4} are $2,3,3,2$ respectively. The non adjacent pairs in \bar{P}_{4} are $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{4}\right) \quad$ and $\bar{P}_{4}=v_{2} v_{4} v_{1} v_{3}$. The F-average eccentric pairs in \bar{P}_{4} are $\left(v_{2}, v_{3}\right),\left(v_{1}, v_{2}\right),\left(v_{3}, v_{4}\right)$. Hence $A E_{F}\left(\bar{P}_{4}\right)=P_{4}$. Assume that $n \geq 5$. Let $v_{1} v_{2} \ldots v_{n}$ be a path P_{n}. For each $i, 2 \leq i \leq n-1, v_{i}$ is non adjacent to v_{i-1} and v_{i+1} in \bar{P}_{n} and it is adjacent to all other vertices in \bar{P}_{n}. Since $d\left(P_{n}\right)=n-1$, by Theorem $\mathrm{B}, d\left(\bar{P}_{n}\right) \leq 2$. Also \bar{P}_{n} has no full degree vertex. So $\bar{P}_{n} \in F_{22}$ and by Proposition 3.3, $A E_{F}\left(\bar{P}_{n}\right)=P_{n}$.

Proposition 3.8. Every cycle C_{n} is a F-average eccentric graph, for any positive integer $n \geq 3$.
Proof. If $n=3$ and $H=\bar{K}_{3}$ or P_{3} or C_{3}, then by Theorem 2.10, Proposition 2.2 and Proposition 2.3, $A E_{F}(H)=C_{3}$. If $n=4$, then $A E_{F}\left(P_{2} \cup P_{2}\right)=A E_{F}\left(\bar{C}_{4}\right)=C_{4}$. Assume that $n>4$. For a cycle $C_{n}, e(u)=2$ for all $u \in V\left(\bar{C}_{n}\right)$. By Proposition 3.3, $A E_{F}\left(\bar{C}_{n}\right)=C_{n}$. Hence C_{n} is a F-average eccentric graph.

Proposition 3.9. Every ladder L_{n} with n steps is a F-average eccentric graph, for any positive integer n.
Proof. When $n=1, A E_{F}\left(L_{n}\right)=L_{n}$. Asseume that L_{n} is a ladder with $n \geq 2$ steps. Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the paths of length $n-1$ in L_{n}. Then the non adjacent pairs in \bar{L}_{n} are $\left(u_{1}, v_{1}\right),\left(u_{n}, v_{n}\right),\left(u_{i-1}, u_{i}\right),\left(u_{i}, u_{i+1}\right),\left(u_{i}, v_{i}\right),\left(v_{i-1}, v_{i}\right),\left(v_{i}, v_{i+1}\right)$ for all $i=2,3, \ldots, n-1$. Then $\bar{L}_{n} \in F_{22}$ and by Proposition 3.3, $A E_{F}\left(\bar{L}_{n}\right)=L_{n}$. Hence L_{n} is a F-average eccentric graph.

Proposition 3.10. Every wheel graph W_{n} on $n+1$ vertices is a F-average eccentric graph, for any positive integer $n \geq 3$.
Proof. Consider the graph $H=K_{1}+\bar{C}_{n}$. Let u be the vertex of K_{1} and let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of \bar{C}_{n}. Then $e(u)=1$ and $e\left(v_{i}\right)=2$ in H for all $i=1,2, \ldots, n$. Since $d\left(u, v_{i}\right)=1=\left\lfloor\frac{e(u)+e\left(v_{i}\right)}{2}\right\rfloor, u v_{i} \in A E_{F}(H)$, for $i=1,2, \ldots, n$. Since $e\left(v_{i}\right)=2$ for each $i, v_{i} v_{j} \in E\left(A E_{F}(H)\right)$ if and only if $v_{i} v_{j} \notin E(H)$ for all $i \neq j$ and $1 \leq i, j \leq n$. Thus $A E_{F}(H)=K_{1}+C_{n}=W_{n}$.

Proposition 3.11. Every fan graph $F_{m, n}=\bar{K}_{m}+P_{n}$ is a F-average eccentric graph, for any positive integers m and $n=1,2$.
Proof. Follows from Theorem 2.10.

Proposition 3.12. Every complete n-partite graph is a F-average eccentric graph, for any positive integer $n \geq 2$.
Proof. Follows from Observation 2.4.

4 A necessary and sufficient condition for a graph to be a \boldsymbol{F}-average eccentric graph

Theorem 4.1. Let G be a graph and let $S_{3}(G)$ be the set of all vertices of $V(G)$ whose eccentricities are 3 . Then $A E_{F}(G)=\bar{G}$ if and only if any one of the following conditions hold
(1) $G \in F_{22}$
(2) $G \in F_{23}$ and there is no vertex adjacent to atleast two non adjacent vertices in $S_{3}(G)$
(3) G is disconnected having no non-complete component.

Proof. If (1) holds, then by Proposition 3.3, $A E_{F}(G)=\bar{G}$. Suppose (2) holds. Since $r(G)=2$, by Proposition 3.1, $A E_{F}(G) \subseteq \bar{G}$. Let $u v \in E(\bar{G})$. where $u, v \in S_{3}(G)$. By hypothesis, $d_{G}(u, v)=3=\left\lfloor\frac{e(u)+e(v)}{2}\right\rfloor$ and hence $u v \in$ $E\left(A E_{F}(G)\right)$. Therefore $A E_{F}(G)=\bar{G}$. Suppose (3) holds. If G is totally disconnected, then by the definition, $A E_{F}(G)=K_{n}=\bar{G}$. Suppose G has at least one component H with $|H| \geq 2$. Then by Observation 2.1 and Theorem F, $A E_{F}(G)=\bar{G}$.

Suppose $A E_{F}(G)=\bar{G}$. If $G \in F_{11} \cup F_{12}$. Then by Theorem 2.7 and Theorem 3.2, $A E_{F}(G) \neq \bar{G}$. Suppose $G \in F_{23}$ and there is a vertex $u \in V(G)$ in which it is adjacent to the non adjacent pair of vertices v and $w \in$ $S_{3}(G)$. Since $d(v, w)=2$ and $\left\lfloor\frac{e(v)+e(w)}{2}\right\rfloor=3, v w \notin E\left(A E_{F}(G)\right)$, a contradiction. If $G \in F_{24}$, then there exists two vertices u and v such that $e(u)=2$ and $e(v)=4$. But $d(u, v)=2$ and $\left[\frac{e(u)+e(v)}{2}\right]=3$. Therefore $u v \in E(\bar{G})$ but $u v \notin E\left(A E_{F}(G)\right)$, a contradiction. If $G \in F_{3}, e(u) \geq 3$ for all $u \in V(G)$. Then there is a pair of vertices v and w such that $d(v, w)=2$ but $\left|\frac{e(v)+e(w)}{2}\right| \geq 3$. Therefore $v w \in E(\bar{G})$ but $v w \notin E\left(A E_{F}(G)\right)$, a contradiction. If G is disconnected with at least one non complete component H, then every pair of non adjacent vertices u and v in H are adjacent in \bar{G}. But by the definition, $u v \notin E\left(A E_{F}(G)\right)$, a contradiction.

Corollary 4.2. If G and $\bar{G} \in F_{22}$, then G and \bar{G} are F-average eccentric graphs.
Proof. By theorem 4.1, $A E_{F}(G)=\bar{G}$. and $A E_{F}(\bar{G})=G$.
Corollary 4.3. Let G be any graph such that $\bar{G} \in F_{23}$. If there is no vertex adjacent to at least two non adjacent vertices in $S_{3}(\bar{G})$, then $A E_{F}(\bar{G})=G$.
Proof. By theorem 4.1, the result follows.
Corollary 4.4. If $r(G)>1$ and \bar{G} is disconnected with each component complete, then G is a F average eccentric graph.
Proof. By theorem 4.1, $A E_{F}(\bar{G})=G$.
Lemma 4.5. If G is disconnected, then $\overline{A E_{F}(G)}$ is also a disconnected graph with each component complete. Proof. By Observation 2.4, the result follows.

Theorem 4.6. If $r(G) \geq 2$ and \bar{G} is disconnected with at least one non complete component, then G is not a F-average eccentric graph.
Proof. Suppose there exists a graph H such that $A E_{F}(H)=G$. If H is disconnected, then by Lemma 4.5, $\overline{A E_{F}(H)}$ is disconnected in which each component is complete, a contradiction to the fact that \bar{G} is connected with at least one non complete component. Hence H must be connected. If $r(H)=1$ and $d(H)=1$, then $A E_{F}(H)=H=G$, a contradiction to $r(G)>1$. If $r(H)=1$ and $d(H)=2$, then by the definition of F-average eccentric graph, $r\left(A E_{F}(H)\right)=1$, a contradiction to $r(G)>1$. So $r(H)>1$. By Proposition 3.1, $A E_{F}(H) \subseteq \bar{H}$. Hence H is isomorphic to a spanning subgraph of \bar{G}. Since \bar{G} is disconnected, H is disconnected, a contradiction to $r(G) \geq 2$. From these, we conclude that $A E_{F}(H)$ is not equal to G, a contradiction.

Theorem 4.7. If $G \in F_{22}$ and $\bar{G} \in F_{23}$ in which there is a vertex w such that w is adjacent to at least two non adjacent pairs of vertices u and v in $S_{3}(\bar{G})$, then G is not a F-average eccentric graph.
Proof. Suppose there exists a graph H such that $A E_{F}(H)=G$. If H is disconnected, then by Lemma 4.5, $\overline{A E_{F}(H)}$ is disconnected, a contradiction to \bar{G} is connected. Hence H must be connected. If $r(H)=1$ and $d(H)=1$, then $A E_{F}(H)=H=G$, a contradiction to $r(G)>1$. If $r(H)=1$ and $d(H)=2$, then by the definition of F-average eccentric graph, $r\left(A E_{F}(H)\right)=1$, a contradiction to $r(G)>1$. So $r(H)>1$. By Proposition 3.1, $A E_{F}(H) \subseteq \bar{H}$. Hence H is isomorphic to a spanning subgraph of \bar{G}. Since $r(\bar{G})=2$ and $d(\bar{G})=3, r(H) \geq 2$ and $d(H) \geq 3$. If w is a vertex adjacent to two non adjacent pairs u and v having eccentricities 3 in \bar{G}, then $e(w) \geq 2, e(u), e(v) \geq 3$ in H and $d_{\bar{G}}(u, v)=2$. Since H is connected, $d(u, v)=2<\left\lfloor\frac{e(u)+e(v)}{2}\right\rfloor$ in H and hence u and v are non adjacent in $A E_{F}(H)$. From these, we conclude that $A E_{F}(H)$ is not equal to G, a contradiction.

Theorem 4.8. If $G \in F_{22}$ and $\bar{G} \in F_{24}$, then G is not a F-average eccentric graph.
Proof. Suppose there exists a graph H such that $A E_{F}(H)=G$. If H is disconnected, then by Lemma 4.5, $\overline{A E_{F}(H)}$ is disconnected, a contradiction to \bar{G} is connected. Hence H must be connected. If $r(H)=1$ and $d(H)=1$, then $A E_{F}(H)=H=G$, a contradiction to $r(G)>1$. If $r(H)=1$ and $d(H)=2$, then by the definition of F-average eccentric graph, $r\left(A E_{F}(H)\right)=1$, a contradiction to $r(G)>1$. So $r(H)>1$. By Proposition 3.1, $A E_{F}(H) \subseteq \bar{H}$. Hence H is isomorphic to a spanning subgraph of \bar{G}. Since $r(\bar{G})=2$ and $d(\bar{G})=4, r(H) \geq 2$ and $d(H) \geq 4$. Let $u \in V(H)$. Then u is adjacent to all the vertices v in G such that $d_{\bar{G}}(u, v) \geq 2$. $d_{H}(u, v) \geq 2$ whenever $d_{\bar{G}}(u, v) \geq 2$. But u is not adjacent to a vertex v in $A E_{F}(H)$ if

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1239-1247
https://publishoa.com
ISSN: 1309-3452
$d(u, v)<\left\lfloor\frac{e(u)+e(v)}{2}\right\rfloor$ in H. That is, for some pair of non adjacent vertices u and v in $H, u v \notin E\left(A E_{F}(H)\right)$, a contradiction to $u v \in E(G)$. From these, we conclude that $A E_{F}(H)$ is not equal to G, a contradiction.

Using the same proof technique used in Theorem 4.8, we prove the following propositions
Proposition 4.9. If $G \in F_{22}$ and $\bar{G} \in F_{3}$, then G is not a F-average eccentric graph.
Proposition 4.10. If $G \in F_{23}$ and $\bar{G} \in F_{23}$ in which there is a vertex w such that w is adjacent to atleast two non adjacent pairs of vertices u and v in $S_{3}(\bar{G})$, then G is not a F-average eccentric graph.

Corollary 4.11. If $G \in F_{23}$ and $\bar{G} \in F_{23}$ in which there is no vertex adjacent to atleast two non adjacent vertices in $S_{3}(\bar{G})$, then G is a F-average eccentric graph.
Proof. By Theorem 4.1, $A E_{F}(\bar{G})=G$.
Corollary 4.12. If $G \in F_{24}$, then G is a F-average eccentric graph.
Proof. By Theorem B, $\bar{G} \in F_{22}$. Then by Theorem 4.1, $A E_{F}(\bar{G})=G$.
Corollary 4.13. If $G \in F_{3}$, then G is a F-average eccentric graph.
Proof. Since $G \in F_{3}, r(G) \geq 3$ and $d(G) \geq 3$. If $r(G)=d(G)=3$, then by Theorem $C, \bar{G} \in F_{22}$. If $r(G)=3$ and $d(G)>3$ or $r(G)>3$ and $d(G)>3$, then by Theorems B and $C, \bar{G} \in F_{22}$. Then by Theorem 4.1, $A E_{F}(\bar{G})=G$.

Theorem 4.14. If G is a totally disconnected graph on $n \geq 2$ vertices, then G is not a F-average eccentric graph.
Proof. Suppose there exists a graph H such that $A E_{F}(H)=G$. If H is a disconnected graph, then by Lemma 4.5, $\overline{A E_{F}(H)}$ is disconnected, a contradiction to $\bar{G} \in F_{11}$. So H must be connected. If $H \in F_{11}$, then by Theorem 3.2, $A E_{F}(H)=H=G$, a contradiction to $G \in F_{4}$. If $H \in F_{12}$, then by Theorem $2.6, A E_{F}(H) \in F_{11} \cup F_{12}$, a contradiction to $G \in F_{4}$. So $r(H) \geq 2$. Then every pair of F-average eccentric vertices in G are adjacent in $A E_{F}(H)$. Hence $A E_{F}(H)$ has an edge, a contradiction. Thus G is not a F-average eccentric graph.

Theorem 4.15. If either G or $\bar{G} \notin F_{12}$, then G is a F-average eccentric graph if and only if G is a F-average eccentric graph of itself or its complement.
Proof. Suppose either G is a F-average eccentric graph of itself or its complement. Then by the definition, G is a F-average eccentric graph.

Suppose G is a F-average eccentric graph.
Case 1. G is connected and \bar{G} is connected.
Subcase 1.1. Suppose $G \in F_{22}$. Then by Theorem 4.8 and Proposition 4.9, $\bar{G} \notin F_{24}$ and $\bar{G} \notin F_{3}$. Therefore $\bar{G} \in$ F_{22} or $\bar{G} \in F_{23}$. If $\bar{G} \in F_{22}$, then by Theorem 4.1, $A E_{F}(\bar{G})=G$. If $\bar{G} \in F_{23}$, then by Theorem $4.7, \bar{G}$ has no vertex adjacent to at least two non adjacent vertices in $S_{3}(\bar{G})$, then by Corollary 4.3, $A E_{F}(\bar{G})=G$.
Subcase 1.2. Suppose $G \in F_{23}$. Then $\bar{G} \in F_{22}$ or $\bar{G} \in F_{23}$. If $\bar{G} \in F_{22}$, then by Theorem 4.1, $A E_{F}(\bar{G})=G$. If $\bar{G} \in F_{23}$, then by Proposition 4.10, \bar{G} has no vertex adjacent to at least two non adjacent vertices in $S_{3}(\bar{G})$, then by Corollary 4.3, $A E_{F}(\bar{G})=G$.
Subcase 1.3. Suppose $G \in F_{24}$. Then $\bar{G} \in F_{22}$ and by Theorem 4.1, $A E_{F}(\bar{G})=G$.
Subcase 1.4. Suppose $G \in F_{3}$. Then $\bar{G} \in F_{22}$ and by Theorem 4.1, $A E_{F}(\bar{G})=G$.
Case 2. G is connected and \bar{G} is disconnected.
Subcase 2.1. Suppose $G \in F_{11}$. Then by Theorem 3.2, $A E_{F}(G)=G$.
Subcase 2.2. Suppose $r(G) \geq 2$. Then by Theorem 4.6, each component of \bar{G} is complete. By Theorem 4.1, $A E_{F}(\bar{G})=G$.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1239-1247
https://publishoa.com
ISSN: 1309-3452

Case 3. G is disconnected. Then by assumption, either $\bar{G} \in F_{11}$ or $\bar{G} \in F_{22}$. If $\bar{G} \in F_{11}$, then G is totally disconnected and by Theorem 4.14, G is not a F-average eccentric graph, a contradiction. Hence $\bar{G} \in F_{22}$. By Theorem 4.1, $A E_{F}(\bar{G})=G$.

Theorem 4.16. Let $G \in F_{12}$ be a graph on n vertices. Then G is not a F-average eccentric graph if and only if it has a triangle and a pendant vertex.
Proof. Suppose G is not a F-average eccentric graph. Assume that G has no pendant vertex. Let $u_{1}, u_{2}, \ldots, u_{r}$ be the full degree vertices and $u_{r+1}, u_{r+2}, \ldots, u_{n}$ be the non full degree vertices. Then $e\left(v_{i}\right)=1$ for $1 \leq i \leq r$ and $e\left(u_{j}\right)=2$ for $r+1 \leq j \leq n$. Construct a graph H from G as follows. H has a vertex set as in G. Let $u_{1}, u_{2}, \ldots, u_{r}$ be the full degree vertices in H. Every pair of the non full degree vertices $u_{r+1}, u_{r+2}, \ldots, u_{n}$ are adjacent in H whenever they are non adjacent in G and vice versa. Then by the definition, $A E_{F}(H)=G$, a contradiction. Suppose G has no triangle. Then G has only one full degree vertex and the remaining vertices are pendant vertices. Then the graph H is $K_{1} \cup K_{n-1}$ so that $A E_{F}(H) \cong G$, a contradiction.

Suppose G has a triangle and a pendant vertex. Suppose there exists a graph H such that $A E_{F}(H)=$ G. Let x be a central vertex of G, u be a pendant vertex and $x y z$ be a triangle in G. Then $e(u)=2, e(x)=$ 1 and $e(y)=2=e(z)$. If $w \neq x$ is another full degree vertex in G, then w is adjacent to u in G. a contradiction. Therefore x is the only full degree vertex in $A E_{F}(H)$. By Theorem 2.6, either x is an isolated vertex or a full degree vertex or a non full degree vertex adjacent to the full degree vertices in H. If x is an isolated vertex in H, then u is adjacent to all the vertices other than x in H. By the definition, $G=K_{1, n-1}$, a contradiction. If x is a full degree vertex in H, then u is adjacent to x as well as its eccentric vertices in $A E_{F}(H)$, a contradiction. If x is a non full degree vertex adjacent to the full degree vertex v in H, then u is adjacent to both x and v in $A E_{F}(H)$, a contradiction.

References

[1] R.R. Singleton, There is no irregular moore graph, Amer. Math. Monthly, 75 (1968), 42-43.
[2] J. Akiyama, K. Ando, D. Avis, Eccentric graphs, Discrete math., 16 (1976), 187-195.
[3] R. Aravamuthan and B. Rajendran, Graph equations involving antipodal graphs, Presented at the seminar on combinatories and applications held at ISI, Culcutta during 14-17 December, (1982), 40-43.
[4] R. Aravamuthan and B. Rajendran, On antipodal graphs, Discrete math., 49 (1984), 193-195.
[5] KM. Kathiresan and G. Marimuthu, A study on radial graphs, Ars Combin., 96 (2010), 353 - 360.
[6] J.W. Grossman, F. Harary and M. Klawe, Generalized ramsey theory for graphs, x:double stars, Discrete math., 28 (1979), 247-254.
[7] F. Buckley and F. Harary, Distance in graphs, Addition-wesley, Reading (1990).
[8] D.B. West, Introduction to graph theory, Prentice - Hall of india, New Delhi (2003).

