Volume 13, No. 3, 2022, p. 1230-1238 https://publishoa.com ISSN: 1309-3452

Odd Fibonacci edge irregular labelling for some simple graphs

M. Uma Devi¹, M. Kamaraj², S. Arockiaraj³

^{1,3}Assistant Professor, Department of Mathematics,
 Government Arts and Science College, Sivakasi – 626 124, Tamilnadu, India.
 email id: moorthy.uma17@gmail.com, psarockiaraj@gmail.com
 ²Associate Professor, Department of Mathematics,
 Government Arts and Science College, Sivakasi – 626 124, Tamilnadu, India.
 email id: kamarajm17366@gmail.com

ABSTRACT: Let G be a graph with p vertices and q edges and f: V(G) \rightarrow {0,1,2,...,k} be an injective function, where k is a positive integer. If the induced edge labeling f*: E(G) \rightarrow { $F_2, F_4, F_5, F_7, F_8, F_{10}, ..., F_{q+\left|\frac{q}{2}\right|+1}$ } defined by f*(uv) = f(u)+f(v), for each uv \in E(G), is a

bijection, then the labeling f is called an odd Fibonacci edge irregular labeling of G. A graph which admits an odd Fibonacci edge irregular labeling is called an odd Fibonacci edge irregular graph. The odd Fibonacci edge irregularity strength ofes(G) is the minimum k for which G admits an odd Fibonacci edge irregular labeling. The odd Fibonacci edge irregularity strength for P_n , $K_{1,n}$, P_nOK_1 , B(m,n) and the non existence of an odd Fibonacci edge irregular labeling for the graphs K_p , $K_{m,n}$ have been determined.

Keywords: odd Fibonacci sequence, edge irregular labeling, odd Fibonacci edge irregular labeling

1. INTRODUCTION

By a graph, we mean a finite undirected graph without loops or multiple edges with p vertices and q edges. A graph labeling is an assignment of integers to the vertices or edges or both. Rosa[7] introduced the concept of graceful labeling. The Fibonacci numbers can be defined by the linear recurrence $F_n = F_{n-1}+F_{n-2}$, $n \ge 3$. This generates an infinite sequence of integers $F_1=1$, $F_2=1$, $F_3=2$, $F_4=3$, $F_5=5$, $F_6=8$, $F_7=13$ etc. In 2020, G.Chitra et al. [3] have introduced the concept of odd Fibonacci mean labeling.

Motivated by this, we have introduced an odd Fibonacci edge irregular labeling (OFEIL) which is an injective function $f: V(G) \rightarrow \{0, 1, 2, ..., k\}$, k being a positive integer if the induced edge labeling $f^*: E(G) \rightarrow \{F_2, F_4, F_5, F_7, F_8, F_{10}, ..., F_{q+\left|\frac{q}{2}\right|+1}\}$ defined by $f^*(uv) = f(u) + f(v)$, for each $uv \in E(G)$, is bijection.

If such a labeling exists, then G is called an odd Fibonacci edge irregular graph (OFEIG) and the minimum possible k is called the odd Fibonacci edge irregularity strength ofes(G). In this paper, the odd Fibonacci edge irregularity strength for P_n , $K_{1,n}$, $P_n \Theta K_1$, B(m,n) and the non existence of an odd Fibonacci edge irregular labeling for the graphs K_p , $K_{m,n}$ have been determined.

2. Main Results

Theorem 2.1. Every path P_n, (n ≥ 2) is an OFEIG and ofes(P_n) =
$$\begin{cases} \left| \frac{1}{2} F_{\frac{3n-2}{2}} \right|, & \text{if n is even} \\ F_{n+\left\lfloor \frac{n}{2} \right\rfloor - 1} & \text{, if n is odd.} \end{cases}$$

Proof. Let $G = P_n$. In G, q = n-1. Let $V(G) = \{v_1, v_2, ..., v_n\}$ and $E(G) = \{v_i v_{i+1} : 1 \le i \le n-1\}$. **Case (i)** n is even

Volume 13, No. 3, 2022, p. 1230-1238 https://publishoa.com ISSN: 1309-3452

Define
$$f: V(G) \rightarrow \left\{0, 1, 2, \dots, \left\lceil \frac{1}{2} F_{\frac{3n-2}{2}} \right\rceil\right\}$$
 as follows:
$$f(v_i) = \left\{ \left\lfloor \frac{1}{2} F_{\frac{3i+1}{2}} \right\rfloor, \quad 1 \le i \le n \text{ and } i \text{ is odd} \\ \left\lceil \frac{1}{2} F_{\frac{3i-2}{2}} \right\rceil, \quad 1 \le i \le n \text{ and } i \text{ is even.} \right\}$$

Then f* is obtained as follows:

$$f^{*}(v_{i}v_{i+1}) = \begin{cases} F_{\frac{3i+1}{2}}, 1 \le i \le n-1 \text{ and } i \text{ is odd} \\ F_{\frac{3i+2}{2}}, 1 \le i \le n-1 \text{ and } i \text{ is even.} \end{cases}$$

Since n is even, $f(v_n) = \left\lceil \frac{1}{2} F_{\frac{3n-2}{2}} \right\rceil$ and $f(v_{n-1}) = \left\lfloor \frac{1}{2} F_{\frac{3n-2}{2}} \right\rfloor$. In this case, $f(v_n) - f(v_{n-1}) = 1$ and $f(v_{n-1}) + f(v_n) = F_{\frac{3n-2}{2}} = F_{q+\left\lfloor \frac{q}{2} \right\rfloor + 1}$. So $f(v_n)$ is the minimum k with the required

property.

Figure 1:ofes(
$$P_8$$
) = 45

Case (ii) n is odd

Define
$$f: V(G) \rightarrow \left\{ 0, 1, 2, \dots, F_{n+\left\lfloor \frac{n}{2} \right\rfloor - 1} \right\}$$
 as follows:
 $f(v_1) = F_{n+\left\lfloor \frac{n}{2} \right\rfloor - 1}$,
 $f(v_2) = F_{n+\left\lfloor \frac{n}{2} \right\rfloor - 2}$ and
 $f(v_i) = \left\{ \left\lfloor \frac{1}{2} F_{\frac{3i-5}{2}} \right\rfloor$, $3 \le i \le n$ and i is odd
 $\left\lfloor \frac{1}{2} F_{\frac{3i-8}{2}} \right\rfloor$, $4 \le i \le n$ and i is even.

Then f^* is obtained as follows: $f^*(v_1v_2) = F_{n+\mid n\mid n\mid},$

$$f * (v_2 v_3) = F_{n + \left\lfloor \frac{n}{2} \right\rfloor^{-2}}$$
 and

Volume 13, No. 3, 2022, p. 1230-1238 https://publishoa.com ISSN: 1309-3452

$$f^{*}(v_{i}v_{i+1}) = \begin{cases} F_{\frac{3i-5}{2}} , 3 \le i \le n-1 \text{ and } i \text{ is odd} \\ F_{\frac{3i-4}{2}} , 4 \le i \le n-1 \text{ and } i \text{ is even.} \end{cases}$$

In pursuance of obtaining the edge label $F_{q+\left\lfloor\frac{q}{2}\right\rfloor+1}$, we may choose the labels of its end vertices as $F_{q+\left\lfloor\frac{q}{2}\right\rfloor-1}$ and $F_{q+\left\lfloor\frac{q}{2}\right\rfloor}$.

If the number *r* and *s* such that $F_{q+\left\lfloor\frac{q}{2}\right\rfloor-1} < r \le s < F_{q+\left\lfloor\frac{q}{2}\right\rfloor}$ are assigned to the central vertices, then there is an edge which assigns the label greater than $F_{q+\left\lfloor\frac{q}{2}\right\rfloor-1}$. But $F_{q+\left\lfloor\frac{q}{2}\right\rfloor}$ is no longer an edge value. So such *r* and *s* are impossible.

Since $f(v_2) = F_{q+\left|\frac{q}{2}\right|-2}$, the value $f(v_1)$ is minimum k with the required property.

Therefore, of es(G) = $F_{n+\lfloor \frac{n}{2} \rfloor^{-1}}$.

Theorem 2.2 Every star graph $K_{1,n}$ $(n \ge 1)$ is an OFEIG and ofes $(K_{1,n}) = F_{q+\left\lfloor \frac{q}{2} \right\rfloor + 1} - 1$. **Proof.** Let $G = K_{1,n}$. In G, q = n. Let $V(G) = \{u, v_1, v_2, \dots, v_n\}$ and $E(G) = \{uv_i : 1 \le i \le n\}$. Define $f : V(G) \rightarrow \left\{0, 1, 2, \dots, F_{q+\left\lfloor \frac{q}{2} \right\rfloor + 1} - 1\right\}$ as follows: f(u) = 1 and $f(v_i) = F_{i+\left\lfloor \frac{i}{2} \right\rfloor + 1} - 1$, $1 \le i \le n$.

Then f* is obtained as

$$f^{*}(uv_{i}) = F_{i + \left\lfloor \frac{i}{2} \right\rfloor + 1}$$
, $1 \le i \le n$.

To obtain F_2 as an edge label, it is necessary to assign 0 and 1 to a pair of adjacent vertices. So either 0 is a vertex label of central vertex and 1 is a label of a pendant vertex of $K_{1,n}$ or 0 is a vertex label of pendant vertex and 1 is a label of the central vertex. If 0 is assigned to the central vertex, $F_{q+\left|\frac{q}{2}\right|+1}$ is to be assigned as a label of a pendant vertex in pursuance of obtaining the edge label $F_{q+\left|\frac{q}{2}\right|+1}$. If 1 is assigned to the central vertex, $F_{q+\left|\frac{q}{2}\right|+1} - 1$ is to be assigned as a label of a label

pendant vertex in pursuance of obtaining the edge label $F_{q+\left|\frac{q}{2}\right|+1}$

Hence $f(v_n) = F_{q+\left\lfloor \frac{q}{2} \right\rfloor + 1} - 1$ is the minimum k with the required property. Therefore, $ofes(G) = F_{q+\left\lfloor \frac{q}{2} \right\rfloor + 1} - 1$. Volume 13, No. 3, 2022, p. 1230-1238 https://publishoa.com ISSN: 1309-3452

Figure 3: ofes($K_{1,6}$) = 54

Theorem 2.3 $P_n OK_1 \ (n \ge 2)$ is an OFEIG and ofes $(G) = \left| \frac{1}{2} F_{\frac{6n-2}{2}} \right|$.

Proof. Let $G = P_n \Theta K_1$. In G, q = 2n-1. Let $V(G) = \{v_1, v_2, ..., v_n, u_1, u_2, ..., u_n\}$ and $E(G) = \{v_i v_{i+1} / 1 \le i \le n - 1\} \cup \{v_i u_i / 1 \le i \le n\}$. Define $f : V(G) \rightarrow \left\{0, 1, 2, ..., \left\lceil \frac{1}{2} F_{\frac{6n-2}{2}} \right\rceil\right\}$ as follows: $f(v_i) = \begin{cases} \left\lceil \frac{1}{2} F_{\frac{6i-2}{2}} \right\rceil, & 1 \le i \le n \text{ and } i \text{ is odd} \\ \left\lfloor \frac{1}{2} F_{\frac{6i-2}{2}} \right\rfloor, & 1 \le i \le n \text{ and } i \text{ is even} \end{cases}$ $f(u_i) = \begin{cases} \left\lfloor \frac{1}{2} F_{\frac{6i-2}{2}} \right\rfloor, & 1 \le i \le n \text{ and } i \text{ is odd} \\ \left\lceil \frac{1}{2} F_{\frac{6i-2}{2}} \right\rceil, & 1 \le i \le n \text{ and } i \text{ is odd} \end{cases}$

Then f* is obtained as follows: f*(v_iv_{i+1}) = F_{3i+1}, 1 ≤ i ≤ n-1 and f*(v_iu_i) = F_{3i-1}, 1 ≤ i ≤ n. If n is odd, $f(v_n) = \left[\frac{1}{2}F_{\frac{6n-2}{2}}\right]$ and $f(u_n) = \left[\frac{1}{2}F_{\frac{6n-2}{2}}\right]$. If n is even, $f(v_n) = \left[\frac{1}{2}F_{\frac{6n-2}{2}}\right]$ and $f(u_n) = \left[\frac{1}{2}F_{\frac{6n-2}{2}}\right]$. In both cases, $f(v_n) - f(u_n) = 1$ and $f(v_n) + f(u_n) = F_{\frac{1}{2}}$

In both cases, $f(v_n) - f(u_n) = 1$ and $f(v_n) + f(u_n) = F_{q+\left|\frac{q}{2}\right|+1}$. So either $f(v_n)$ or $f(u_n)$ is the minimum k with the required

property when n is odd or even respectively.

Therefore, of es(G) =
$$\left| \frac{1}{2} F_{\frac{6n-2}{2}} \right|$$
.

1233

Volume 13, No. 3, 2022, p. 1230-1238 https://publishoa.com ISSN: 1309-3452

Figure 4: ofes $(P_7 \odot K_1) = 3383$

Theorem 2.4 A Bistar graph B(m, n) with $m \ge n$, is an OFEIG and ofes(G) = $F_{q+\left|\frac{q}{2}\right|+1} - F_{m+\left|\frac{m+1}{2}\right|+2}$. **Proof.** Let G = B(m, n). In G, q = m+n+1. Let $V(G) = \{v, u, v_1, v_2, ..., v_m, u_1, u_2, ..., u_n\}$ and $E(G) = \{vv_i : 1 \le i \le m\} \bigcup \{vu\} \bigcup \{uu_i : 1 \le i \le n\}$. Define $f: V(G) \rightarrow \left\{ 0, 1, 2, \dots, F_{q + \left\lfloor \frac{q}{2} \right\rfloor + 1} - F_{m + \left\lfloor \frac{m+1}{2} \right\rfloor + 2} \right\}$ as follows: $f(v_i) = F_{i+\left|\frac{i}{2}\right|+1}, 1 \le i \le m,$ $f(u) = F_{m+\left|\frac{m+1}{2}\right|+2}$ and $f(u_i) = F_{m+\left|\frac{m+1+i}{2}\right|+2+i} - F_{m+\left|\frac{m+1}{2}\right|+2}, 1 \le i \le n.$ Then f* is obtained as follows

$$\begin{split} f^{*}(vv_{i}) &= \frac{F_{i+\left\lfloor \frac{i}{2} \right\rfloor + 1}}{m_{+}\left\lfloor \frac{m+1}{2} \right\rfloor + 2}} & \text{and} \\ f^{*}(vu) &= \frac{F_{m+\left\lfloor \frac{m+1}{2} \right\rfloor + 2}}{m_{+}\left\lfloor \frac{m+1+i}{2} \right\rfloor + 2 + i}, \ 1 \leq i \leq k \end{split}$$

To obtain F_2 as an edge label, it is necessary to assign 0 and 1 to a pair of adjacent vertices. There are two possibilities to assign 0 and 1. Either assign 0 and 1 to a pair of central vertices or assign 0 and 1 to a pair of central vertex and its adjacent pendant vertex. If 0 and 1 are assigned to the central vertices, then $F_{q+\left|\frac{q}{2}\right|+1}$ or $F_{q+\left|\frac{q}{2}\right|+1} - 1$ is to be

assigned as a label of a pendant vertex in pursuance of obtaining the edge label $F_{q+\left|\frac{q}{2}\right|+1}$. If 0 and 1 is assigned to u and

its pendant vertex, then it leads to take a larger value for k while $\deg v > \deg u$.

Case (i) Assign 1 to the central vertex v and 0 to its pendant vertex.

n.

Lase (i) Assign 1 to the central vertex, $a_{m} = 1$, In this case, the adjacent vertices of v such as $v_1, v_2, ..., v_m$, u are labeled as $F_2-1, F_4-1, ..., F_{m+\left|\frac{m}{2}\right|+1} - 1$,

$$F_{m+\left\lfloor\frac{m+1}{2}\right\rfloor+2} - 1. \text{ Since } f(u) = F_{m+\left\lfloor\frac{m+1}{2}\right\rfloor+2} - 1, \text{ a pendant vertex of } u \text{ is to be labeled as}$$
$$F_{q+\left\lfloor\frac{q}{2}\right\rfloor+1} - \left(F_{m+\left\lfloor\frac{m+1}{2}\right\rfloor+2} - 1\right) \text{ in pursuance of obtaining the edge label } F_{q+\left\lfloor\frac{q}{2}\right\rfloor+1}.$$

Case (ii) Assign 0 to the central vertex v and 1 to its pendant vertex.

Volume 13, No. 3, 2022, p. 1230-1238 https://publishoa.com ISSN: 1309-3452

In this case, the adjacent vertices of v such as $v_1, v_2, ..., v_m$, u are labeled as $F_2, F_4, ..., F_{m+\lfloor \frac{m}{2} \rfloor + 1}, F_{m+\lfloor \frac{m+1}{2} \rfloor + 2}$. Since $f(u) = F_1$, $F_{m+\lfloor \frac{m}{2} \rfloor + 1}$, $F_{m+\lfloor \frac{m+1}{2} \rfloor + 2}$.

 $= \mathbf{F}_{\mathbf{m} + \left\lfloor \frac{\mathbf{m} + 1}{2} \right\rfloor + 2}, \text{ a pendant vertex of } \mathbf{u} \text{ is to be labeled as}$ $\mathbf{F}_{\mathbf{q} + \left\lfloor \frac{\mathbf{q}}{2} \right\rfloor + 1} - \mathbf{F}_{\mathbf{m} + \left\lfloor \frac{\mathbf{m} + 1}{2} \right\rfloor + 2} \text{ in pursuance of obtaining the edge label } \mathbf{F}_{\mathbf{q} + \left\lfloor \frac{\mathbf{q}}{2} \right\rfloor + 1}.$

Hence $F_{q+\left\lfloor \frac{q}{2} \right\rfloor+1} - F_{m+\left\lfloor \frac{m+1}{2} \right\rfloor+2}$ is the minimum k with the required property.

Therefore, ofes(G) = $F_{q+\left\lfloor \frac{q}{2} \right\rfloor+1} - F_{m+\left\lfloor \frac{m+1}{2} \right\rfloor+2}$.

Figure 5: ofes(B(5, 4)) = 987

Theorem 2.5 Every complete graph K_p ($p \ge 3$), is not an OFEIG.

Proof. Let $G = K_p$ and the vertex set of G be $\{v_1, v_2, ..., v_p\}$.

Hence the graph G is not an OFEIG.

Theorem 2.6 A graph G with $p (\ge 5)$ vertices having deg $(v_i) \ge p - 2$, for all i is not an OFEIG.

Proof. Let $V(G) = \{v_1, v_2, ..., v_p\}$. To obtain F_2 , it is necessary to assign 0 and 1 to a pair of adjacent vertices. Choose v_1 and v_2 such that $f(v_1) = 0$ and $f(v_2) = 1$. To obtain F_4 , either 3 is assigned to one of the adjacent vertex of v_1 or 2 is assigned to one of the adjacent vertex of v_2 .

Choose a vertex v_3 which is adjacent to both v_1 and v_2 . Suppose 3 is assigned to the vertex v_3 . Then the edge v_1v_3 has the label F₄, but the label of the edge v_2v_3 is 4 which is not an odd Fibonacci number. If 2 is assigned to the vertex v_3 , then the edge v_2v_3 has the label F₄. But the label of the edge v_1v_3 is 2 which is not an odd Fibonacci number.

Suppose v_3 is a vertex adjacent to v_1 and non adjacent to v_2 . To obtain F_4 as an edge label, either 3 is assigned to the vertex of v_3 or 2 is assigned to one of the adjacent vertex of v_2 . By assigning 3 to the vertex v_3 , the edge v_1v_3 has the label

Volume 13, No. 3, 2022, p. 1230-1238 https://publishoa.com ISSN: 1309-3452

 F_4 To obtain F_5 as an edge label, either 2 is assigned to one of the adjacent vertex of v_3 or 4 is assigned to one of the adjacent vertex of v_2 . Let the adjacent vertex of v_3 say v_4 which is assigned by 2. Then the edge v_3v_4 has the label F₅. Since $deg(v_i) \ge p - 2$, for all i, it is impossible that v_4 is non adjacent to both v_1 and v_2 . If v_4 is adjacent to v_1 , then the edge v_1v_4 has the label 2 which is not an odd Fibonacci number. Suppose v_4 is adjacent to v_2 . Then the edge v_2v_4 has the label 3 which is already an edge label of v_1v_3 . Let the adjacent vertex of v_2 say v_4 which is assigned by 4. Then the edge v_2v_4 has the label F₅. Since deg(v_i) $\ge p - 2$, for all i, it is impossible that v_4 is non adjacent to both v_1 and v_3 . If v_4 is adjacent to v_1 , then the edge v_1v_4 has the label 4 which is not an odd Fibonacci number. Suppose v_4 is adjacent to v_3 . Then the edge v₃v₄ has the label 7 which is not an odd Fibonacci number. Suppose 2 is assigned to one of the adjacent vertex of v_2 say v_3 . Then the edge v_2v_3 has the label F₄. To obtain the edge label F₅, either 5 is assigned to one of the adjacent vertex of v_1 or 3 is assigned to one of the adjacent vertex of v_3 or 4 is assigned to one of the adjacent vertex of v_2 . Let the adjacent vertex of v_1 say v_4 which is assigned by 5. Then the edge v_1v_4 has the label F_5 . It is impossible that v_4 is non adjacent to both v_2 and v_3 . If v_4 is adjacent to v_2 , then the edge v_4v_2 has the label 6 which is not an odd Fibonacci number. Suppose v_4 is adjacent to v_3 . Then the edge v_3v_4 has the label 7 which is not an odd Fibonacci number. Let the adjacent vertex of v_2 , say v_4 , which is assigned by 4. Then the edge v_2v_4 has the label F₅. It is impossible that v_4 is non adjacent to both v_1 and v_3 . If v_4 is adjacent to v_1 , then the edge v_4v_1 has the label 4 which is not an odd Fibonacci number. Suppose v_4 is adjacent to v_3 . Then the edge v_3v_4 has the label 6 which is not an odd Fibonacci number. If the adjacent vertex of v_3 say v_4 which is assigned by 3, then the edge v_3v_4 has the label F_5 . It is impossible that v_4 is non adjacent to both v_1 and v_2 . If v_4 is adjacent to v_1 , then the edge v_1v_4 has the label 3 which is already an edge label of v_2v_3 . Suppose v_4 is adjacent to v_2 . Then the edge v_2v_4 has the label 4 which is not an odd Fibonacci number.

Hence G is not an OFEIG.

Theorem 2.7 The graph $K_{m,n}$ (m $\geq 2, n \geq 4$) is not an OFEIG.

Proof. Let $G = K_{m,n}$.

Let $V_1 = \{u_1, u_2, \dots, u_m\}$, $V_2 = \{v_1, v_2, \dots, v_n\}$ be the partitions of G and assume that $m \le n$.

 $E(G) = \{u_i v_j : 1 \le i \le m, 1 \le j \le n\}$. To obtain F_2 as an edge label, it is necessary to assign 0 and 1 to a pair of adjacent vertices. Choose an arbitrary vertex, say u_1 in V_1 and v_1 in V_2 such that $f(u_1) = 0$, $f(v_1) = 1$. To get F_4 as an edge label, either 3 is assigned to one of the adjacent vertex of u_1 or 2 is assigned to one of the adjacent vertex of v_1 .

Choose a vertex v_2 which is adjacent to all u_i 's, $1 \le i \le m$. If 3 is assigned to the vertex v_2 , then the edge u_1v_2 has the label F₄. To get the edge label F₅, either 5 is assigned to one of the adjacent vertex of u_1 or 4 is assigned to one of the adjacent vertex of v_1 or 2 is assigned to one of the adjacent vertex of v_2 . If 4 is assigned to the vertex u_2 , then the edge u_2v_1 has the label F₅ but the label of the edge u_2v_2 is 7 which is not an odd Fibonacci number. Suppose 2 is assigned to the vertex u_2 . Then the edge u_2v_2 has the label F₅ but the label of the edge u_2v_1 is 3 which is already an edge label of u_1v_2 . Therefore, the only way to obtain F₅ is the assignment of the label 5 to one of the adjacent vertex of u_1 or 12 is assigned to one of

Volume 13, No. 3, 2022, p. 1230-1238 https://publishoa.com ISSN: 1309-3452

the adjacent vertex of v_1 or 10 is assigned to one of the adjacent vertex of v_2 or 8 is assigned to one of the adjacent vertex of v_3 . If 12 is assigned to the vertex u_2 , then the edge u_2v_1 has the label F_7 but the label of the edge u_2v_2 is 15 and u_2v_3 is 17 respectively which are not an odd Fibonacci numbers. Suppose 10 is assigned to the vertex u_2 . Then the edge u_2v_2 has the label F_7 but the label of the edges u_2v_1 and u_2v_3 are 11 and 15 respectively which are not odd Fibonacci numbers. Suppose 8 is assigned to the vertex u_2 . Then the edge u_2v_3 has the label F_7 but the label of the edges u_2v_1 and u_2v_2 are 9 and 11 respectively which are not odd Fibonacci numbers. Therefore, 13 is assigned to the vertex v_4 which is adjacent to $F_{j^+|\frac{j}{2}|^{+1}}$, $1 \le j \le n$. In

 u_1 . Thus the label of the edge u_1v_4 is F_7 . Proceeding like this the vertices v_j can get the label as

pursuance of obtaining $F_{n+\lfloor \frac{n}{2} \rfloor+2} \left(\text{ or } F_{n+\lfloor \frac{n}{2} \rfloor+3} \right)$ as edge label, if a number $k \leq F_{n+\lfloor \frac{n}{2} \rfloor+2} - 2$ is assigned to one of the

vertex u_i 's namely u_m , then the edges u_mv_1 and u_mv_2 have the labels k+1 and k+3 respectively which are not odd Fibonacci numbers. Therefore, $F_{n+\left|\frac{n}{2}\right|+2}$ -1 is to be assigned to the vertex u_m . But the edge label of u_mv_2 is

 $F_{n+\left\lfloor\frac{n}{2}\right\rfloor+2} + 2 \text{ is not an odd Fibonacci number as } \left|F_{i+1} - F_{i}\right| \ge 8 \text{ , for all } i \ge 4.$

Choose a vertex u_2 which is adjacent to all v_j 's, $1 \le j \le n$. By assigning 2 to the vertex u_2 , the edge u_2v_1 has the label F₄. To obtain F₅ as an edge label, either 5 is assigned to one of the adjacent vertex of u_1 or 3 is assigned to one of the adjacent vertex of u_2 or 4 is assigned to one of the adjacent vertex of v_1 . If 5 is assigned to the vertex v_2 , then the edge u_1v_2 has the label F₅ but the label of the edge u_2v_2 is 7 which is not an odd Fibonacci number. Suppose 3 is assigned to the vertex v_2 . Then the edge u_2v_2 has the label F₅ but the label of the edge u_1v_2 is 3 which is already an edge label of u_1v_2 . Therefore, 4 is to be assigned to the vertex u_3 which is adjacent to v_1 . Thus the label of the edge u_3v_1 is F₅. To obtain F₇ as an edge label, either 13 is assigned to one of the adjacent vertex of u_1 or 11 is assigned to one of the adjacent vertex of u_2 or 9 is assigned to one of the edge u_1v_2 has the label F₇ but the label of the edges u_2v_2 and u_3v_2 are 15 and 17 respectively which are not odd Fibonacci numbers. Suppose 11 is assigned to the vertex v_2 . Then the edge u_1v_2 and u_3v_2 are 11 and 15 respectively which are not odd Fibonacci numbers. If 9 is assigned to the vertex v_2 , then the edge u_3v_2 has the label F₇ but the label of the edges u_1v_2 and u_2v_2 are 9 and 11 respectively which are not odd Fibonacci numbers. Therefore, 12 is to be assigned to the vertex v_4 which is adjacent to v_1 .

Thus the label of the edge u_4v_1 is F_7 . Proceeding like this, the vertices of u_i can get the label as $F_{i+\left\lfloor\frac{i}{2}\right\rfloor+1} - 1$, $1 \le i \le m$.

In order to obtain $F_{m+\lfloor \frac{m}{2} \rfloor+2} \left(\text{or } F_{m+\lfloor \frac{m}{2} \rfloor+3} \right)$ as an edge label, if a number $k \leq F_{m+\lfloor \frac{m}{2} \rfloor+2} -1$ is assigned to the vertex,

then the edges u_1v_2 and u_2v_2 have the labels k and k+2 respectively which are not odd Fibonacci numbers. Therefore, $F_{m+\left\lfloor\frac{m}{2}\right\rfloor+2}$ is to be assigned to the vertex v_2 . But the edge label of u_2v_2 is $F_{m+\left\lfloor\frac{m}{2}\right\rfloor+2} + 2$ is not an odd Fibonacci

number as $|F_{i+1} - F_i| \ge 8$, for all $i \ge 4$.

Similarly, odd Fibonacci edge irregular labeling does not exist if we choose $f(u_1)=1$ and $f(v_1)=0$. Hence the graph $K_{m,n}$ is not an OFEIG.

Observation 2.8: The graphs $K_{2,2}$, $K_{2,3}$ and $K_{3,3}$ are not OFEIG. From Theorem 2.2, Theorem 2.7 and Observation 2.8, it can be concluded that $K_{m,n}$ is an OFEIG only when it is a star graph.

Conjecture: A cyclic graph is not an OFEIG.

Volume 13, No. 3, 2022, p. 1230-1238

https://publishoa.com ISSN: 1309-3452

References:

[1]S.Amutha and M.Uma Devi, Total Fibonacci Irregular labeling for Fan, Wheel and Umbrella graph, Journal of computer and Mathematical Sciences, 10 (12) (2019), 1654 - 1664.

[2]M.Baca, M.Stainslav Jendrol, Miller and Joseph Ryan, On irregular total labeling, Discrete Math., 307 (2007), 137 - 138.

[3]G.Chitra, J.Priya and Y.Vishnupriya, Odd Fibonacci mean Labeling of some special graphs, International Journal of Mathematics Trends and Technology, 66 (1) (2020),

115 - 126.

[4]David W.bange and Anthony E. Barkauskas, Fibonacci graceful graphs, University of Wisconsin-La crosse, La crosse, WI 53601, August 1983, 174-188.

[5]Joseph A. Gallian, A Dynamic Survey of graph Labeling, The Electronic Journal of Combinatorics (2019), #DS6. [6]S.Karthikeyan, S.Navanaeethakrishnan and R.Sridevi, Total Edge Fibonacci irregularLabeling of some star graphs, International Journal of Mathematics and soft computing, 5 (1) (2015), 73-78.

[7]A.Rosa, On certain valuations of the vertices of a graph, Theory of graphs International Symposium, Rome, 1966, Gordon and Breach, Newyork and Dunod Paris (1967), 349 - 355.

[8]D.B.West, Introduction to graph theory, Prentice - Hall of India, New Delhi (2003).