Odd Fibonacci edge irregular labelling for some simple graphs

M. Uma Devi ${ }^{1}$, M. Kamaraj ${ }^{2}$, S. Arockiaraj ${ }^{3}$
${ }^{1,3}$ Assistant Professor, Department of Mathematics, Government Arts and Science College, Sivakasi - 626 124, Tamilnadu, India. email id: moorthy.uma17@gmail.com, psarockiaraj@gmail.com
${ }^{2}$ Associate Professor, Department of Mathematics,
Government Arts and Science College, Sivakasi - 626 124, Tamilnadu, India. email id: kamarajm17366@gmail.com

ABSTRACT: Let G be a graph with p vertices and q edges and $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots, \mathrm{k}\}$ be an injective
function, where k is a positive integer. If the induced edge labeling
$\mathrm{f}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow\left\{\mathrm{F}_{2}, \mathrm{~F}_{4}, \mathrm{~F}_{5}, \mathrm{~F}_{7}, \mathrm{~F}_{8}, \mathrm{~F}_{10}, \ldots, \mathrm{~F}_{\left.\mathrm{q}+\left\lfloor\frac{\mathrm{q}}{2}\right\rfloor_{+1}\right\}}\right\}$ defined by $\mathrm{f}^{*}(\mathrm{uv})=\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})$, for each uv $\in \mathrm{E}(\mathrm{G})$, is a bijection, then the labeling f is called an odd Fibonacci edge irregular labeling of G. A graph which admits an odd Fibonacci edge irregular labeling is called an odd Fibonacci edge irregular graph. The odd Fibonacci edge irregularity strength ofes (G) is the minimum k for which G admits an odd Fibonacci edge irregular labeling. The odd Fibonacci edge irregularity strength for $\mathrm{P}_{\mathrm{n}}, \mathrm{K}_{1, \mathrm{n}}, \mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}, \mathrm{~B}(\mathrm{~m}, \mathrm{n})$ and the non existence of an odd Fibonacci edge irregular labeling for the graphs $\mathrm{K}_{\mathrm{p}}, \mathrm{K}_{\mathrm{m}, \mathrm{n}}$ have been determined.

Keywords: odd Fibonacci sequence, edge irregular labeling, odd Fibonacci edge irregular labeling

1. INTRODUCTION

By a graph, we mean a finite undirected graph without loops or multiple edges with p vertices and q edges. A graph labeling is an assignment of integers to the vertices or edges or both. Rosa[7] introduced the concept of graceful labeling. The Fibonacci numbers can be defined by the linear recurrence $F_{n}=F_{n-1}+F_{n-2}, n \geq 3$. This generates an infinite sequence of integers $\mathrm{F}_{1}=1, \mathrm{~F}_{2}=1, \mathrm{~F}_{3}=2, \mathrm{~F}_{4}=3, \mathrm{~F}_{5}=5, \mathrm{~F}_{6}=8, \mathrm{~F}_{7}=13$ etc. In 2020, G. Chitra et al. [3] have introduced the concept of odd Fibonacci mean labeling.
Motivated by this, we have introduced an odd Fibonacci edge irregular labeling (OFEIL) which is an injective function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots, \mathrm{k}\} \quad, \quad \mathrm{k}$ being $\quad \mathrm{a}$ positive integer if the induced edge labeling $f^{*}: E(G) \rightarrow\left\{F_{2}, F_{4}, F_{5}, F_{7}, F_{8}, F_{10}, \ldots, F_{q+\left\lfloor\frac{q}{2}\right\rfloor_{+1}}\right\}$ defined by $f^{*}(u v)=f(u)+f(v)$, for each $u v \in E(G)$, is bijection.
If such a labeling exists, then G is called an odd Fibonacci edge irregular graph (OFEIG) and the minimum possible k is called the odd Fibonacci edge irregularity strength ofes(G). In this paper, the odd Fibonacci edge irregularity strength for $P_{n}, K_{1, n}, P_{n} \odot K_{1}, B(m, n)$ and the non existence of an odd Fibonacci edge irregular labeling for the graphs $K_{p}, K_{m, n}$ have been determined.

2. Main Results

Theorem 2.1. Every path $P_{n},(n \geq 2)$ is an OFEIG and ofes $\left(P_{n}\right)= \begin{cases}\left\lceil\frac{1}{2} \frac{F_{3 n-2}}{2}\right\rceil, & \text { if } n \text { is even } \\ F_{n+\left\lfloor\frac{n}{2}\right\rfloor_{-1}}, & \text { if } n \text { is odd. }\end{cases}$
Proof. Let $\mathrm{G}=\mathrm{P}_{\mathrm{n}}$. In $\mathrm{G}, \mathrm{q}=\mathrm{n}-1$.
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}: 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$.
Case (i) n is even

Volume 13, No. 3, 2022, p. 1230-1238
https://publishoa.com
ISSN: 1309-3452
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{0,1,2, \ldots,\left\lceil\frac{1}{2} \mathrm{~F}_{\frac{3 \mathrm{n}-2}{}}^{2}\right\rceil\right\}$ as follows:
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)= \begin{cases}\left\lfloor\frac{1}{2} \mathrm{~F}_{\frac{3 i+1}{}}^{2}\right\rfloor, & 1 \leq \mathrm{i} \leq \mathrm{n} \text { and } \mathrm{i} \text { is odd } \\ \left\lceil\frac{1}{2} \mathrm{~F}_{\frac{3 \mathrm{i}-2}{}}\right\rceil, & 1 \leq \mathrm{i} \leq \mathrm{n} \text { and } \mathrm{i} \text { is even. }\end{cases}$
Then $\mathrm{f} *$ is obtained as follows:
$\mathrm{f} *\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=\left\{\begin{array}{l}\mathrm{F}_{\frac{3 i+1}{2}}, 1 \leq \mathrm{i} \leq \mathrm{n}-1 \text { and } \mathrm{i} \text { is odd } \\ \mathrm{F}_{\frac{3 i+2}{2}}, 1 \leq \mathrm{i} \leq \mathrm{n}-1 \text { and } \mathrm{i} \text { is even. }\end{array}\right.$
Since n is even, $f\left(v_{n}\right)=\left\lceil\frac{1}{2} F_{\frac{3 n-2}{2}}\right\rceil$ and $f\left(v_{n-1}\right)=\left\lfloor\frac{1}{2} F_{\frac{3 n-2}{2}}\right\rfloor$.
In this case, $f\left(v_{n}\right)-f\left(v_{n-1}\right)=1$ and $f\left(v_{n-1}\right)+f\left(v_{n}\right)=F_{\frac{3 n-2}{2}}=F_{q+\left\lfloor\frac{q}{2}\right\rfloor+1}$. So $f\left(v_{n}\right)$ is the minimum k with the required property.
Therefore, ofes $(\mathrm{G})=\left\lceil\frac{1}{2} \frac{\mathrm{~F}_{\frac{3 \mathrm{n}-2}{}}^{2}}{}\right\rceil$.

Figure 1:ofes $\left(\mathrm{P}_{8}\right)=45$
Case (ii) n is odd
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{0,1,2, \ldots, \mathrm{~F}_{\left.\mathrm{n}+\left[\frac{\mathrm{n}}{2}\right\rfloor_{-1}\right\} \text { as follows: }}\right.$
$\mathrm{f}\left(\mathrm{v}_{1}\right)=\mathrm{F}_{\mathrm{n}+\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor-1}$,
$\mathrm{f}\left(\mathrm{v}_{2}\right)=\mathrm{F}_{\mathrm{n}+\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor-2} \quad$ and
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)= \begin{cases}\left\lfloor\frac{1}{2} \mathrm{~F}_{\frac{3 i-5}{}}\right\rfloor, & 3 \leq \mathrm{i} \leq \mathrm{n} \text { and } \mathrm{i} \text { is odd } \\ \left\lfloor\frac{1}{2} \mathrm{~F}_{\frac{3 \mathrm{i}-8}{}}\right\rceil, & 4 \leq \mathrm{i} \leq \mathrm{n} \text { and } \mathrm{i} \text { is even. }\end{cases}$
Then f^{*} is obtained as follows:
$\mathrm{f} *\left(\mathrm{v}_{1} \mathrm{v}_{2}\right)=\mathrm{F}_{\mathrm{n}+\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor}$,
$\mathrm{f} *\left(\mathrm{v}_{2} \mathrm{v}_{3}\right)=\mathrm{F}_{\mathrm{n}+\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor_{-2}}$ and

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1230-1238
https://publishoa.com
ISSN: 1309-3452
$\mathrm{f} *\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)= \begin{cases}\mathrm{F}_{3 \mathrm{i}-5}^{2} \\ \mathrm{~F}_{\frac{3 \mathrm{i}-4}{2}}, & , 3 \leq \mathrm{i} \leq \mathrm{n}-1 \text { and } \mathrm{i} \text { is odd } \\ & 4 \leq \mathrm{n}-1 \text { and } \mathrm{i} \text { is even. }\end{cases}$
In pursuance of obtaining the edge label $\mathrm{F}_{\mathrm{q}+\left\lfloor\frac{\mathrm{q}}{2}\right\rfloor+1}$, we may choose the labels of its end vertices as $\mathrm{F}_{\mathrm{q}+\left\lfloor\frac{\mathrm{q}}{2}\right\rfloor-1}$ and $\mathrm{F}_{\mathrm{q}+\left\lfloor\frac{\mathrm{q}}{2}\right.}$.
If the number r and s such that $\mathrm{F}_{\mathrm{q}+\left[\frac{\mathrm{q}}{2}\right]_{-1}}<r \leq s<\mathrm{F}_{\mathrm{q}+\left\lfloor\frac{\mathrm{q}}{2}\right\rfloor}$ are assigned to the central vertices, then there is an edge
which assigns the label greater than $\mathrm{F}_{\mathrm{q}+\left\lfloor\frac{\mathrm{q}}{2}\right\rfloor_{-1}}$. But $\mathrm{F}_{\mathrm{q}+\left\lfloor\frac{\mathrm{q}}{2}\right.}$ is no longer an edge value. So such r and s are impossible.
Since $f\left(v_{2}\right)=F_{q+\left\lfloor\frac{q}{2}\right]_{-2}}$, the value $f\left(v_{1}\right)$ is minimum k with the required property.
Therefore, ofes $(G)=F_{n+\left\lfloor\frac{n}{2}\right\rfloor^{-1}}$.

Figure 2: ofes $\left(\mathrm{P}_{9}\right)=144$
Theorem 2.2 Every star graph $\mathrm{K}_{1, \mathrm{n}}(\mathrm{n} \geq 1)$ is an OFEIG and
$\operatorname{ofes}\left(\mathrm{K}_{1, \mathrm{n}}\right)=\mathrm{F}_{\mathrm{q}+\left\lfloor\frac{\mathrm{q}}{2}\right\rfloor+1}-1$.
Proof. Let $G=K_{1, n}$. In $G, q=n$.
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{uv}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{0,1,2, \ldots, \mathrm{~F}_{\mathrm{q}+\left[\frac{\mathrm{q}}{2}\right]_{+1}}-1\right\}$ as follows:
$\mathrm{f}(\mathrm{u})=1$ and
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{F}_{\mathrm{i}+\left\lfloor\frac{\mathrm{i}}{2}\right\rfloor+1}-1,1 \leq \mathrm{i} \leq \mathrm{n}$.
Then f * is obtained as

$$
\mathrm{f} *\left(\mathrm{uv}_{\mathrm{i}}\right)=\mathrm{F}_{\mathrm{i}+\left\lfloor\frac{\mathrm{i}}{2}\right\rfloor+1}, 1 \leq \mathrm{i} \leq \mathrm{n} .
$$

To obtain F_{2} as an edge label, it is necessary to assign 0 and 1 to a pair of adjacent vertices. So either 0 is a vertex label of central vertex and 1 is a label of a pendant vertex of $K_{1, n}$ or 0 is a vertex label of pendant vertex and 1 is a label of the central vertex. If 0 is assigned to the central vertex, $\mathrm{F}_{\mathrm{q}+\left[\left.\frac{\mathrm{q}}{2} \right\rvert\,+1\right.}$ is to be assigned as a label of a pendant vertex in pursuance of obtaining the edge label $\mathrm{F}_{\mathrm{q}+\left\lfloor\left.\frac{\mathrm{q}}{2}\right|_{+1}\right.}$. If 1 is assigned to the central vertex, $\mathrm{F}_{\mathrm{q}+\left\lfloor\frac{\mathrm{q}}{2}\right\rfloor_{+1}}-1$ is to be assigned as a label of a pendant vertex in pursuance of obtaining the edge label $\mathrm{F}_{\mathrm{q}+\left\lfloor\left.\frac{\mathrm{q}}{2}\right|_{+1}\right.}$.

Hence $\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)=\mathrm{F}_{\mathrm{q}+\left\lfloor\frac{\mathrm{q}}{2}\right\rfloor+1}-1$ is the minimum k with the required property.
Therefore, ofes $(\mathrm{G})=\mathrm{F}_{\mathrm{q}+\left\lfloor\frac{\mathrm{q}}{2}\right\rfloor+1}-1$.

Figure 3: ofes $\left(\mathrm{K}_{1,6}\right)=54$

Theorem 2.3 $\mathrm{P}_{\mathrm{n}} \odot K_{1}(\mathrm{n} \geq 2)$ is an OFEIG and ofes $(\mathrm{G})=\left\lceil\frac{1}{2} \mathrm{~F}_{\frac{6 \mathrm{n}-2}{}}^{2}\right\rceil$.
Proof. Let $\mathrm{G}=\mathrm{P}_{\mathrm{n}} \bigcirc \mathrm{O}_{1}$. In $\mathrm{G}, \mathrm{q}=2 \mathrm{n}-1$.
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{0,1,2, \ldots,\left\lceil\frac{1}{2} \mathrm{~F}_{\frac{\text { bn-2 }}{}}^{2}\right\rceil\right\}$ as follows:
$f\left(v_{i}\right)=\left\{\begin{array}{ll}\left\lfloor\frac{1}{2} \mathrm{~F}_{\frac{6 \mathrm{i}-2}{}}^{2}\right\rceil, & 1 \leq \mathrm{i} \leq \mathrm{n} \text { and } \mathrm{i} \text { is odd } \\ \left\lfloor\frac{1}{2} \mathrm{~F}_{\frac{6 \mathrm{i}-2}{}}^{2}\right\rfloor, & 1 \leq \mathrm{i} \leq \mathrm{n} \text { and } \mathrm{i} \text { is even }\end{array}\right.$ and
$f\left(u_{i}\right)= \begin{cases}\left\lfloor\frac{1}{2} \mathrm{~F}_{\frac{6 \mathrm{i}-2}{}}^{2}\right\rfloor, & 1 \leq \mathrm{i} \leq \mathrm{n} \text { and } \mathrm{i} \text { is odd } \\ \left\lfloor\frac{1}{2} \mathrm{~F}_{\frac{6 \mathrm{i}-2}{}}^{2}\right\rceil, & 1 \leq \mathrm{i} \leq \mathrm{n} \text { and } \mathrm{i} \text { is even. }\end{cases}$
Then f^{*} is obtained as follows:
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=\mathrm{F}_{3 \mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$ and
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right)=\mathrm{F}_{3 \mathrm{i}-1}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
If n is odd, $\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)=\left\lceil\frac{1}{2} \mathrm{~F}_{\frac{6 \mathrm{n}-2}{2}}\right\rceil$ and $\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=\left\lfloor\frac{1}{2} \mathrm{~F}_{\frac{6 \mathrm{n}-2}{2}}\right\rfloor$.
If n is even, $f\left(v_{n}\right)=\left\lfloor\frac{1}{2} F_{\frac{6 n-2}{2}}\right\rfloor$ and $f\left(u_{n}\right)=\left\lceil\frac{1}{2} F_{\frac{6 n-2}{2}}\right\rceil$.
In both cases, $f\left(v_{n}\right)-f\left(u_{n}\right)=1$ and $f\left(v_{n}\right)+f\left(u_{n}\right)=F_{q+\left\lfloor\frac{q}{2}\right.}{ }_{+1}$. So either $f\left(v_{n}\right)$ or $f\left(u_{n}\right)$ is the minimum k with the required property when n is odd or even respectively.
Therefore, ofes $(\mathrm{G})=\left\lceil\frac{1}{2} \frac{\mathrm{~F}_{\frac{6 \mathrm{n}-2}{}}^{2}}{}\right\rceil$.

Figure 4: ofes $\left(\mathrm{P}_{7} \odot \mathrm{~K}_{1}\right)=3383$
Theorem 2.4 A Bistar graph $B(m, n)$ with $m \geq n$, is an OFEIG and ofes $\left.(G)={\underset{q}{q}+\left\lfloor\frac{q}{2}\right\rfloor+1}-F_{m+\left\lfloor\frac{m+1}{2}\right.} \right\rvert\,+2$.
Proof. Let $\mathrm{G}=\mathrm{B}(\mathrm{m}, \mathrm{n})$. In $\mathrm{G}, \mathrm{q}=\mathrm{m}+\mathrm{n}+1$.
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}, \mathrm{u}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{m}}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{vv}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{m}\right\} \bigcup\{\mathrm{vu}\} \bigcup\left\{\mathrm{uu}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{0,1,2, \ldots, \mathrm{~F}_{\mathrm{q}+\left\lfloor\left.\frac{\mathrm{q}}{2}\right|_{+1}\right.}-\mathrm{F}_{\mathrm{m}+\left\lfloor\frac{\mathrm{m}+1}{2}\right.}{ }^{+2}\right\}$ as follows:
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{F}_{\mathrm{i}+\left\lfloor\frac{\mathrm{i}}{2}\right\rfloor+1}, 1 \leq \mathrm{i} \leq \mathrm{m}$,
$\mathrm{f}(\mathrm{u})=\mathrm{F}_{\mathrm{m}+\left\lfloor\frac{\mathrm{m}+1}{2}\right\rfloor+2}$ and
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{F}_{\mathrm{m}+\left\lfloor\frac{\mathrm{m}+1+\mathrm{i}}{2}\right\rfloor+2+\mathrm{i}}-\mathrm{F}_{\mathrm{m}+\left\lfloor\frac{\mathrm{m}+1}{2}\right\rfloor_{+2}}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
Then f^{*} is obtained as follows:
$\mathrm{f}^{*}\left(\mathrm{vv}_{\mathrm{i}}\right)=\mathrm{F}_{\mathrm{i}+\left\lfloor\frac{\mathrm{i}}{2}\right\rfloor+1}, 1 \leq \mathrm{i} \leq \mathrm{m}$,
$\mathrm{f}^{*}(\mathrm{vu})=\mathrm{F}_{\mathrm{m}+\left\lfloor\frac{\mathrm{m}+1}{2}\right\rfloor+2}$ and
$\mathrm{f}^{*}\left(\mathrm{uu}_{\mathrm{i}}\right)=\mathrm{F}_{\mathrm{m}+\left\lfloor\frac{\mathrm{m}+1+\mathrm{i}}{2}\right\rfloor+2+\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
To obtain F_{2} as an edge label, it is necessary to assign 0 and 1 to a pair of adjacent vertices. There are two possibilities to assign 0 and 1. Either assign 0 and 1 to a pair of central vertices or assign 0 and 1 to a pair of central vertex and its
 assigned as a label of a pendant vertex in pursuance of obtaining the edge label $\mathrm{F}_{\mathrm{q}+\left[\left.\frac{\mathrm{q}}{2}\right|_{+1}\right.}$. If 0 and 1 is assigned to u and its pendant vertex, then it leads to take a larger value for k while
$\operatorname{deg} v>\operatorname{deg} u$.
Case (i) Assign 1 to the central vertex v and 0 to its pendant vertex.
In this case, the adjacent vertices of v such as $v_{1}, v_{2}, \ldots, v_{m}, u$ are labeled as $F_{2}-1, F_{4}-1, \ldots, F_{m+\left[\frac{m}{2}\right.}^{\mid+1}{ }^{\prime}-1$,
$\mathrm{F}_{\mathrm{m}+\left\lfloor\frac{\mathrm{m}+1}{2}\right\rfloor+2}-1$. Since $\mathrm{f}(\mathrm{u})=\mathrm{F}_{\mathrm{m}+\left\lfloor\frac{\mathrm{m}+1}{2}\right\rfloor+2}-1$, a pendant vertex of u is to be labeled as
$\mathrm{F}_{\mathrm{q}+\left\lfloor\frac{\mathrm{q}}{2}\right\rfloor+1}-\left(\mathrm{F}_{\mathrm{m}+\left\lfloor\frac{\mathrm{m}+1}{2}\right\rfloor+2}-1\right)$ in pursuance of obtaining the edge label $\mathrm{F}_{\mathrm{q}+\left\lfloor\frac{\mathrm{q}}{2}\right\rfloor+1}$.
Case (ii) Assign 0 to the central vertex v and 1 to its pendant vertex.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1230-1238
https://publishoa.com
ISSN: 1309-3452
In this case, the adjacent vertices of v such as $v_{1}, v_{2}, \ldots, v_{m}$, u are labeled as $\left.F_{2}, F_{4}, \ldots, F_{m+\left\lfloor\frac{m}{2}\right.}{ }^{\prime}+1, F_{m+\left\lfloor\frac{m+1}{2}\right.}\right\rfloor+2$. Since $f(u)$ $=\mathrm{F}_{\mathrm{m}+\left\lfloor\frac{\mathrm{m}+1}{2}\right\rfloor_{+2}}$, a pendant vertex of u is to be labeled as
$\mathrm{F}_{\mathrm{q}+\left\lfloor\frac{\mathrm{q}}{2}\right\rfloor+1}-\mathrm{F}_{\mathrm{m}+\left\lfloor\frac{\mathrm{m}+1}{2}\right\rfloor+2}$ in pursuance of obtaining the edge label $\mathrm{F}_{\mathrm{q}+\left\lfloor\frac{\mathrm{q}}{2}\right\rfloor+1}$.
Hence $\mathrm{F}_{\mathrm{q}+\left\lfloor\left.\frac{\mathrm{q}}{2}\right|_{+1}\right.}-\mathrm{F}_{\mathrm{m}+\left\lfloor\frac{\mathrm{m}+1}{2}\right\rfloor+2}$ is the minimum k with the required property.
Therefore, $\operatorname{ofes}(\mathrm{G})=\mathrm{F}_{\mathrm{q}+\left\lfloor\frac{\mathrm{q}}{2}\right\rfloor+1}-\mathrm{F}_{\mathrm{m}+\left\lfloor\frac{\mathrm{m}+1}{2}\right\rfloor+2}$.

Figure 5: ofes $(B(5,4))=987$

Theorem 2.5 Every complete graph $K_{p}(p \geq 3)$, is not an OFEIG.
Proof. Let $G=K_{p}$ and the vertex set of G be $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{p}}\right\}$.
In G, $\operatorname{deg}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{p}-1$, for all i . To obtain F_{2} as an edge label, it is necessary to assign 0 and 1 to a pair of adjacent vertices. Choose an arbitrary vertex v_{i} and v_{i+1} such that $f\left(v_{i}\right)=0, f\left(v_{i+1}\right)=1$. To get F_{4}, either assign 3 to the one of the adjacent vertex of v_{i} or 2 to the one of the adjacent vertex of v_{i+1}, where the addition in the suffix is taken over addition modulo p. If 3 is assigned to the vertex v_{i-1}, then the edge $v_{i} v_{i-1}$ have the label F_{4}. But the label of the edge $v_{i-1} v_{i+1}$ is 4 , which is not an odd Fibonacci number. Suppose 2 is assigned to the vertex v_{i-1}, then the edge $v_{i-1} v_{i+1}$ have the label F_{4}. But the label of the edge $\mathrm{v}_{\mathrm{i}-1} \mathrm{v}_{\mathrm{i}}$ is 2 , which is not an odd Fibonacci number.

Hence the graph G is not an OFEIG.
Theorem 2.6 A graph G with $p(\geq 5)$ vertices having $\operatorname{deg}\left(v_{i}\right) \geq p-2$, for all is not an OFEIG.
Proof. Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{p}}\right\}$. To obtain F_{2}, it is necessary to assign 0 and 1 to a pair of adjacent vertices. Choose v_{1} and v_{2} such that $f\left(v_{1}\right)=0$ and $f\left(v_{2}\right)=1$. To obtain F_{4}, either 3 is assigned to one of the adjacent vertex of v_{1} or 2 is assigned to one of the adjacent vertex of v_{2}.

Choose a vertex v_{3} which is adjacent to both v_{1} and v_{2}. Suppose 3 is assigned to the vertex v_{3}. Then the edge $v_{1} v_{3}$ has the label F_{4}, but the label of the edge $\mathrm{v}_{2} \mathrm{v}_{3}$ is 4 which is not an odd Fibonacci number. If 2 is assigned to the vertex v_{3}, then the edge $\mathrm{v}_{2} \mathrm{v}_{3}$ has the label F_{4}. But the label of the edge $\mathrm{v}_{1} \mathrm{v}_{3}$ is 2 which is not an odd Fibonacci number.

Suppose v_{3} is a vertex adjacent to v_{1} and non adjacent to v_{2}. To obtain F_{4} as an edge label, either 3 is assigned to the vertex of v_{3} or 2 is assigned to one of the adjacent vertex of v_{2}. By assigning 3 to the vertex v_{3}, the edge $v_{1} v_{3}$ has the label

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1230-1238
https://publishoa.com
ISSN: 1309-3452
F_{4}. To obtain F_{5} as an edge label, either 2 is assigned to one of the adjacent vertex of v_{3} or 4 is assigned to one of the adjacent vertex of v_{2}. Let the adjacent vertex of v_{3} say v_{4} which is assigned by 2 . Then the edge $v_{3} v_{4}$ has the label F_{5}. Since $\operatorname{deg}\left(v_{i}\right) \geq p-2$, for all i, it is impossible that v_{4} is non adjacent to both v_{1} and v_{2}. If v_{4} is adjacent to v_{1}, then the edge $v_{1} v_{4}$ has the label 2 which is not an odd Fibonacci number. Suppose v_{4} is adjacent to v_{2}. Then the edge $v_{2} v_{4}$ has the label 3 which is already an edge label of $v_{1} v_{3}$. Let the adjacent vertex of v_{2} say v_{4} which is assigned by 4 . Then the edge $v_{2} v_{4}$ has the label F_{5}. Since $\operatorname{deg}\left(v_{i}\right) \geq p-2$, for all i, it is impossible that v_{4} is non adjacent to both v_{1} and v_{3}. If v_{4} is adjacent to v_{1}, then the edge $v_{1} v_{4}$ has the label 4 which is not an odd Fibonacci number. Suppose v_{4} is adjacent to v_{3}. Then the edge $\mathrm{v}_{3} \mathrm{v}_{4}$ has the label 7 which is not an odd Fibonacci number. Suppose 2 is assigned to one of the adjacent vertex of v_{2} say v_{3}. Then the edge $\mathrm{v}_{2} \mathrm{v}_{3}$ has the label F_{4}. To obtain the edge label F_{5}, either 5 is assigned to one of the adjacent vertex of v_{1} or 3 is assigned to one of the adjacent vertex of v_{3} or 4 is assigned to one of the adjacent vertex of v_{2}. Let the adjacent vertex of v_{1} say v_{4} which is assigned by 5 . Then the edge $v_{1} v_{4}$ has the label F_{5}. It is impossible that v_{4} is non adjacent to both v_{2} and v_{3}. If v_{4} is adjacent to v_{2}, then the edge $v_{4} v_{2}$ has the label 6 which is not an odd Fibonacci number. Suppose v_{4} is adjacent to v_{3}. Then the edge $\mathrm{v}_{3} \mathrm{v}_{4}$ has the label 7 which is not an odd Fibonacci number. Let the adjacent vertex of v_{2}, say v_{4}, which is assigned by 4 . Then the edge $v_{2} v_{4}$ has the label F_{5}. It is impossible that v_{4} is non adjacent to both v_{1} and v_{3}. If v_{4} is adjacent to v_{1}, then the edge $v_{4} v_{1}$ has the label 4 which is not an odd Fibonacci number. Suppose v_{4} is adjacent to v_{3}. Then the edge $v_{3} v_{4}$ has the label 6 which is not an odd Fibonacci number. If the adjacent vertex of v_{3} say v_{4} which is assigned by 3 , then the edge $\mathrm{v}_{3} \mathrm{v}_{4}$ has the label F_{5}. It is impossible that v_{4} is non adjacent to both v_{1} and v_{2}. If v_{4} is adjacent to v_{1}, then the edge $v_{1} v_{4}$ has the label 3 which is already an edge label of $v_{2} v_{3}$. Suppose v_{4} is adjacent to v_{2}. Then the edge $\mathrm{v}_{2} \mathrm{v}_{4}$ has the label 4 which is not an odd Fibonacci number.

Hence G is not an OFEIG.
Theorem 2.7 The graph $K_{m, n}(m \geq 2, n \geq 4)$ is not an OFEIG.
Proof. Let $\mathrm{G}=\mathrm{K}_{\mathrm{m}, \mathrm{n}}$.
Let $\mathrm{V}_{1}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{m}}\right\}, \mathrm{V}_{2}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ be the partitions of G and assume that $\mathrm{m} \leq \mathrm{n}$.
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}: 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}\right\}$. To obtain F_{2} as an edge label, it is necessary to assign 0 and 1 to a pair of adjacent vertices. Choose an arbitrary vertex, say u_{1} in V_{1} and v_{1} in V_{2} such that $f\left(u_{1}\right)=0, f\left(v_{1}\right)=1$. To get F_{4} as an edge label, either 3 is assigned to one of the adjacent vertex of u_{1} or 2 is assigned to one of the adjacent vertex of v_{1}.

Choose a vertex v_{2} which is adjacent to all u_{i} 's, $1 \leq i \leq m$. If 3 is assigned to the vertex v_{2}, then the edge $u_{1} v_{2}$ has the label F_{4}. To get the edge label F_{5}, either 5 is assigned to one of the adjacent vertex of u_{1} or 4 is assigned to one of the adjacent vertex of v_{1} or 2 is assigned to one of the adjacent vertex of v_{2}. If 4 is assigned to the vertex u_{2}, then the edge $\mathrm{u}_{2} \mathrm{~V}_{1}$ has the label F_{5} but the label of the edge $\mathrm{u}_{2} \mathrm{v}_{2}$ is 7 which is not an odd Fibonacci number. Suppose 2 is assigned to the vertex u_{2}. Then the edge $u_{2} v_{2}$ has the label F_{5} but the label of the edge $u_{2} v_{1}$ is 3 which is already an edge label of $u_{1} v_{2}$. Therefore, the only way to obtain F_{5} is the assignment of the label 5 to one of the adjacent vertex of u_{1}. Thus choose a vertex v_{3} and label as 5 . To obtain F_{7}, either 13 is assigned to one of the adjacent vertex of u_{1} or 12 is assigned to one of

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1230-1238
https://publishoa.com
ISSN: 1309-3452
the adjacent vertex of v_{1} or 10 is assigned to one of the adjacent vertex of v_{2} or 8 is assigned to one of the adjacent vertex of v_{3}. If 12 is assigned to the vertex u_{2}, then the edge $u_{2} v_{1}$ has the label F_{7} but the label of the edge $u_{2} v_{2}$ is 15 and $u_{2} v_{3}$ is 17 respectively which are not an odd Fibonacci numbers. Suppose 10 is assigned to the vertex u_{2}. Then the edge $u_{2} v_{2}$ has the label F_{7} but the label of the edges $\mathrm{u}_{2} \mathrm{~V}_{1}$ and $\mathrm{u}_{2} \mathrm{v}_{3}$ are 11 and 15 respectively which are not odd Fibonacci numbers. Suppose 8 is assigned to the vertex u_{2}. Then the edge $u_{2} v_{3}$ has the label F_{7} but the label of the edges $u_{2} v_{1}$ and $u_{2} v_{2}$ are 9 and 11 respectively which are not odd Fibonacci numbers. Therefore, 13 is assigned to the vertex v_{4} which is adjacent to $\mathrm{F}_{\mathrm{j}+\left\lfloor\frac{\mathrm{j}}{2}\right\rfloor_{+1}}, 1 \leq \mathrm{j} \leq \mathrm{n}$. In
u_{1}. Thus the label of the edge $u_{1} v_{4}$ is F_{7}. Proceeding like this the vertices vj can get the label as
pursuance of obtaining $\mathrm{F}_{\mathrm{n}+\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor+2}\left(\operatorname{orF}_{\mathrm{n}+\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor+3}\right)$ as edge label, if a number $\mathrm{k} \leq \mathrm{F}_{\mathrm{n}+\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor+2}-2$ is assigned to one of the vertex u_{i} 's namely u_{m}, then the edges $u_{m} v_{1}$ and $u_{m} v_{2}$ have the labels $k+1$ and $k+3$ respectively which are not odd Fibonacci numbers. Therefore, $F_{n+\left\lfloor\frac{n}{2}\right\rfloor+2}-1$ is to be assigned to the vertex u_{m}. But the edge label of $u_{m} v_{2}$ is $\mathrm{F}_{\mathrm{n}+\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor+2}+2$ is not an odd Fibonacci number as $\left|\mathrm{F}_{\mathrm{i}+1}-\mathrm{F}_{\mathrm{i}}\right| \geq 8$, for all $\mathrm{i} \geq 4$.

Choose a vertex u_{2} which is adjacent to all v_{j} 's, $1 \leq j \leq n$. By assigning 2 to the vertex u_{2}, the edge $u_{2} v_{1}$ has the label F_{4}. To obtain F_{5} as an edge label, either 5 is assigned to one of the adjacent vertex of u_{1} or 3 is assigned to one of the adjacent vertex of u_{2} or 4 is assigned to one of the adjacent vertex of v_{1}. If 5 is assigned to the vertex v_{2}, then the edge $\mathrm{u}_{1} \mathrm{v}_{2}$ has the label F_{5} but the label of the edge $\mathrm{u}_{2} \mathrm{v}_{2}$ is 7 which is not an odd Fibonacci number. Suppose 3 is assigned to the vertex v_{2}. Then the edge $u_{2} v_{2}$ has the label F_{5} but the label of the edge $u_{1} v_{2}$ is 3 which is already an edge label of $u_{1} v_{2}$. Therefore, 4 is to be assigned to the vertex u_{3} which is adjacent to v_{1}. Thus the label of the edge $u_{3} v_{1}$ is F_{5}. To obtain F_{7} as an edge label, either 13 is assigned to one of the adjacent vertex of u_{1} or 11 is assigned to one of the adjacent vertex of u_{2} or 9 is assigned to one of the adjacent vertex of u_{3} or 12 is assigned to one of the adjacent vertex of v_{1}. If 13 is assigned to the vertex v_{2}, then the edge $u_{1} v_{2}$ has the label F_{7} but the label of the edges $u_{2} v_{2}$ and $u_{3} v_{2}$ are 15 and 17 respectively which are not odd Fibonacci numbers. Suppose 11 is assigned to the vertex v_{2}. Then the edge $u_{2} v_{2}$ has the label F_{7} but the label of the edges $u_{1} v_{2}$ and $u_{3} v_{2}$ are 11 and 15 respectively which are not odd Fibonacci numbers. If 9 is assigned to the vertex v_{2}, then the edge $u_{3} v_{2}$ has the label F_{7} but the label of the edges $u_{1} v_{2}$ and $u_{2} v_{2}$ are 9 and 11 respectively which are not odd Fibonacci numbers. Therefore, 12 is to be assigned to the vertex u_{4} which is adjacent to v_{1}.

Thus the label of the edge $u_{4} v_{1}$ is F_{7}. Proceeding like this, the vertices of u_{i} can get the label as $F_{i+\left[\frac{i}{2}\right\rfloor+1}-1,1 \leq i \leq m$. In order to obtain $\mathrm{F}_{\mathrm{m}+\left\lfloor\frac{\mathrm{m}}{2}\right\rfloor+2}\left(\right.$ or $\left._{\mathrm{F}+\left\lfloor\frac{\mathrm{m}}{2}\right\rfloor+3}\right)$ as an edge label, if a number $\mathrm{k} \leq \mathrm{F}_{\mathrm{m}+\left\lfloor\frac{\mathrm{m}}{2}\right\rfloor+2}-1$ is assigned to the vertex, then the edges $u_{1} v_{2}$ and $u_{2} v_{2}$ have the labels k and $k+2$ respectively which are not odd Fibonacci numbers. Therefore, $\mathrm{F}_{\mathrm{m}+\left\lfloor\frac{\mathrm{m}}{2}\right\rfloor+2}$ is to be assigned to the vertex v_{2}. But the edge label of $\mathbf{u}_{2} \mathrm{v}_{2}$ is $\mathrm{F}_{\mathrm{m}+\left\lfloor\frac{\mathrm{m}}{2}\right\rfloor+2}+2$ is not an odd Fibonacci number as $\left|F_{i+1}-F_{i}\right| \geq 8$, for all $i \geq 4$.
Similarly, odd Fibonacci edge irregular labeling does not exist if we choose $f\left(u_{1}\right)=1$ and $f\left(v_{1}\right)=0$. Hence the graph $K_{m, n}$ is not an OFEIG.

Observation 2.8: The graphs $\mathrm{K}_{2,2}, \mathrm{~K}_{2,3}$ and $\mathrm{K}_{3,3}$ are not OFEIG. From Theorem 2.2, Theorem 2.7 and Observation 2.8, it can be concluded that $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is an OFEIG only when it is a star graph.

Conjecture: A cyclic graph is not an OFEIG.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1230-1238
https://publishoa.com
ISSN: 1309-3452

References:

[1]S.Amutha and M.Uma Devi, Total Fibonacci Irregular labeling for Fan, Wheel and Umbrella graph, Journal of computer and Mathematical Sciences, 10 (12) (2019), 1654-1664.
[2]M.Baca, M.Stainslav Jendrol, Miller and Joseph Ryan, On irregular total labeling, Discrete Math., 307 (2007), 137-138.
[3]G.Chitra, J.Priya and Y.Vishnupriya, Odd Fibonacci mean Labeling of some special graphs, International Journal of Mathematics Trends and Technology, 66 (1) (2020), 115-126.
[4]David W.bange and Anthony E. Barkauskas, Fibonacci graceful graphs, University of Wisconsin-La crosse, La crosse, WI 53601, August 1983, 174-188.
[5]Joseph A. Gallian, A Dynamic Survey of graph Labeling, The Electronic Journal of Combinatorics (2019), \#DS6. [6]S.Karthikeyan, S.Navanaeethakrishnan and R.Sridevi, Total Edge Fibonacci irregularLabeling of some star graphs, International Journal of Mathematics and soft computing, 5 (1) (2015), 73-78.
[7]A.Rosa, On certain valuations of the vertices of a graph, Theory of graphs International Symposium, Rome, 1966, Gordon and Breach, Newyork and Dunod Paris (1967), 349-355.
[8]D.B.West, Introduction to graph theory, Prentice - Hall of India, New Delhi (2003).

