
JOURNAL OF ALGEBRAIC STATISTICS
Volume 13, No. 3, 2022, p. 1208-1218
https://publishoa.com
ISSN: 1309-3452

1208

Software Defects Classification Using RNN Model

Sweety Kataria
1
,Prof. V. V. Subrahmanyam

2

1
Associate Professor, Kalindi College.

2
School of Computer & Information Sciences (SOCIS), IGNOU.

Received 2022 April 02; Revised 2022 May 20; Accepted 2022 June 18.

Abstract

For development of software, controlling the quality is a prime concern of developers.

Machine learning (ML) techniques enablesoftware engineers tocarry research in defect

prediction that relies primarily on hand-crafted attributes, which are used to classify defect

code in ML classifications. In the present studyML approach, a Recurrent Neural Network

(RNN) for predicting software defect were used on PROMISE dataset for five different

version of software defects.The proposed approach is compared with two existing approaches

i.e. RF & SVM to predict software faults on historical data. Experiments on various Pledge

datasets from the PROMISE repository: JM1, KC1, KC2, PCI and CM1 variants are studied.

The proposed approach is better than the two existing support vector machine and random

forest approaches in analysis. The RNN model in the present study shows accuracy in the

range of 93.74 to 95.9 %. It shows maximum accuracy in PC1, and least in JM1. Further, the

proposed approach gives precision in the range of 91.39 to 95.28 %. It shows highest

precision in CM1, and least in PC1. Similarly, Recall is observed in the range of 92.21 to

94.64 % and thehighest recall is observed in JM1, and least in KC2.

Keywords: PROMISE Dataset, RNN, Machine Learning, Deep Learning.

INTRODUCTION

The software defects, imperfections during

software development would make the

desired software to fail to meet the actual

requirements or may cause an unexpected

result. Software defectsare error or

mistakes, or may be bugin a software

program that may cause unexpected

outcome, or results malfunctioning in

software. This error in the program may

produce unintended outcome and prevent

working as intended. Software defect

prediction is localization oddeffects or

modules have error in software. Software

defects may significantly affect the

software and may increase the software

development cost due to expensesin

identifying and correcting bugs. Defect

prevention and identification are one of the

critical part or important in software

quality assurance. The quality of software

depends on the possibilities of arising

defects. High-risk elements should be

predicting at the earliest to increase the

efficiency of the software. The software

defect detection and defect repair are the

most time-consuming and costly in

software development. Technically it is

almost not feasible to remove each defect,

but it is possible to reduce the defects in

order to develop software modules with

reliability and accuracy. The software

defect predictionassistssoftware

developers in detection of defects or

JOURNAL OF ALGEBRAIC STATISTICS
Volume 13, No. 3, 2022, p. 1208-1218
https://publishoa.com
ISSN: 1309-3452

1209

software bugs.

In order to create prediction models, defect

and measurement data must be obtained

from real software development efforts to

use as learning data. Long Short-Term

Memory (LSTM) recurrent neural

networks (RNNs) have potential to beat

state-of-the-art Deep Neural Network

(DNN) systems[1], [2]. LSTMs are

recurrent neural network have units known

as memory blocks in the layers of

recurrent hidden layer and are easier to

train than standard RNNs[3], [4]. The

Model must be measured by comparing

the expected deficiency of the modules in

the test against their real

deficiency.Lessmann et al, [5]studied

Benchmarking Classification Models for

Software Defect Prediction. Recently some

workers, [6] studied Software defect

prediction using machine learning

techniques and a systematic research

analysis is conducted in which parameters

of confusion, precision, recall, recognition

accuracy, etc., are measured as well as

compared with the prevailing schemes.

ML based models are an important

strategy for programming imperfection

forecasts, these can be used for either

classification or to estimate defect

count/densities.Recent work

demonstratedlearning by experience

improvise these models on their predictive

accuracy by adjusting their value of

parameters[7]. The analytical analysis

indicates that the proposed approach will

provide more useful solutions for device

defects prediction.

The software defect prediction to construct

a prediction model, defect and data are

required from development for learning

process, the step labelling requiresdata for

the training of the prediction model. The

Prediction Models, Support Vector

Machines or Bayesian Network or other

General machine learners are used for a

Prediction Model construction using a

training set. In the Assessment step, a

prediction model is evaluated using test

data in addition to a training set by

comparing the prediction and real

labels[8]. To develop modules with

reliability and accuracy, software defect

prediction is required to assist developers

in finding potential bugs and allocating

their testing efforts. In order to create these

prediction models, defect and

measurement data must be obtained from

real software development efforts to use it

as a learning collection.

MOTIVATION

Software Defect prediction is the critical

requirement of software quality and

reliability. For detecting error prone

modules in an intensive system and the

Software Defect prediction serves as a

dynamic and self-motivated research

domain in software development for

efficient management of the software

quality. The model can be developed by

prior resources and can predict defect

prone modules.

RELATED WORK

Akiyama[9] built the first defect prediction

model to predict the number of defects

based on lines of code and built a very

simple model using LOC. Tripathiand Rai

in,[10]presenteda comparative analysis

between traditional and Machine Learning

methods and show that ML approaches

have a more reliable estimate of effort

relative to conventional methods of

JOURNAL OF ALGEBRAIC STATISTICS
Volume 13, No. 3, 2022, p. 1208-1218
https://publishoa.com
ISSN: 1309-3452

1210

estimating effort. Bansal et al.[11]reported

that the production of a fuzzy multi-

criteria-based approach to decision-making

by combining Fuzzy Set Theory.

Muketha[12] exhaustively study current

software commitment calculation

approaches by developing calculation

methods tailored to modernise app creation

techniques.Lessmann et al, [5]studied

Benchmarking Classification Models for

Software Defect Prediction. Prabha and

Shivakumar[6] studied Software defect

prediction using machine learning

techniques and A systematic research

analysis is conducted in which parameters

of confusion, precision, recall, recognition

accuracy, etc.are measured as well as

compared with the prevailing schemes.

Przemyslaw Pospieszny et al. [13]in 2018

reported Software effort and duration

estimation using ISBSG dataset, intelligent

data preparation, an average group of three

machine learning algorithms and cross-

validation ISBSG data collection.

Research gap: The commitment and length

calculation models obtained was supposed

to provide a decision making method for

designing organizations or integrating

information systems as research gaps.

Dhingraand Mann in 2014 [14]worked

onneuro fuzzy model for estimating

software time using Membership function

models (Gaussian MF, Triangular MF and

Trapezoidal MF). Research gap: Neuro

Fuzzy model of Trapezoidal membership

feature performs more than every other

configuration.

Federica Sarro et al. in 2016

[15]presented Bi-objective effort

estimation algorithm using Real-world

datasets from the PROMISE repository,

involving 724 different software projects

in total. Research gap: The planned

algorithm exceeds the standard,

modernized well as all the three substitute

formulations, which are statistically

relevant (p <; 0.001) and with large effect

size (A 12 ≥ 0.9) over all five datasets

Ochodek et al. in 2015 [16]studied using

Function Point Analysis (FPA), Software

Non-functional Assessment Process

(SNAP) Measure the non-functional size

of applications. Research gap: The study

findings indicate that SNAP will help to

alleviate certain well- FPA process

limitations.

Ingold et al. in 2013[17] work on

Constructive Rapid Application

Development Model (CORADMO)

Research gap:CORADMO attempts to

measure the influence of primary program

factors and thereby helps managers to

predict the relative timetable arising from

the variance of certain parameters.

Humayun and Gang in 2012[18] work on

effort estimation using Global software

development (GSD), artificial intelligence,

machine learning. A qualitative study is

performed between conventional

approaches for calculating commitment

and ML approaches. Research gap:

Results indicate that ML methods provide

us a more reliable measurement of effort

relative to conventional methods of

estimating effort.

Singhand Leavline in 2019 [19]studied

Dimensionality reduction using Feature

subset selection and feature-ranking

methods. Research gap: The techniques

employed increase the classifier's

prediction precision, reduce the incorrect

prediction factor, as well as minimize the

cost of time and space to construct the

statistical model.

https://www.sciencedirect.com/science/article/pii/S0164121217302947#!
https://ieeexplore.ieee.org/author/37086579743
https://ieeexplore.ieee.org/author/37086579743

JOURNAL OF ALGEBRAIC STATISTICS
Volume 13, No. 3, 2022, p. 1208-1218
https://publishoa.com
ISSN: 1309-3452

1211

Shepperd et al.in 2012 [20]reported

Evaluating prediction systems Using An

unbiased statistic, Standardized Accuracy,

Random ‗predictions‘. Research gap:

Recently reported scientific evaluations of

prediction processes are being re-

examined and the initial findings found

dangerous.

Malathiand Sridhar in 2012 [21]work on

Software Cost Estimation using

Quantitative basis for the development and

validation. Research Gap: By constant

analysis of different measures and

methods, the findings are expected to

change.

Brown and Boehm in 2010[22] work on

Software Cost Estimation, using Directed

System of Systems (DSOS) or

Acknowledged Systems of Systems

(ASOS).Research gap: The technique is

being used to measure the expense of

software production of applications.

The RNNs are helpful and popular tool for

modeling complex sequence Data and

have been utilized in various applications

such as speech recognition, sentiment

analysis, music, and video [[23]; [24];

[25]; [26]). Machine Learning based

models are one of the strategies for

programming imperfection forecasts.

Similar to regression models, these can be

used for either classification (defective/not

defective) or to estimate defect

count/densities. Over time as more data is

made available, the models improvise on

their predictive accuracy by adjusting their

value of parameters (learning by

experience)[7].

In the standard deep learning models of

AI, convolutional neural networks (CNNs)

are widely used for visual tasks such as

classification and recognition task for

images and for objects, while recurrent

neural network (RNNs) are typically for

tasks mainly involve temporal patterns fed

into the network as sequential input. Many

RNN models are tested to make learning

methods easier and better. The LSTM

(Long Short-Term Memory) model was

designed specifically as an RNN for

sequential machine learning tasks like

speech recognition, language

understanding and sequence to sequence

translation[27]. The IndRNN, a new type

of RNNs with the recurrent connection

formulated as Hadamard product, referred

to as independently recurrent neural

network (IndRNN), where neurons in the

same layer are independent of each other

and connected across layers. As

connections in CNNs to facilitate the

gradient flow in the network and achieve

state-of-the-art RNN performance [28].

The convolutional neural networks have

applied to sequential tasks but have

substantial network-size and data-history

memory requirements[29], [30]

PROBLEM STATEMENT

Software defects affectthe quality of the

software. A defective software module

creates a massive impact on the quality

and efficiency of the software with

increase in cost also, increasesthe software

development cost and time and results in

development to a smaller extent. Defect

prediction can be a valuable tool for

guiding the use of tools for quality

assurance for software. Many research

projects covered methods for predicting

defects and methodological aspects of

prediction research, the real cost - saving

potential of predicting defects remains

unclear.

JOURNAL OF ALGEBRAIC STATISTICS
Volume 13, No. 3, 2022, p. 1208-1218
https://publishoa.com
ISSN: 1309-3452

1212

PROPOSED WORK

3.1 PROPOSED MODEL

To determine the accurate sized figures for

defect in the software.

3.1.1LSTM-RNN ALGORITHM

Input: PROMISE Software Defect

Prediction Dataset (features with Labels)

Output: Classification model

1. Start

2. Software defect prediction data store in

NumPy 3 dimensional array (N, W,F)

 N number of training Sequence

 W is sequence Length

 F is the number

3. A network structure is built with [1, a,

b,1] dimension, where there is 1input

layer, a neuron in the next layer, b neuron

in the subsequent layer and a single layer

with a linear activation function.

4. Train constructed LSTM-RNN network

on the data

5. Use the output of last layer as the

prediction of the statement.

6. Repeat 4 and 5 steps until optimize

convergence.

7. Obtain prediction of testing data on

trained LSTM-RNN network

8. Evaluate accuracy, precision and recall

9. End

3.2 PROPOSED FLOWCHART

In the present study ML approach, a

Recurrent Neural Network (RNN) for

predicting software defect were used on

PROMISE dataset for five different

version of software defects. The proposed

approach is compared with two existing

approaches i.e. RF & SVM to predict

software faults on historical data.

Experiments on various Pledge datasets

from the PROMISE repository: JM1, KC1,

KC2, PCI and CM1 variants are studied.

In the present study ML approach, a

RNNfor predicting software defect were

used on PROMISE dataset for five

different version of software defect. The

proposed flow chart include step 1, in

which a network structure is built a input

layer, a neuron in the next layer of the

proposed model in flow chart and neuron

in the subsequent layers and a single layer

with activation function. The flow chart

(Fig 3.1)showsconstructed LSTM-RNN

network on the data and use the output as

the last layer in the prediction of the

statement. The steps 4 and 5 repeat until

optimize convergence. Prediction of

testing data obtained on trained LSTM-

RNN network. The evaluation includes

evaluate accuracy, precision and recall.

Fig 3.1 Proposed LSTM-RNN Approach

Input Promise
Dataset with n-

features

LSTM-1

LSTM-1

LSTM-1

LSTM-2

LSTM-2

LSTM-2

LSTM-3

LSTM-3

LSTM-3

If Optimize
Features with

Label

Learning By
SoftMax
classifier

Analysis
Parameters

Yes

NO

JOURNAL OF ALGEBRAIC STATISTICS
Volume 13, No. 3, 2022, p. 1208-1218
https://publishoa.com
ISSN: 1309-3452

1213

4. EXPERIMENT AND RESULTS

4.1 EXPERIMENTAL SETUP

The experiment setup details with different

parameters like dataset, type of dataset

models uses and metrics for analysis

performance model are presented in table

4.1. The table shows experiment setup of

the present study and represents details of

used dataset and type of dataset used in the

study. The type of dataset used are

different version of software‘s i.e.

CM1,JC1,KC1,KC2,PC1. In setup also

show the algorithms and its component

LSTM-RNN. LSTMs are recurrent neural

network have memory blocks in the layers

of recurrent hidden layer and are easier to

train than standard RNNs [3], [4].

Table 4.1: Experimental Setup of Software Defect Prediction

Parameters Value

Dataset Promise

Activation function RELU

Pooling Max

Features 20

type of dataset CM1,JC1,KC1,KC2,PC1

LSTM-RNN Layer 3

Classifier SoftMax

Metrics Accuracy, precision, recall

4.2RESULTS

The observations in the present study of

performance analysis of LSTM approach

and two existing ML approaches on

different metrics and datasets are shown in

table 4.2. The metrics used for the analysis

are precision, recall and accuracy. As

shown in the table 4.2, the proposed

LSTM approach is better than the two

existing support vector machine and

random forest approaches in analysis. The

dataset used for the comparison study are

JM1, KC1, KC2, PC1 and CM1. The

performance of LSTM approach on

accuracy on different PROMISE datasets

are presented using the bar diagram for

comparison in between the different data

sets and presented in the fig 1.The

performance of LSTM approach on

Precision metrics using different

PROMISE dataset are presented by bar

diagram in fig. 2. The table 4.3 shows

analysis of proposed model on Recall

using different PROMISE dataset through

LSTM -RNN approach. The comparative

performance analysis results of LSTM

approach on different metrics and datasets

are shown using bar diagram in fig 4. For

metrics used precision, recall and

accuracy,dataset using JM1, KC1, KC2,

PC1 and CM1.

JOURNAL OF ALGEBRAIC STATISTICS
Volume 13, No. 3, 2022, p. 1208-1218
https://publishoa.com
ISSN: 1309-3452

1214

Table 4.2: Metrics Comparison of LSTM approach with SVM & RF, Dataset use JM1,

KC1, KC2, PC1 and CM1

Dat

aset

Accuracy Precision Recall

 (SVM) (RF) (LSTM

)

(SVM) (RF) (LSTM

)

(SVM) (RF) (LSTM

)

CM

1

72.226

92308

83.046

85898

94.043

33333

72.767

94872

83.391

15384

95.283

33333

72.661

21795

83.411

76282

94.279

16667

JM

1

72.170

51282

83.085

35257

93.746

66667

71.6 82.097

85256

93.913

33333

72.066

66667

82.643

49359

94.64

KC

1

72.527

5641

83.599

32692

93.896

66667

70.631

41026

81.197

59616

92.246

66667

71.133

97436

81.882

59615

92.733

33333

KC

2

73.298

07692

84.410

57692

94.675 70.517

30769

81.148

26923

91.395 71.448

07692

82.293

65385

92.215

PC1 73.769

23077

84.834

61538

95.9 70.730

76923

81.340

38462

91.95 71.961

53846

82.755

76923

93.55

Fig 4.1 Accuracy Analysis Comparison of Software defect prediction in LSTM on

different PROMISE dataset

Fig 2: Precision Analysis Comparison of Software defect prediction in LSTM on

different PROMISE dataset

92.5

93

93.5

94

94.5

95

95.5

96

96.5

CM1 JM1 KC1 KC2 PC1

Metrics Comparison of LSTM approach, Dataset use
JM1, KC1, KC2, PC1 and CM1.

Accuracy (LSTM)

JOURNAL OF ALGEBRAIC STATISTICS
Volume 13, No. 3, 2022, p. 1208-1218
https://publishoa.com
ISSN: 1309-3452

1215

Fig 3 Recall Analysis Comparison of Software defect prediction in LSTM on different

PROMISE dataset

Fig 4: Metrics Comparison of LSTM approach, Dataset use JM1, KC1, KC2, PC1 and

CM1.

89

90

91

92

93

94

95

96

CM1 JM1 KC1 KC2 PC1

Precision (LSTM)

Precision (LSTM)

91

91.5

92

92.5

93

93.5

94

94.5

95

CM1 JM1 KC1 KC2 PC1

Recall (LSTM)

Recall (LSTM)

JOURNAL OF ALGEBRAIC STATISTICS
Volume 13, No. 3, 2022, p. 1208-1218
https://publishoa.com
ISSN: 1309-3452

1216

4.3 RESULTS - ANALYSIS AND

DISCUSSION

 In experiment use LSTM -RNN

approachforpredicting software defect. In

experiment, we used PROMISE Dataset

using five different version of software

defect.

 Experiment results use three

performance metrics Precision, recall and

Accuracy. These performance parameters

representthe model reliability and validate

model by experiment on different dataset.

 In model use a deep learning model

using LSTM-RNN approach. This

approach like CNN process not find any

sequence by LSTM-RNN make sequence

model, but the prediction model

constructed can provide a satisfactory

performance.The proposed approach is

better than the two existing support vector

machine and random forest approaches in

analysis.

 In fig 4 shows the precision, recall and

accuracy performance of models using

LSTM-RNN. The Precision was found

maximum in PC1 and shows perform

efficiently in all datasets. The metrics

recall performs most efficiently in JM1.

On the other hand, Precision was found

maximum in CM1 and perform efficiently.

LSTM show nonlinear mapping on RELU

Layer. Accuracy range 93.74 to 95.9 %

and shows maximum accuracy in PC1, and

least was detected in JM1. Precision range

91.39 to 95.28 % and shows highest

accuracy in CM1, and least was detected

in PC1. Recall range 92.21 to 94.64 % and

shows highest accuracy in JM1, and least

was detected in KC2 in to LSTM-RNN.

CONCLUSION

The technique LSTM-RNN might prove

appropriate for binary classification tasks

that contain components of non-parametric

applied statistics, neural networks and

machine learning. In the present study, a

specialized approachfor machine learning

a recurrent neural network for predicting

software defect were used on PROMISE

Dataset for five different version of

software defect. The prediction model

constructed can provide a satisfactory

performance. These metric set can be

helpful for software engineers and

developers.The comparison results showed

that the approach has the best results over

the others. Moreover, experimental results

showed that using RNN approach provides

89

90

91

92

93

94

95

96

97

CM1 JM1 KC1 KC2 PC1

LSTM -RNN

Accuracy (LSTM) Precision (LSTM) Recall (LSTM)

JOURNAL OF ALGEBRAIC STATISTICS
Volume 13, No. 3, 2022, p. 1208-1218
https://publishoa.com
ISSN: 1309-3452

1217

a better performance for software defect

prediction than RF and SVM approaches

model.In conclude, RNN remark Accuracy

range 93.74 to 95.9 % and shows

maximum accuracy in PC1, and least was

detected in JM1. Precision range 91.39 to

95.28 % and shows highest accuracy in

CM1, and least was detected in PC1.

Recall range 92.21 to 94.64 % and shows

highest accuracy in JM1, and least was

detected in KC2in to LSTM-RNN.

Software defect Prediction features

dependent to each other, In future enhance

this work depend on Bayesian network

which combined with deep learning. In

future also increase the validation step by

using validation approaches and also shall

focus on improving the feature selection

approaches.

ACKNOWLEDGEMENTS

We are gratefully acknowledging Kalindi

College and University of Delhi for

financial support. We also thank IGNOU,

New Delhi for providing the facilities.

REFERENCES

[1] A. Graves, N. Jaitly, and A.

Mohamed, ―Hybrid speech recognition

with deep bidirectional LSTM,‖ 2013, pp.

273–278.

[2] H. Sak, A. Senior, and F. Beaufays,

―Long short-term memory based recurrent

neural network architectures for large

vocabulary speech recognition,‖ ArXiv

Prepr. ArXiv14021128, 2014.

[3] S. Hochreiter and J. Schmidhuber,

―Long short-term memory,‖ Neural

Comput., vol. 9, no. 8, pp. 1735–1780,

1997.

[4] F. A. Gers, J. Schmidhuber, and F.

Cummins, ―Learning to forget: Continual

prediction with LSTM,‖ Neural Comput.,

vol. 12, no. 10, pp. 2451–2471, 2000.

[5] S. Lessmann, B. Baesens, C. Mues,

and S. Pietsch, ―Benchmarking

classification models for software defect

prediction: A proposed framework and

novel findings,‖ IEEE Trans. Softw. Eng.,

vol. 34, no. 4, pp. 485–496, 2008.

[6] C. L. Prabha and N. Shivakumar,

―Software defect prediction using machine

learning techniques,‖ 2020, pp. 728–733.

[7] M. K. Thota, F. H. Shajin, and P.

Rajesh, ―Survey on software defect

prediction techniques,‖ Int. J. Appl. Sci.

Eng., vol. 17, no. 4, pp. 331–344, 2020.

[8] M. S. Rawat and S. K. Dubey,

―Software defect prediction models for

quality improvement: a literature study,‖

Int. J. Comput. Sci. Issues IJCSI, vol. 9,

no. 5, p. 288, 2012.

[9] F. Akiyama, ―An Example of

Software System Debugging.,‖ 1971, vol.

71, pp. 353–359.

[10] R. Tripathi and P. Rai, ―Machine

learning methods of effort estimation and

its performance evaluation criteria,‖

IJCSMC, vol. 6, no. 1, pp. 61–67, 2017.

[11] A. Bansal, B. Kumar, and R. Garg,

―Multi-criteria decision making approach

for the selection of software effort

estimation model,‖ Manag. Sci. Lett., vol.

7, no. 6, pp. 285–296, 2017.

[12] S. W. Munialo and G. M. Muketha,

―A review ofagile software effort

estimation methods,‖ 2016.

[13] P. Pospieszny, B. Czarnacka-

Chrobot, and A. Kobylinski, ―An effective

approach for software project effort and

duration estimation with machine learning

algorithms,‖ J. Syst. Softw., vol. 137, pp.

184–196, 2018.

JOURNAL OF ALGEBRAIC STATISTICS
Volume 13, No. 3, 2022, p. 1208-1218
https://publishoa.com
ISSN: 1309-3452

1218

[14] S. Dhingra and P. S. Mann, ―Design

and implementation of neuro fuzzy model

for software development time

estimation,‖ Int. J. Comput. Appl., vol. 86,

no. 5, 2014.

[15] F. Sarro, A. Petrozziello, and M.

Harman, ―Multi-objective software effort

estimation,‖ 2016, pp. 619–630.

[16] M. Ochodek and B. Ozgok,

―Functional and Non-functional Size

Measurement with IFPUG FPA and

SNAP—Case Study,‖ in Software

Engineering in Intelligent Systems,

Springer, 2015, pp. 19–33.

[17] D. Ingold, B. Boehm, and S.

Koolmanojwong, ―A model for estimating

agile project process and schedule

acceleration,‖ 2013, pp. 29–35.

[18] M. Humayun and C. Gang,

―Estimating effort in global software

development projects using machine

learning techniques,‖ Int. J. Inf. Educ.

Technol., vol. 2, no. 3, p. 208, 2012.

[19] D. A. A. G. Singh and E. J. Leavline,

―Dimensionality Reduction for

Classification and Clustering,‖ Int. J.

Intell. Syst. Appl. IJISA, vol. 11, no. 4, pp.

61–68, 2019.

[20] M. Shepperd and S. MacDonell,

―Evaluating prediction systems in software

project estimation,‖ Inf. Softw. Technol.,

vol. 54, no. 8, pp. 820–827, 2012.

[21] S. Malathi and S. Sridhar, ―Analysis

of size metrics and effort performance

criterion in software cost estimation,‖

Indian J. Comput. Sci. Eng., vol. 3, no. 1,

pp. 24–31, 2012.

[22] A. W. BROWN and B. BOEHM,

―Software cost estimation in the

incremental commitment model,‖ 2010,

vol. 4, no. 01, pp. 45–55.

[23] R. Prabhavalkar, K. Rao, T. N.

Sainath, B. Li, L. Johnson, and N. Jaitly,

―A Comparison of Sequence-to-Sequence

Models for Speech Recognition.,‖ 2017,

pp. 939–943.

[24] D. Dwibedi, P. Sermanet, and J.

Tompson, ―Temporal reasoning in videos

using convolutional gated recurrent units,‖

2018, pp. 1111–1116.

[25] K. Choi, G. Fazekas, M. Sandler,

and K. Cho, ―Convolutional recurrent

neural networks for music classification,‖

2017, pp. 2392–2396.

[26] D. Tang, B. Qin, and T. Liu,

―Document modeling with gated recurrent

neural network for sentiment

classification,‖ 2015, pp. 1422–1432.

[27] A. Graves, ―Generating sequences

with recurrent neural networks,‖ ArXiv

Prepr. ArXiv13080850, 2013.

[28] S. Li, W. Li, C. Cook, and Y. Gao,

―Deep independently recurrent neural

network (indrnn),‖ ArXiv Prepr.

ArXiv191006251, 2019.

[29] A. van den Oord et al., ―Wavenet: A

generative model for raw audio,‖ ArXiv

Prepr. ArXiv160903499, 2016.

[30] K. Benidis et al., ―Neural

forecasting: Introduction and literature

overview,‖ ArXiv Prepr. ArXiv200410240,

2020.

