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Abstract 

For development of software, controlling the quality is a prime concern of developers. 

Machine learning (ML) techniques enablesoftware engineers tocarry research in defect 

prediction that relies primarily on hand-crafted attributes, which are used to classify defect 

code in ML classifications. In the present studyML approach, a Recurrent Neural Network 

(RNN) for predicting software defect were used on PROMISE dataset for five different 

version of software defects.The proposed approach is compared with two existing approaches 

i.e. RF & SVM to predict software faults on historical data. Experiments on various Pledge 

datasets from the PROMISE repository: JM1, KC1, KC2, PCI and CM1 variants are studied. 

The proposed approach is better than the two existing support vector machine and random 

forest approaches in analysis. The RNN model in the present study shows accuracy in the 

range of 93.74 to 95.9 %. It shows maximum accuracy in PC1, and least in JM1. Further, the 

proposed approach gives precision in the range of 91.39 to 95.28 %. It shows highest 

precision in CM1, and least in PC1. Similarly, Recall is observed in the range of 92.21 to 

94.64 % and thehighest recall is observed in JM1, and least in KC2. 

Keywords: PROMISE Dataset, RNN, Machine Learning, Deep Learning. 

 

INTRODUCTION 

The software defects, imperfections during 

software development would make the 

desired software to fail to meet the actual 

requirements or may cause an unexpected 

result. Software defectsare error or 

mistakes, or may be bugin a software 

program that may cause unexpected 

outcome, or results malfunctioning in 

software. This error in the program may 

produce unintended outcome and prevent 

working as intended. Software defect 

prediction is localization oddeffects or 

modules have error in software. Software 

defects may significantly affect the 

software and may increase the software 

development cost due to expensesin 

identifying and correcting bugs. Defect 

prevention and identification are one of the 

critical part or important in software 

quality assurance. The quality of software 

depends on the possibilities of arising 

defects. High-risk elements should be 

predicting at the earliest to increase the 

efficiency of the software. The software 

defect detection and defect repair are the 

most time-consuming and costly in 

software development. Technically it is 

almost not feasible to remove each defect, 

but it is possible to reduce the defects in 

order to develop software modules with 

reliability and accuracy. The software 

defect predictionassistssoftware 

developers in detection of defects or 



JOURNAL OF ALGEBRAIC STATISTICS 
Volume 13, No. 3, 2022, p. 1208-1218 
https://publishoa.com 
ISSN: 1309-3452 

1209 
 

software bugs.  

In order to create prediction models, defect 

and measurement data must be obtained 

from real software development efforts to 

use as learning data. Long Short-Term 

Memory (LSTM) recurrent neural 

networks (RNNs) have potential to beat 

state-of-the-art Deep Neural Network 

(DNN) systems[1], [2]. LSTMs are 

recurrent neural network have units known 

as memory blocks in the layers of 

recurrent hidden layer and are easier to 

train than standard RNNs[3], [4]. The 

Model must be measured by comparing 

the expected deficiency of the modules in 

the test against their real 

deficiency.Lessmann et al, [5]studied 

Benchmarking Classification Models for 

Software Defect Prediction. Recently some 

workers, [6] studied Software defect 

prediction using machine learning 

techniques and a systematic research 

analysis is conducted in which parameters 

of confusion, precision, recall, recognition 

accuracy, etc., are measured as well as 

compared with the prevailing schemes. 

ML based models are an important 

strategy for programming imperfection 

forecasts, these can be used for either 

classification or to estimate defect 

count/densities.Recent work 

demonstratedlearning by experience 

improvise these models on their predictive 

accuracy by adjusting their value of 

parameters[7]. The analytical analysis 

indicates that the proposed approach will 

provide more useful solutions for device 

defects prediction. 

The software defect prediction to construct 

a prediction model, defect and data are 

required from development for learning 

process, the step labelling requiresdata for 

the training of the prediction model. The 

Prediction Models, Support Vector 

Machines or Bayesian Network or other 

General machine learners are used for a 

Prediction Model construction using a 

training set. In the Assessment step, a 

prediction model is evaluated using test 

data in addition to a training set by 

comparing the prediction and real 

labels[8]. To develop modules with 

reliability and accuracy, software defect 

prediction is required to assist developers 

in finding potential bugs and allocating 

their testing efforts. In order to create these 

prediction models, defect and 

measurement data must be obtained from 

real software development efforts to use it 

as a learning collection. 

 

MOTIVATION 

Software Defect prediction is the critical 

requirement of software quality and 

reliability. For detecting error prone 

modules in an intensive system and the 

Software Defect prediction serves as a 

dynamic and self-motivated research 

domain in software development for 

efficient management of the software 

quality. The model can be developed by 

prior resources and can predict defect 

prone modules.  

 

RELATED WORK 

Akiyama[9] built the first defect prediction 

model to predict the number of defects 

based on lines of code and built a very 

simple model using LOC. Tripathiand Rai 

in,[10]presenteda comparative analysis 

between traditional and Machine Learning 

methods and show that ML approaches 

have a more reliable estimate of effort 

relative to conventional methods of 
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estimating effort. Bansal et al.[11]reported 

that the production of a fuzzy multi-

criteria-based approach to decision-making 

by combining Fuzzy Set Theory. 

Muketha[12] exhaustively study current 

software commitment calculation 

approaches by developing calculation 

methods tailored to modernise app creation 

techniques.Lessmann et al, [5]studied 

Benchmarking Classification Models for 

Software Defect Prediction. Prabha and 

Shivakumar[6] studied Software defect 

prediction using machine learning 

techniques and A systematic research 

analysis is conducted in which parameters 

of confusion, precision, recall, recognition 

accuracy, etc.are measured as well as 

compared with the prevailing schemes. 

Przemyslaw Pospieszny et al. [13]in 2018 

reported Software effort and duration 

estimation using ISBSG dataset, intelligent 

data preparation, an average group of three 

machine learning algorithms and cross-

validation ISBSG data collection. 

Research gap: The commitment and length 

calculation models obtained was supposed 

to provide a decision making method for 

designing organizations or integrating 

information systems as research gaps. 

Dhingraand Mann  in 2014 [14]worked 

onneuro fuzzy model for estimating 

software time using Membership function 

models (Gaussian MF, Triangular MF and 

Trapezoidal MF). Research gap: Neuro 

Fuzzy model of Trapezoidal membership 

feature performs more than every other 

configuration. 

Federica Sarro et al. in 2016 

[15]presented Bi-objective effort 

estimation algorithm using Real-world 

datasets from the PROMISE repository, 

involving 724 different software projects 

in total. Research gap: The planned 

algorithm exceeds the standard, 

modernized well as all the three substitute 

formulations, which are statistically 

relevant (p <; 0.001) and with large effect 

size (A 12 ≥ 0.9) over all five datasets 

Ochodek et al. in 2015 [16]studied using 

Function Point Analysis (FPA), Software 

Non-functional Assessment Process 

(SNAP) Measure the non-functional size 

of applications. Research gap: The study 

findings indicate that SNAP will help to 

alleviate certain well- FPA process 

limitations. 

Ingold et al. in 2013[17] work on 

Constructive Rapid Application 

Development Model (CORADMO) 

Research gap:CORADMO attempts to 

measure the influence of primary program 

factors and thereby helps managers to 

predict the relative timetable arising from 

the variance of certain parameters. 

Humayun and Gang in 2012[18] work on 

effort estimation using Global software 

development (GSD), artificial intelligence, 

machine learning. A qualitative study is 

performed between conventional 

approaches for calculating commitment 

and ML approaches. Research gap:  

Results indicate that ML methods provide 

us a more reliable measurement of effort 

relative to conventional methods of 

estimating effort. 

Singhand Leavline in 2019 [19]studied 

Dimensionality reduction using Feature 

subset selection and feature-ranking 

methods. Research gap: The techniques 

employed increase the classifier's 

prediction precision, reduce the incorrect 

prediction factor, as well as minimize the 

cost of time and space to construct the 

statistical model. 

https://www.sciencedirect.com/science/article/pii/S0164121217302947#!
https://ieeexplore.ieee.org/author/37086579743
https://ieeexplore.ieee.org/author/37086579743
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Shepperd et al.in 2012 [20]reported 

Evaluating prediction systems Using An 

unbiased statistic, Standardized Accuracy, 

Random ‗predictions‘. Research gap: 

Recently reported scientific evaluations of 

prediction processes are being re-

examined and the initial findings found 

dangerous. 

Malathiand Sridhar in 2012 [21]work on 

Software Cost Estimation using 

Quantitative basis for the development and 

validation. Research Gap: By constant 

analysis of different measures and 

methods, the findings are expected to 

change. 

Brown and Boehm in 2010[22] work on 

Software Cost Estimation, using Directed 

System of Systems (DSOS) or 

Acknowledged Systems of Systems 

(ASOS).Research gap: The technique is 

being used to measure the expense of 

software production of applications. 

The RNNs are helpful and popular tool for 

modeling complex sequence Data and 

have been utilized in various applications 

such as speech recognition, sentiment 

analysis, music, and video [[23]; [24]; 

[25]; [26]). Machine Learning based 

models are one of the strategies for 

programming imperfection forecasts. 

Similar to regression models, these can be 

used for either classification (defective/not 

defective) or to estimate defect 

count/densities. Over time as more data is 

made available, the models improvise on 

their predictive accuracy by adjusting their 

value of parameters (learning by 

experience)[7].  

In the standard deep learning models of 

AI, convolutional neural networks (CNNs) 

are widely used for visual tasks such as 

classification and recognition task for 

images and for objects, while recurrent 

neural network (RNNs) are typically for 

tasks mainly involve temporal patterns fed 

into the network as sequential input. Many 

RNN models are tested to make learning 

methods easier and better. The LSTM 

(Long Short-Term Memory) model was 

designed specifically as an RNN for 

sequential machine learning tasks like 

speech recognition, language 

understanding and sequence to sequence 

translation[27]. The IndRNN, a new type 

of RNNs with the recurrent connection 

formulated as Hadamard product, referred 

to as independently recurrent neural 

network (IndRNN), where neurons in the 

same layer are independent of each other 

and connected across layers. As 

connections in CNNs to facilitate the 

gradient flow in the network and achieve 

state-of-the-art RNN performance [28]. 

The convolutional neural networks have 

applied to sequential tasks but have 

substantial network-size and data-history 

memory requirements[29], [30] 

 

PROBLEM STATEMENT 

Software defects affectthe quality of the 

software. A defective software module 

creates a massive impact on the quality 

and efficiency of the software with 

increase in cost also, increasesthe software 

development cost and time and results in 

development to a smaller extent. Defect 

prediction can be a valuable tool for 

guiding the use of tools for quality 

assurance for software. Many research 

projects covered methods for predicting 

defects and methodological aspects of 

prediction research, the real cost - saving 

potential of predicting defects remains 

unclear.  
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PROPOSED WORK 

 

3.1 PROPOSED MODEL 

To determine the accurate sized figures for 

defect in the software. 

 

3.1.1LSTM-RNN ALGORITHM 

Input: PROMISE Software Defect 

Prediction Dataset (features with Labels) 

Output: Classification model  

1. Start 

2. Software defect prediction data store in 

NumPy 3 dimensional array (N, W,F)  

 N number of training Sequence 

 W is sequence Length 

 F is the number  

3.  A network structure is built with [1, a, 

b,1] dimension, where there is 1input 

layer, a neuron in the next layer, b neuron 

in the subsequent layer and a single layer 

with a linear activation function. 

4. Train constructed LSTM-RNN network 

on the data 

5. Use the output of last layer as the 

prediction of the statement. 

6. Repeat 4 and 5 steps until optimize 

convergence. 

7. Obtain prediction of testing data on 

trained LSTM-RNN network 

8. Evaluate accuracy, precision and recall 

9. End 

 

3.2 PROPOSED FLOWCHART 

In the present study ML approach, a 

Recurrent Neural Network (RNN) for 

predicting software defect were used on 

PROMISE dataset for five different 

version of software defects. The proposed 

approach is compared with two existing 

approaches i.e. RF & SVM to predict 

software faults on historical data. 

Experiments on various Pledge datasets 

from the PROMISE repository: JM1, KC1, 

KC2, PCI and CM1 variants are studied.  

In the present study ML approach, a 

RNNfor predicting software defect were 

used on PROMISE dataset for five 

different version of software defect.  The 

proposed flow chart include step 1, in 

which a network structure is built a input 

layer, a neuron in the next layer of the 

proposed model in flow chart and neuron 

in the subsequent layers and a single layer 

with activation function. The flow chart 

(Fig 3.1 )showsconstructed LSTM-RNN 

network on the data and use the output as 

the last layer in the prediction of the 

statement. The steps 4 and 5 repeat until 

optimize convergence. Prediction of 

testing data obtained on trained LSTM-

RNN network. The evaluation includes 

evaluate accuracy, precision and recall. 

 

Fig 3.1 Proposed LSTM-RNN Approach 

Input Promise 
Dataset with n-

features

LSTM-1

LSTM-1

LSTM-1

LSTM-2

LSTM-2

LSTM-2

LSTM-3

LSTM-3

LSTM-3

If Optimize
Features with 

Label

Learning By 
SoftMax 
classifier

Analysis 
Parameters
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NO

  



JOURNAL OF ALGEBRAIC STATISTICS 
Volume 13, No. 3, 2022, p. 1208-1218 
https://publishoa.com 
ISSN: 1309-3452 

1213 
 

4. EXPERIMENT AND RESULTS 

 

4.1 EXPERIMENTAL SETUP 

The experiment setup details with different 

parameters like dataset, type of dataset 

models uses and metrics for analysis 

performance model are presented in table 

4.1. The table shows experiment setup of 

the present study and represents details of 

used dataset and type of dataset used in the 

study. The type of dataset used are 

different version of software‘s i.e. 

CM1,JC1,KC1,KC2,PC1. In setup also 

show the algorithms and its component 

LSTM-RNN. LSTMs are recurrent neural 

network have memory blocks in the layers 

of recurrent hidden layer and are easier to 

train than standard RNNs [3], [4].  

 

 

Table 4.1: Experimental Setup of Software Defect Prediction 

Parameters Value 

Dataset Promise 

Activation function RELU 

Pooling Max 

Features 20 

type of dataset CM1,JC1,KC1,KC2,PC1 

LSTM-RNN Layer 3 

Classifier SoftMax 

Metrics Accuracy, precision, recall 

 

4.2RESULTS 

The observations in the present study of 

performance analysis of LSTM approach 

and two existing ML approaches on 

different metrics and datasets are shown in 

table 4.2. The metrics used for the analysis 

are precision, recall and accuracy. As 

shown in the table 4.2, the proposed 

LSTM approach is better than the two 

existing support vector machine and 

random forest approaches in analysis. The 

dataset used for the comparison study are 

JM1, KC1, KC2, PC1 and CM1. The 

performance of LSTM approach on 

accuracy on different PROMISE datasets 

are presented using the bar diagram for  

 

 

comparison in between the different data 

sets and presented in the fig 1.The 

performance of LSTM approach on 

Precision metrics using different 

PROMISE dataset are presented by bar  

diagram in fig. 2. The table 4.3 shows 

analysis of proposed model on Recall 

using different PROMISE dataset through 

LSTM -RNN approach. The comparative 

performance analysis results of LSTM 

approach on different metrics and datasets 

are shown using bar diagram in fig 4. For 

metrics used precision, recall and 

accuracy,dataset using JM1, KC1, KC2, 

PC1 and CM1. 
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Table 4.2: Metrics Comparison of LSTM approach with SVM & RF, Dataset use JM1, 

KC1, KC2, PC1 and CM1 

Dat

aset 

Accuracy Precision Recall 

 (SVM) (RF) (LSTM

) 

(SVM) (RF) (LSTM

) 

(SVM) (RF) (LSTM

) 

CM

1 

72.226

92308 

83.046

85898 

94.043

33333 

72.767

94872 

83.391

15384 

95.283

33333 

72.661

21795 

83.411

76282 

94.279

16667 

JM

1 

72.170

51282 

83.085

35257 

93.746

66667 

71.6 82.097

85256 

93.913

33333 

72.066

66667 

82.643

49359 

94.64 

KC

1 

72.527

5641 

83.599

32692 

93.896

66667 

70.631

41026 

81.197

59616 

92.246

66667 

71.133

97436 

81.882

59615 

92.733

33333 

KC

2 

73.298

07692 

84.410

57692 

94.675 70.517

30769 

81.148

26923 

91.395 71.448

07692 

82.293

65385 

92.215 

PC1 73.769

23077 

84.834

61538 

95.9 70.730

76923 

81.340

38462 

91.95 71.961

53846 

82.755

76923 

93.55 

 

Fig 4.1 Accuracy Analysis Comparison of Software defect prediction in LSTM on 

different PROMISE dataset 

  

Fig 2: Precision Analysis Comparison of Software defect prediction in LSTM on 

different PROMISE dataset 

92.5
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93.5
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95

95.5
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96.5
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Metrics Comparison of LSTM approach, Dataset use 
JM1, KC1, KC2, PC1 and CM1.

Accuracy (LSTM)
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Fig 3 Recall Analysis Comparison of Software defect prediction in LSTM on different 

PROMISE dataset 

 

  

Fig 4: Metrics Comparison of LSTM approach, Dataset use JM1, KC1, KC2, PC1 and 

CM1. 
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4.3 RESULTS - ANALYSIS AND 

DISCUSSION 

 In experiment use LSTM -RNN 

approachforpredicting software defect. In 

experiment, we used PROMISE Dataset 

using five different version of software 

defect. 

 Experiment results use three 

performance metrics Precision, recall and 

Accuracy. These performance parameters 

representthe model reliability and validate 

model by experiment on different dataset. 

 In model use a deep learning model 

using LSTM-RNN approach. This 

approach like CNN process not find any 

sequence by LSTM-RNN make sequence 

model, but the prediction model 

constructed can provide a satisfactory 

performance.The proposed approach is 

better than the two existing support vector 

machine and random forest approaches in 

analysis. 

 In fig 4 shows the precision, recall and 

accuracy performance of models using 

LSTM-RNN. The Precision was found 

maximum in PC1 and shows perform 

efficiently in all datasets. The metrics 

recall performs most efficiently in JM1. 

On the other hand, Precision was found 

maximum in CM1 and perform efficiently. 

LSTM show nonlinear mapping on RELU 

Layer. Accuracy range 93.74 to 95.9 % 

and shows maximum accuracy in PC1, and 

least was detected in JM1. Precision range 

91.39 to 95.28 % and shows highest 

accuracy in CM1, and least was detected 

in PC1. Recall range 92.21 to 94.64 % and 

shows highest accuracy in JM1, and least 

was detected in KC2 in to LSTM-RNN. 

 

CONCLUSION 

The technique LSTM-RNN might prove 

appropriate for binary classification tasks 

that contain components of non-parametric 

applied statistics, neural networks and 

machine learning. In the present study, a 

specialized approachfor machine learning 

a recurrent neural network for predicting 

software defect were used on PROMISE 

Dataset for five different version of 

software defect. The prediction model 

constructed can provide a satisfactory 

performance. These metric set can be 

helpful for software engineers and 

developers.The comparison results showed 

that the approach has the best results over 

the others. Moreover, experimental results 

showed that using RNN approach provides 

89

90

91

92

93

94

95

96

97

CM1 JM1 KC1 KC2 PC1

LSTM -RNN 

Accuracy (LSTM) Precision (LSTM) Recall (LSTM)
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a better performance for software defect 

prediction than RF and SVM approaches 

model.In conclude, RNN remark Accuracy 

range 93.74 to 95.9 % and shows 

maximum accuracy in PC1, and least was 

detected in JM1. Precision range 91.39 to 

95.28 % and shows highest accuracy in 

CM1, and least was detected in PC1. 

Recall range 92.21 to 94.64 % and shows 

highest accuracy in JM1, and least was 

detected in KC2in to LSTM-RNN. 

Software defect Prediction features 

dependent to each other, In future enhance 

this work depend on Bayesian network 

which combined with deep learning. In 

future also increase the validation step by 

using validation approaches and also shall 

focus on improving the feature selection 

approaches. 
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