

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1120 - 1129

https://publishoa.com

ISSN: 1309-3452

1120

ABSTRACT

Data migration between databases is commonly occurred due to reasons such as migration of legacy system to new system,

sharing and updating of data between systems and et cetera. In the cases of migration between NoSQL database such as

MongoDB and Redis, the migration of data may not as straight forward as directly moving the data to the designated

database. One of the reasons is due to the different storage paradigm of the databases. MongoDB stores data into Json

document where Redis manages records by applying key-mapping. In addition, the flexibility of MongoDB’s storage

paradigm allows records within the same collection to be stored in different structure. Furthermore, the flexibility of

storage paradigm will lead to the complexity of record structure such as nested documents. Therefore, this affects the

storage structure on the targeted database. The research is to examine the storage schema of Redis in handling the data

migrated from MongoDB. From the result of research experiment, the predetermined structure is able to represent the

targeted record (document) schema from MongoDB

Index Terms—algorithm, data migration, database schema, document-oriented database, key value databases.

I. INTRODUCTION

According to Matthes and Schulz [1], data migration refer as a one-time tool-supported procedure that seeks to transfer

formatted data from a source structure to a destination data structure where the two structures differ conceptually and/or

physically. In the process of data migration, it is not only not only moving existing data to the target database, but also

fitting data models and structures to the destination database without compromising data integrity and correctness [2]. The

migration of data between NoSQL databases is challenging due the flexibility of storage paradigm in NoSQL databases.

Unlike relational database, records are stored in a fixed row-column format where records within the same group (table) are

having the same schema structure. Migration of data can be in a more direct way using column to column mapping.

However, this is not the case of NoSQL database. The flexibility of NoSQL storage paradigm may not allow a simple

migration with direct mapping between the source and target datastore especial for heterogeneous type of NoSQL database.

Therefore, our research is to examine the data migration method that could be applied for heterogeneous NoSQL databases.

In our research, we propose a sequential record to record data migration. The NoSQL databases applied in our study is

MongoDB and Redis.

II. NOSQL DATABASES

The idea of “NoSQL” started in 1998 where it meant of “Not Only SQL” which comprise of both Relational Database

Management System (RDMS) and NoSQL technology [3]. Some reasons [4] of using NoSQL databases are such as rise of

cloud computing, storing unstructured data and agile development method which needs rapid change of data schema. The

characteristics of NoSQL database are summarized in Table. I.

Table I Characteristics of NoSQL database.

Characteristic Description

Scalability Scale out. Performance will be improved

when machine (data nodes) is added [5].

Data

Replication

Consistency of data is achieved

eventually. When a machine is down, the

data still be able to read from replicas in

another machine [5].

Schema-Less Not required pre-defined data structure.

Developing a sequential data migration method for document-based

database and key value database

[1]Lim Fung Ji, [2] Nurulhuda Firdaus Mohd Azmi
[1] Tunku Abdul Rahman University College ,[2] Universiti Teknologi Malaysia
[1]limfj@tarc.edu.my,[2] huda@utm.my

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1120 - 1129

https://publishoa.com

ISSN: 1309-3452

1121

(Flexible data

structure)

Different types of data format are

supported [5].

“Shared

Nothing”

Architecture

Compare to normal storage, NoSQL uses

local storage pool allows faster speed by

increasing the number of data storage

nodes. In addition, cost with be saved

since commodity hardware can be used

with this architecture [6].

Elasticity Expand dynamically. Subsets of data will

be replicated to newly added data nodes

[6].

There are basically four types of NoSQL database, which are, document based, key value, column oriented and

graph-based database [7]. Each type of database has their own unique storage paradigm. The features comparison of

NoSQL database is depicted in Table. II.

Document oriented NoSQL stores data in JSON or BSON format. Similar to key-value NoSQL, documents are identified

by a set of key value. The difference between document based with key value NoSQL is document-based NoSQL allows

the enclosing key values in the documents and search can be based on both key and value. Data stored in graph database as

nodes and it is connected by edge. The edge shows the relationship between nodes. There is a pointer in the nodes that point

the next nodes [8].

Key value database store data in stable byte array, thus, a key is required to retrieve the store value. This is like the concept

of using unique key in relational database. In key value database, it uses a key-value hash-table model for the assessment of

data, i.e. each data item has a corresponding key that point to the data item. The key can be automatic generated or

synthetic [9].

Column base NoSQL stores data in distributed structure. It is a mix of row/column storage compare to pure column of

relational database [8]. Another explanation from Google on BigTable is a “distributed, ordered, sparse and

multidimensional maps”. Within rows, multiple versions of random key pairs is stored to support versioning and reach

performance [9]

Table II Comparisons of NoSQL Database.

NoSQL Features

Key-value • Stored data using hash table [10].

• Data stored in unstructured format [11].

• Unique key assigned for specific data

types[10].

• Use pointer to allocate data [10].

• Examples are Riak, Amazon S3

Dynamo[12].

Document

based
• Data stored as document format such as

BSON, JSON, XML[12].

• Key-value pairs are used for data association

[12].

• Data can be accessed either using the key or

value[12].

• Consists of features such as documents

replication, persistent data model, cross server

distribution[11].

• Examples are MongoDB, CouchDB [12]

Column

based
• Data stored in cell of column instead of

row[10].

• Data are group into set of columns which

then group as column-families [13].

• A column family is required when access

data [12].

• Unique key assigned to each column. The

column family able to store large amount of

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1120 - 1129

https://publishoa.com

ISSN: 1309-3452

1122

distributed data[11].

• Resistant to failure due to the powerful cache

and exabytes scalable systems [11].

• Examples are HBase, Cassandra [12].

Graph

based
• Representing data as a graph such as using

graph to visualize data in network analysis [12].

• Data stored represented by nodes, edges and

relationships in table form [11].

• Able to process huge datasets, flexible

schema representation and difficult to model

complex structure [11].

• Examples are Neo4J, InfoGrid [12].

III. RELATED WORKS ON DATA MIGRATION

Scherzinger and Sombach [14] propose an approach for both eager and lazy migration of data due to changes in schema

attributes and programme codes as a result of the modification of programme applications. The method employs a tool

called Datalution to capture the state of the data store, schema modifications, and top-down or bottom-up programme

evaluation using the Datalog programming language. The lazy migration of database schema is one of the methods for

preventing application pauses. The lazy migration method permits the conversion of old schema fields to new ones on

demand. This will prevent a significant number of application outages [15]. This method, however, will burden the

application's developers with code management. Another approach, which also employs lazy migration but reduces the

burden on developers by isolating the migration-performing components in a database library, allows applications to access

data as usual. This method examines the versions of Java codes that evaluate MongoDB in order to comprehend the schema

evolution. However, the approaches did not target distinct NoSQL databases, and the on-demand migration may

experience delays as the number of concurrent data accesses increases[16]. Data migration may necessitate validation in

the new database. Another technique that assists the developer in analysing and comprehending the evolution of the

NoSQL database schema by analysing the different versions of an application's source code[17]. Since the approach detects

change at the code level, it may not be able to identify a hidden field within a database. Some hidden field may not be seen

at code level but at data model.

From the migration works discussed, our research further concentrates on the migration with the following objectives:

Obj1: Examine data migration algorithm between documents-based database and key-value database.

Obj2: Examine the data schema of key value database in storing data with different schema from document-based

database.

IV. EXPERIMENT CONFIGURATIONS

The research study the migration of data from MongoDB to Redis. The configuration of the experiment is discussed on the

following subsections.

A. Databases

For the research experiment, the MongoDB version 4.2.3 community as local services at port 27017 and Redis version is

3.0.504 and port 6379 is used for access. The research utilised the default command line interface (CLI) to send commands

to the Redis server and receive feedback.

B. Data source

The data source applied in the experiment is The dataset is from a curated list in GitHub [18]. The dataset consists of sets

of Json collection. Table. III shows the json files in the dataset.

Table III Json file in database.

Physical Name Description

books.json Consists of information regarding different types of books.

city_inspection.json Inspection information of some shops in different system.

companies.json Information regarding different companies.

countries-big.json Contain abstract information on countries.

countries-small.json Contain detail information on countries but less records.

covers.json Book covers information.

grades.json Student scores in study.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1120 - 1129

https://publishoa.com

ISSN: 1309-3452

1123

palbum.json Consists of image lists.

people-bson.zip People information in zip format.

products.json Information of different products.

profiles.json Consists of status of client.

restaurant.json Restaurant address information.

students.json Students examination scores.

tweets.zip Tweeter data in zip format.

The research is using the companies.json for migration to Redis. The companies.json consists of 1583 Json documents and

these documents are imported into MongoDB database named Source and the collection name is Companies. Table. IV

shows the schema of Companies collection which is concluded from the schema analysis using MongoDB Compass.

Table IV Schema of Companies collection in MongoDB.

Field Type Field Type Field Type

_id ObjectId deadpoolead_year Mixed providerships Array

name String tag_list String total_money_raised String

permalink String alias_list Mixed funding_rounds Array

crunchbase_url String email_address Mixed investments Array

homepage_url String phone_number Mixed acquisition Mixed

blog_url String description Mixed acquisitions Array

blog_feed_url String created_at Mixed offices Array

twitter_username Mixed updated_at String milestomes Array

category_code String overview String video_embeds Array

number_of_employees Mixed image Mixed screenshorts Array

founded_year Mixed products Array external_links Array

found_month Mixed relationships Array partners Array

founded_day Mixed competitions Array

From Table. IV, the Mixed type represents complex field type, it could be a document, an array or nested array etc. For

example, the image field, it is an array which the array item is an array. Another example is the funding_rounds field,

which is an array of object. Fig. 1 and Fig. 2 show the sample data of image and funding_rounds fields.

Figure 1 Sample image field.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1120 - 1129

https://publishoa.com

ISSN: 1309-3452

1124

Figure 2 Sample funding_rounds field.

 The complex field of the schema of the collection indicates that it may not be able to direct mapping into the Redis

storage. In addition, the flexibility of schema may lead to different possibilities that affects the target database schema.

Therefore, in the transferring process of data to Redis, it needs to consider each single field in a document.

C. Determining Redis schema

 Redis is a key value database where each record is identified by a unique key. Therefore, it is necessary to decide the

schema of the Redis key records in representing the MongoDB records that are going to be migrated. The colon (:) symbol

is used to separate the parts of the schema, and the dot (.) is used to denote the level of a field in an existing MongoDB

document when defining the schema of Redis record keys. For example, funding_rounds is an array type field that consists

of investment field, which is an array field that comprises Object type field named firm, as illustrated in Fig. 3. Within the

same document, the company subfield of the Companies collection can be found in the acquisitions (in Fig. 3(a)) and

funding_rounds fields (in Fig. 3(b)). The value of the corporate fields, on the other hand, is different. Furthermore, the

acquisitions field is an array of objects, each of which is a nested object called firm. As a result, the dot symbol serves as a

level indication, indicating the field's current level. When the company field is transferred to Redis, it will be displayed as a

separate record with the prefix Companies. acquisitions. company and Companies.investments.funding_round.company

respectively.

From the prefix of the Redis key, not only will we know the position level of a record's origin data source, but it will also

help to ensure that duplicate field migration uses a unique key. In addition, the usage of colon and dot symbols enables

post-migration validation of record values. The research determines the whole structure and format of Redis keys based on

the determined prefix of keys below:

a) The key format for a document with no relationship or parent document would be <collection name>:<mongo id>.

b) For sub-documents, array of documents (or objects) that will be separated as a new Redis record with an additional

grouping key with format <collection1 name>:<mongo id>:<collection2 name>. This format defines the grouping of

documents that are linked to the parent document, with <collection2 name>:<mongo id> serving as the key for each

document within the group. For instance, if field competition is a sub-document of Companies in MongoDB, a separate

record will be created in Redis for competition, and the key that represents this Companies-competition record will be

Companies:<Companies Document id>: Companies.competition, with each Redis record of competition having a unique

key of Companies.competition:<Companies Document id>. For arrays of document field types, however, a number will be

added as the key's postfix; this number follows the array's position index.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1120 - 1129

https://publishoa.com

ISSN: 1309-3452

1125

Figure 3 Duplicate company field in same document

c) For array and other list-type fields, there are numerous considerations. The research examines both the basic array and

the complex array. Simple array type in which all array elements are simple type data such as integers and strings; the

simple array elements will be added to Redis as "[x,x,x,x]" to represent an array. If the array item of a complex type array is

of document type, it will be inserted into another Redis group according to the structure described in b). For items that are

arrays (sub-array cases), the array elements will be accessed using the format described in a), b), and c).

V. ALGORITHM

On the basis of the previously stated schema representation of Redis, the migration algorithm is adjusted to conform to the

schema structure. The algorithm starts by accessing the first document in the Companies collection and pass the document

to a function method named AddParentField. The function will access each field and identify the type of the field. For

native (simple) field type, the field will be added into a newly created Redis record with the key value of, in this case, is

Companies:<Mongo Id of the document>. For complex field such as document, the function will call itself and pass the

field as argument and repeat the same process. That is, the field and its data will only be added into Redis when it is a

simple type field and additional key is created to represent the linkage between the Companies record and the separated

record that represents the field in Redis. The recursive function call will stop until all field is added into Redis. For

Arraylist type, each array element will be access and the similar process is applied to each item. Fig. 4. Depicts the

algorithm that detects and add the field data into Redis.

VI. EXPERIMENT EXECUTION AND RESULT

The experiment is executed by selecting the Companies collection in MongoDB. The result of migration is observed when

the migration process is completed. To check on the migration outcome, records are randomly selected and compare them

with the record in Redis. We choose complex field types for matching; the chosen document’s id is

52cdef7c4bab8bd675297d93 as shown in Fig. 5. The comparison on the investment field which is an array that consists of

a document object field named funding_round in each of its array item. In addition, funding_round embeds the company

object field. The similar situation happened on the acquisitions field in which each array item is an object of document.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1120 - 1129

https://publishoa.com

ISSN: 1309-3452

1126

This selection is intended to check the migration of complex field as discussed earlier in the section. According to the

predetermined schema of Redis key, the keys for the respective records in Redis should be the following:

• Companies.investments.funding_round:52cdef7c4bab8bd675297d93-1

• Companies.investments.funding_round.company: 52cdef7c4bab8bd675297d93-1

• Companies.aquisitions:52cdef7c4bab8bd675297d93-0

• Companies.aquisitions.company:52cdef7c4bab8bd675297d93-0

The first two keys represent the key for migrated funding_round field and the company field that embedded in the

funding_round field. We retrieve the value based on the generated keys through the command line interface. The result is

shown by Fig. 6. The result shown indicates that the values are matched with the value of funding_round in Fig. 5. As for

the value of company field, another Redis s key is used to retrieve the data due to company field is object type which is

represented by different record in Redis.

Fig. 7 depicts the value of migrated data for company field.

 The key is Companies.investments.funding_round.company:52cdef7c4bab8bd675297d93-1 and the values are matched.

The “-1” of the key represents the index position of the array field in origin source. Similar steps are performed to validate

the values of company field which is under acquisitions field in the origin MongoDB. Fig. 8 and Fig. 9 depict the retrieved

value at Redis for the acquisitions and company fields which is a sub field of acquisitions field.

Figure 8 shows an empty list as the result or acquisition field. This is due to the field is an array and only consist of one

object type field named company, therefore there is no data retrieved based on the key. However, the company data in Fig.

9 shows it match with the value in Fig. 5. From the manual validation, it proved that the data has been migrated completely

and correctly with our algorithm. The experiment shows different way of arranging migrated data.

Figure 4 Migration algortih

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1120 - 1129

https://publishoa.com

ISSN: 1309-3452

1127

Figure 5 Screenshot of complex data fields

Figure 6 Migrated data for funding_round fields

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1120 - 1129

https://publishoa.com

ISSN: 1309-3452

1128

Figure 7 Migrate data of company field.

Figure 8 Retrieved value for acquisitions field.

Figure 9 Data of Companies.acquisitions.company

VII. FUTURE WORKS

With the random selection of matching, it indicates the algorithm migrates the data as according to the pre-determined

format in Redis. However, the random check does not guarantee correctness of migrated data for bigger data samples. In

addition, with this format of key will increase depending on the level of fields in the document field hierarchy. Therefore,

there is unavoidable of long key value of record in Redis if the level of field is huge. In addition, the recursive call of

function may be a complex solution for the migration. On future work, our research will proceed with migrating more

complex field structure to other NoSQLs with validation process and vice-versa.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1120 - 1129

https://publishoa.com

ISSN: 1309-3452

1129

REFERENCES

[1] Matthes, F. and C. Schulz, Towards an integrated data migration process model-State of the art & literature

overview. Technische Universität München, Garching bei München, Germany, Tech. Rep, 2011.

[2] Scavuzzo, M., E.D. Nitto, and S. Ceri. Interoperable Data Migration between NoSQL Columnar Databases. in 2014

IEEE 18th International Enterprise Distributed Object Computing Conference Workshops and Demonstrations. 2014.

[3] Gueidi, A., H. Gharsellaoui, and S.B. Ahmed. A NoSQL-based Approach for Real-Time Managing of Embedded Data

Bases. in 2016 World Symposium on Computer Applications & Research (WSCAR). 2016.

[4] Document Databases. 2017 [cited 2017 9/9/2017]; Available from: https://www.mongodb.com/document-databases.

[5] Tsuyuzaki, K. and M. Onizuka NoSQL Database Characteristics and Benchmark System. 2012. 10, 5.

[6] Ganesh Chandra, D., BASE analysis of NoSQL database. Future Generation Computer Systems, 2015. 52: p. 13-21.

[7] Zafar, R., et al. Big Data: The NoSQL and RDBMS review. in 2016 International Conference on Information and

Communication Technology (ICICTM). 2016.

[8] Swaroop, P., et al., NoSQL Paradigm and Performance Evaluation. SSARSC International Journal of Geo Science

and Geo Informatics, 2016. 3(1).

[9] Makris, A., et al., A Classification of NoSQL Data Stores Based on Key Design Characteristics. Vol. 97. 2016.

94-103.

[10] Schulz, W.L., et al., Evaluation of relational and NoSQL database architectures to manage genomic annotations.

Journal of Biomedical Informatics, 2016. 64: p. 288-295.

[11] Mathew, A.B. and S.D.M. Kumar. Analysis of data management and query handling in social networks using NoSQL

databases. in 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI).

2015.

[12] Kumar, K.B.S., Srividya, and S. Mohanavalli. A performance comparison of document oriented NoSQL databases. in

2017 International Conference on Computer, Communication and Signal Processing (ICCCSP). 2017.

[13] Ho, L.Y., et al. Data Partition Optimization for Column-Family NoSQL Databases. in 2015 IEEE International

Conference on Smart City/SocialCom/SustainCom (SmartCity). 2015.

[14] Scherzinger, S., et al., Datalution: a tool for continuous schema evolution in NoSQL-backed web applications, in

Proceedings of the 2nd International Workshop on Quality-Aware DevOps. 2016, ACM: Saarbrücken, Germany. p.

38-39.

[15] Klettke, M., et al. NoSQL schema evolution and big data migration at scale. in 2016 IEEE International Conference

on Big Data (Big Data). 2016.

[16] Saur, K., T. Dumitraş, and M. Hicks. Evolving NoSQL Databases without Downtime. in 2016 IEEE International

Conference on Software Maintenance and Evolution (ICSME). 2016.

[17] Meurice, L. and A. Cleve. Supporting schema evolution in schema-less NoSQL data stores. in 2017 IEEE 24th

International Conference on Software Analysis, Evolution and Reengineering (SANER). 2017.

[18] Ozler, H. A curated list of JSON/BSON datasets from the web in order to practice/use in MongoDB. 2019 5/7/2019

[cited 2019 13/7/2019]; Available from: http://www.github.com/ozlerhakan/mongodb-json-files.

