Volume 13, No. 3, 2022, p. 330-333 https://publishoa.com ISSN: 1309-3452

Separation Axioms on S-Topological BE-Algebras

V. Thiruveni¹, P. Lakshmi Kumari² and K.B. Latha³

^{1,2} PG and Research Department of Mathematics,

Saiva Bhanu Kshatriya College, Aruppukottai, Tamil Nadu, India.

³Department of Mathematics,

C. Kandaswami Naidu College for Men, Chennai, Tamil Nadu, India.

Received 2022 April 02; Revised 2022 May 20; Accepted 2022 June 18.

ABSTRACT:

An S-Topological BE-Algebras(STBE-Algebras) is a BE-Algebra equipped with a special type of topology that makes the operation (defined on it)as S-topological continuous. In this paper, we discuss the separation axioms on a STBE-Algebras.

Keywords: STBE-Algebra, Semi-open, Semi-closed, Semi-T₁, Semi-T₂

1. INTRODUCTION

In [1] H.A. Kim and Y.H. Kim introduced the notion of BE-algebras, which is a generalization of BCK-algebras. They also introduced the notion of commutative BE-algebras and studied their properties and characterization. In [6], Mehrshad S and Golzarpoor J studied the topological BE-algebras and discussed their properties. In [7], Jansi M and Thiruveni V introduced the notion of ideals in TSBF-algebras. Motivated by this, in our earlier paper, we introduced the notion of S-topological **BE-algebras** (STBE-Algebras). In this paper, we discuss the separation axioms of STBEalgebras.

2. **PRELIMINARIES**

Definition 2.1 [1] A BE-algebra is an algebra (X,*,1) of type (2,0) (that is, a non-empty set X with a binary operation * and a constant 1) satisfying the following conditions

- 1. x * x = 1
- 2. x * 1 = 1

- $3. \quad 1 * x = x$
- 4. $x * (y * z) = y * (x * z), \forall x, y, z \in X.$

Definition 2.2 [2] A BE-algebra (X,*,1) is called a commutative BE-algebra if it satisfies the identity

 $(x * y) * y = (y * x) * x, \forall x, y \in X.$

Definition 2.3 [2] If X is a commutative BE-algebra then x * y = 1 or y * x = 1, for all distinct $x, y \in X$.

Definition 2.4 [3] A subset A of a topological space is said to be semi-open if $A \subseteq \overline{Int A}$.

Definition 2.5 [3] The complement of a semi-open set is called semi-closed.

Definition 2.6 [3] The semi-closure of a subset A of a topological space is the intersection of all semi-closed set containing A. It is denoted by $\overline{A^5}$.

Definition 2.7 [3] A subset A of a topological space is said to be regular open if $A = \overline{Int A}$.

Definition 2.8 [4] A topological space (X, τ_5) is called semi-T₁ if for each two distinct points $x, y \in X$, there exists

Volume 13, No. 3, 2022, p. 330-333 https://publishoa.com ISSN: 1309-3452

two semi-open sets U and V such that U containing x but not y and V containing y but not x.

Definition 2.9 [4] A topological space (X, τ_5) is called semi-T₂ if for each two distinct points $x, y \in X$, there exists two disjoint semi-open sets U and V such that $x \in U$ and $y \in V$.

Definition 2.10 [5] A BE-algebra (X, *, 1)equipped with a topology τ_s is called Stopological BE-algebra (STBE-algebra) is the function $f:X \times X \to X$ defined by, f(x, y) = x * y has the property that for each open set O containing x * y, there exists a open set U containing x and a semi-open set V containing y such that, $U * V \subseteq 0$, for all $x, y \in X$.

Definition 2.11 [6] Let (X, *, 1) be a BEalgebra and $F \subseteq X$. Then F is a filter when it satisfies the conditions:

1) $1 \in F$,

2) If $1 \neq x \in F$ and $x * y \in F$, then $y \in F$.

3. SEPARATION AXIOMS ON S-TOPOLOGICAL BE-ALGEBRAS

Definition 3.1 A S-topological BE-algebra $(X,*,\tau_5)$ is called semi-T₁ STBE-algebra if for each two distinct points $x,y \in X$ there exists two semi-open sets U and V such that U containing x but not y and V containing y but not x.

Definition 3.2 A S-topological BE-algebra $(X,*,\tau_5)$ is called semi-T₂ STBE-algebra if for each two distinct points $x, y \in X$ there exists two disjoint semi-open sets U and V such that $x \in U$ and $y \in V$.

Definition 3.3 Let $(X,*,\tau_5)$ be a STBEalgebra. A non-empty subset $A \subseteq X$ is called an ideal of X if

- 1) $1 \in A$,
- 2) $\forall y \in X \text{ and } \forall x \in A, \text{ if } x * y \in A, \text{ then } y \in A.$

Definition 3.4 Let $(X,*,\tau_5)$ be a STBEalgebra. Let $A \subseteq X$. $a \in A$ is said to be an interior point of A, if there exists an open set U such that $a \in U \subseteq A$.

Theorem 3.5 In a commutative STBEalgebra ($X,*,\tau_5$) if {1} is closed, then it is semi-T₂ STBE-algebra.

Proof: Suppose {1} is closed and let x and y be any two distinct points in X. Then either $x * y \neq 1$ or $y * x \neq 1$.

Without loss of generality, suppose that $x * y \neq 1$.

Hence there exists an open set U containing x and a semi-open set V containing y such that $U * V \subseteq X - \{1\}$.

Hence, U is open (and hence semi-open) set containing x, V is a semi-open set containing y and $U \cap V = \phi$.

So, we obtain that X is semi- T_2 STBE-algebra.

Theorem 3.6 If the STBE-algebra $(X,*,\tau_5)$ is T₀, then it is semi-T₁STBE-algebra.

Proof: Let $x, y \in X$ and $x \neq y$. Then either $x * y \neq 1$ or $y * x \neq 1$.

Suppose that $x * y \neq 1$.

Now, since X is T_0 , there is an open set W containing one of x * y and 1 but not the other.

Case (i) Suppose that $x * y \in W$ and $1 \notin W$.

Since X is an STBE-algebra, there exists an open set U containing x and a semiopen set V containing y such that $U * V \subseteq W$.

Then U and V are the required semi-open sets containing x and y respectively.

 \Rightarrow X is semi-T₁ STBE-algebra.

Case (ii) Suppose that $1 \in W$ and $x * y \notin W$. Then we have $x * x = 1 \in W$.

So, there exists an open set U_1 containing x and a semi-open set V_1 containing x such that $U_1 * V_1 \subseteq W$.

Volume 13, No. 3, 2022, p. 330-333 https://publishoa.com ISSN: 1309-3452

Also, as $y * y = 1 \in W$, there exists an open set U₂ containing y and a semi-open set V₂ containing y such that $U_2 * V_2 \subseteq W$ Therefore, $G = U_1 \cap V_1$ and $H = U_2 \cap V_2$ are two semi-open sets containing x and y respectively.

It is clear that $y \notin G$ and $x \notin H$. \Rightarrow X is semi-T₁ STBE-algebra.

Theorem 3.7 Let $(X,*,\tau_5)$ be a STBEalgebra and A be a filter on X. If 1 is an interior point of A, then A is open.

Proof: Let $x \in A$. Since x * x = 1 and $1 \in Int(A)$, there exists an open set U such that $1 \in U \subseteq A$.

Now, as X is an STBE-algebra, there exists an open set V containing x such that $V * x \subseteq U$.

Claim: $V \subseteq A$.

Suppose $y \in V \cap (X \setminus A)$. Then $y * x \in U \subseteq A$. (since $V * x \subseteq U$)

As A is an ideal and $x \in A$, we must have $y \in A$, which is a contradiction to $y \in V \cap (X \setminus A)$.

Hence $V \subseteq A$. That is V is an open set containing x and $V \subseteq A$. $\Rightarrow A$ is open.

Theorem 3.8 Let X be a STBE-algebra and A be an ideal in X, which is open. Then A is semi-closed and hence it is regular open.

Proof: Let $x \notin A$.

Since x * x = 1 and X is an STBE-algebra, there exists an open set U containing x and a semi-open set V containing x such that $U * V \subseteq A$.

Take $W = U \cap V$. Then W is a semi-open set containing x and $W * W \subseteq A$.

Claim: $W \subseteq X \setminus A$

Suppose not. Let $y \in W \cap A$. Then, as A is an ideal, we must have $W \subseteq A$, a contradiction.

Hence A is semi-closed.

Since A is open, we have $A \subseteq Int(\overline{A}) \subseteq A \Rightarrow A = Int(\overline{A}) \Rightarrow A$ is regular open.

Theorem 3.9 Let $(X, *, \tau_5)$ be a STBEalgebra and F be a filter of X. If F is open, then it is closed.

Proof: Let F be an open filter of X. We show that X-F is open.

Let $x \in X - F$. Since F is open, 1 is an interior point of F.

Since x * x = 1, there exists an open set V containing x and a semi-open set W containing x such that $V * W \subseteq F$.

We claim that $V \subseteq X - F$.

If $V \not\subseteq X - F$, then there exists an element $y \in V \cap F$. For each $z \in W$, we have $y * z \in V * W \subseteq F$.

Since $y \in F$ and F is a filter, $z \in F$. Hence $W \subseteq F$ and so $x \in F$, which is a contradiction.

Therefore, $x \in V \subseteq X - F$, which implies that X-F is open and hence F is closed.

Definition 3.10 Let $(X, *, \tau_5)$ be a STBEalgebra, U be a non-empty subset of X and $a \in X$. The subsets Ua and aU are defined as follows:

 $\begin{aligned} &Ua = \{x \in X : x * a \in U\} \\ &aU = \{x \in X : a * x \in U\}. \end{aligned} Also if <math>K \subseteq X$, we \end{aligned}

define $KU = \bigcup_{a \in K} aU$ and $UK = \bigcup_{a \in K} Ua$.

Theorem 3.11 Let $(X, *, \tau_5)$ be a STBEalgebra, U and F be two non-empty subsets of X. Then the following are true.

(1) If U is open, the Ua is open and aU is semi-open.

(2) If F is closed, then Fa is closed and aF is semi-closed.`

Proof: (1) Let U be an open set, $a \in X$ and let $x \in Ua$. Then $x * a \in U$.

Since X is an STBE-algebra, then there exists an open set G containing x and a semi-open set A containing a such that

Volume 13, No. 3, 2022, p. 330-333 https://publishoa.com ISSN: 1309-3452 $G * A \subseteq U, x * a \in Ga \subseteq U$, thus $G * a \subseteq U$.

Then $x \in G \subseteq Ua$. So Ua is open.

To prove that aU is semi-open, let $x \in aU$. Then $a * x \in U$.

Since X is an STBE-algebra, there exists an open set A containing a and a semiopen set H containing x such that $A * H \subseteq U$, so $a * x \in aH \subseteq U$, thus $a * H \subseteq U$. Hence $x \in H \subseteq aU$. Therefore aU is semiopen.

(2) Let F be closed. Then F^{C} is open. Hence by (1), $(F^{c})a$ is open and $a(F^{c})$ is semi-open.

Clearly, $(Fa)^{c} = (F^{c})a_{and} (aF)^{c} = a(F^{c})$. Hence, $(Fa)^{c}$ is open and $(aF)^{c}$ is semiopen.

Consequently, Fa is closed and aF is semiclosed.

4. CONCLUSION

Here we have discussed the separation axioms in STBE-Algebras using the concepts of open, semi-open, closed, semiclosed sets and also listed the properties of ideals and filters of an STBE-algebra in terms of these axioms. We can also study the properties of STBE-Algebras satisfying the separation axioms in further studies.

REFERENCES

[1] H.S. Kim and Y.H. Kim, On BEalgebras, Scientiae MathematicaeJaponicae 66 (2007), 113-128.

[2] AldrzejWalendziak, On Commutative BE-algebras, *Scientiae*

MathematicaeJaponicae (e-2008), 585-588.

[3] Levine N, Semi-open sets and semicontinuity in topological spaces, *American Mathematical Monthly* 70 (1963), 36-41. [4] S.N.Maheswari and R. Prasad, Some new separation axioms, *Annales de la SociteScientifique de Bruexles*, *T.*,89*III*(1975), 395-402.

[5] P. Lakshmi Kumari and V. Thiruveni, S-Topological BE-Algebras, *Advances and Applications in Mathematical Sciences, Accepted.*

[6] S. Mehrshad and J. Golzarpoor, On topological BE-Algebras, *Mathematica Moravica*, *Vol.21*, *No.2*(2017),1-13.

[7] M. Jansi and V. Thiruveni, Complementary role of ideals in TSBF-Algebras, *Malaya Journal of Mathematik*, *Vol.8, No.3,* 1037-1040, 2020.