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ABSTRACT 

 

This paper deals with an integrated algorithm for the approximation of higher dimensional system (HDS). 

Framework of this research is initiated by considering different higher order transfer functions of LTI system. 

Numerator as well as denominator coefficients of the corresponding lower dimensional model (LDM) are computed 

using dragonfly algorithm (DA) and Routh approximation (RA) respectively. The proposed technique is verified by 

considering standard test cases. Further, the performance accuracies are evaluated by comparing the step and 

frequency responses of HDS and LDM.  

 

KEYWORDS   Model order approximation, dragonfly algorithm, Routh approximation, higher dimensional system, 

lower dimensional model. 

 

1. INTRODUCTION 

 

Modelling of physical system often results in higher-order transfer function. Model order approximation (MOA) 

techniques are used to reduce the order of HDS. MOA techniques are applied in different fields such as theory of 

control system [1-4] and large scale power system [5-7]. MOA techniques are essential to reduce the HDS into its 

corresponding LDM by retaining the fundamental characteristics of the system.  

In earlier articles, several  approximation techniques are mentioned for the order reduction of large scale systems in 

both continuous and discrete domains such as Padé approximation [8], RA technique [9, 10], stability equation [11], 

biased factor division method [12] and hybrid techniques in discrete system [13-21] etc. These techniques are based 

on traditional mathematical approaches. The limitations of traditional technique don’t guarantee for the stability in 

LDM when HDS is stable.         

Soft computing techniques [22-27] are one of the accurate MOA methodology as compared to existing mathematical 

approaches. However, limited performance is proved in many cases when these techniques are applied in system 

approximation. In spite of several computational techniques, there is a great significance for global optimization 

methods (GOM). Researchers are still searching for GOM that can be applied to all multifarious problems. In this 

research paper nature inspired technique called Dragonfly optimization algorithm [28] is proposed for order 

approximation. 

 

Dragonfly algorithm (DA) [29] is an intelligent swarm based optimization algorithm mimic the dynamic and static 

characteristics of artificial dragonflies. This is a global optimization algorithm used to solve a large variety of 

complex engineering problems. It has proved its superiority compared to several well-known meta-heuristics 

algorithm available in the literature. 

 

The rest of the paper is organized as follows, Section 2 gives an insights to the problem statement and proposed 

methodology of model approximation is described in Section 3 in two steps: (i) the denominator of the LDM is 

derived using RA technique (ii) DA is used to compute numerator of the LDM by minimizing integral square error 

(ISE) between HDS and LDM. A numerical test case solved in section 4 to verify efficacy of the proposed 

technique. Results obtained from simulation and its relatable discussions are illustrated in Section 5. Finally, section 

6 concludes the entire article. 

 

2. PROBLEM STATEMENT 

The thh  order single input single output system is represented by the transfer function 
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 and 
0 1 2, , , , hd d d d  are coefficients of numerator and denominator respectively. 

Similarly, the transfer function of the LDM ( )l h becomes 
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where 
0 1 2 1

ˆ ˆ ˆ ˆ, , , , ln n n n −
 and 

0 1 2
ˆ ˆ ˆ ˆ, , , , ld d d d  are coefficients of LDM.  

 

3. PROPOSED METHODOLOGY 

In this paper, a hybrid methodology is proposed by combining the benefits of RA [30] and DA [31]. This technique 

is carried out in two phases. In first step, denominator coefficients are calculated using RA and in next step DA is 

carried out to compute coefficients of the numerator by minimizing the ISE between HDS and LDM.  

3.1 OVERVIEW OF ROUTH APPROXIMATION 

RA technique [30] is proposed by Hutton et al. for the reduction of HDS to its corresponding LDM in frequency 

domain. It is a simple technique which preserves all significant characteristics of HDS in LDM, if the HDS is stable. 

RA technique is applicable to compute denominator coefficients of the LDM based upon  table as follows. 

Step-1: Determine reciprocal transformation of the HDS 

( )
1h

h hD s s D
s

 
=  

 
 (3)  

Step-2: From the coefficients of ( )D s , compute the values of 
1 2, , , ,m    by using delta table 

Step-3: Calculate the lth-order denominator polynomial ˆ
lD  from the delta coefficients of ( )hD s  

for second order polynomial , 2

2 1 2 2
ˆ ( ) 1D s s s  = + +   

 

for third order polynomial , ( )3 2

3 1 2 3 2 3 1 3
ˆ ( ) 1D s s s s      = + + + +  

General terms, the above equation becomes 

( ) ( )1 2l l l lD sD s D s − −= +   (4)  

Table 1 Delta Table 

 

3.2 DRAGON FLY ALGORITHM 

 

Dragonfly algorithm (DA) [29, 32] is a nature inspired optimization algorithm, developed by Mirjalili. Dragonflies 

are small 

flying insects that hunt and eat a wide variety of small insects. The algorithm is formulated based on two phases 

exploitation and exploration. In the exploitation phase, a large number of dragonflies make the swarms migrate in 

one direction over long distances and distract from enemies. In the exploitation phase, a large number of swarm can 
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fly in one direction to distract enemies. However, in exploration phase swarm makes small groups for searching 

food over a bounded area and attract flying preys.   

In DA five basic principles are designed as follows. In the following equations, Z  represents the position of the 

current agent, jZ the position of the jth neighbouring agent, and K the number of neighbouring agent 

• S

eparation is a strategy is used for collision avoidance with the other agents in the neighborhood. This procedure is 

represented by following mathematical equations: 

1

K

i j
j

Se Z Z

=

= − −  (5) 

• A

lignment represents the matching of velocity between agent and neighbourhood agent of the same group. The 

concept is shown as follows 

 

1

K

i j
j

Al W

=

= −  (6) 

where velocity of jth agent is denoted by jV   

• C

ohesion property draw attention towards the center of the swarm group. It is  shown mathematically as 

1

K

j
j

i

Z

Co Z
K

−
= −


  (7) 

• I

n the attraction phase, food source is the center of attraction ( )iFa  for dragonflies and it is modeled as 

i ZFa F Z= −   (8) 

where iF  and ZF  represents the position of  ith agent and food source position respectively. 

• D

istraction from the enemies is represented mathematically as 

i ZEd Ed Z= +  (9) 

where iEd indicates the position of ith agent and ZEd denotes the position of enemy. 

Artificial dragon flies updated their positions inside the bounded search space by considering the step vector Z  

and the position vector Z . The updated positions are indicated by following equations: 

( )1y y
i i i i ii iZ sSe aAl cCo fFa eEd Z+

 = + + + + +    (10) 

where  

s denotes the weight assigned for separation phase,  

iSe  represents the separation phase of the thi agent,  

a  denotes the weight assigned in alignment phase,  

iAl  indicates the alignment of the thi agent, 

 c   is the weight assigned in cohesion phase,  

iCo  is the cohesion of the thi agent,  

f  denotes the food factor,  

iFa   is the source of food for the thi agent,  

e  indicates the enemy factor,  

iEd  denotes the enemy position of the thi  agent, 

 w   is the inertia weight,  

 y  indicated the iteration number.  
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Then, the updated position of the thi dragonfly at 1y +  as follows: 

1y y y
i i iZ Z Z

+
= +   (11) 

3.3 TOOLS USED FOR VALIDATION OF OBJECTIVE FUNCTION 

The DA algorithm is used to obtain the numerator coefficient of LDM by minimizing following fitness function for 

single input single output system (SISO) system. 

Fitness function =Minimum (Integral Square Error) 

2

0

,ISE Error dt



=    (12) 

( ) ( )Error hi t lo t= −  

where ( )hi t  and ( )lo t  are the time responses of HDS and LDM, respectively. 
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Figure 2 Flow chart of dragonfly Algorithm 

 

4.  TEST CASE  

Consider a fourth-order system [33] expressed in transfer function form as 

( )
3 2

4 3 2

7 24 24

10 35 50 24
h

s s s
T s

s s s s

+ + +
=

+ + + +
 (13) 

Denominator polynomial of the model is computed using Equation (4) and Table 1 is given by 

( ) 2ˆ 1.6501 0.7924lD s s s= + +  (14) 

After computation of denominator polynomial, numerator polynomial of the LDM is computed using DA, by 

minimizing the ISE between HDS and LDM. The lower order numerator polynomial becomes 

( )ˆ 0.81479 0.79116lN s s= +  (15) 

Thus, the approximant i.e. LDM for the HDS is represented by following transfer function 

( )
2
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l

s
T s

s

+
=

+ +
 (16) 

The LDM obtained by [34] is 

( )
2

0.8147 0.7911ˆ
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al

s
T s
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 (17) 

The  LDM computed using Routh stability criterion [35] becomes 

( )
2

20.571 24ˆ

30 42 24
bl

s
T s

s s

+
=

+ +
 (18) 

TABLE-2 PERFORMANCE INDEX ANALYSIS OF VARIOUS MODEL APPROXIMATION 

TECHNIQUE 

Model approximation 

techniques 
ISE IAE ITSE MSE RMSE 

Higher order System - - - - - 

Proposed method 1.4337×10-04 0.0295 5.8384×10-04 1.3814×10-05 0.0037 

Stability-equation method and 

modified Cauer continued 

fraction method [34] 

0.0346 0.4189 0.0770 0.0031 0.0561 

Routh stability criterion [35] 0.0095 0.2170 0.0336 8.6202×10-04 0.0294 

 

 
Figure 2: Comparison of step responses for the HDS and various LDM. 
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Figure 3: Comparison of frequency responses for the HDS and various LDM. 

 

5. RESULTS AND DISCUSSIONS 

The step and frequency responses of HDS and its LDM are computed by different model approximation techniques 

are shown in figure 2 and 3 respectively. The figure 2 and 3 clearly depict that the responses of the LDM computed 

by proposed technique is closed match with the transient and steady state behaviour of the HDS. Several 

performance indices of existing techniques and proposed method are tabulated in Table1. From the table, it is clearly 

observed that proposed technique has the minimum error as compared with other existing techniques.  

 

6. CONCLUSION 

In this paper, a mixed model approximation technique based on Routh approximation technique and dragonfly 

algorithm is proposed for the order approximation of higher order systems. In this proposed approach, the 

coefficients of the denominator are computed by using RA technique and numerator coefficients are determined by 

using DA. Main virtues of this technique is to produce stable LDM only for a stable HDS with minimizing the error 

bounds. The step and frequency responses depict the transient and steady-state behavior of HDS and LDM 

accordingly. Further, accuracy of the proposed scheme is compared with other MOA techniques incorporated with 

various performance indices such as ISE, IAE, ITSE, MSE and RMSE.  
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