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ABSTRACT  

Another procedure dependent on Laplace change and Homotopy annoyance strategies has been proposed here to 

address non straight Fokker–Planck conditions. To exhibit the consistency and capability of the technique, not many 

models are introduced. The mathematical arrangements outline that the strategy is simple, effective and exceptionally 

precise to carry out for direct and non straight Fokker-Planck conditions. The strategy gives a promising instrument 

to tackle direct and non straight fractional differential conditions. Diagrams are given to notice the arrangements in a 

superior and exact manner. 
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1. PROLOGUE: 

Lately, the growing interest of specialists and originators has been dedicated to logical techniques to deal with straight 

and non direct issues, and various numerical systems have been applied to these issues. The chance of HPM was first 

introduced by He (1999) and later a movement of game plans of nonlinear differential circumstances was gained by 

He (2004, 2005, 2006, 2008). By the homotopy technique in topography, a homotopy can be created with an 

introducing limit p ∈ [0, 1], which is thought of as somewhat one. HPM is a mix of the irritation and homotopy 

procedures. This procedure can take the potential gains of the common inconvenience methodology while abstaining 

from its limits. He's HPM has been presently used by various mathematicians and architects to address different down 

to earth conditions. In this strategy, the nonlinear issue is moved to an unending number of sub-issues and, then, the 

game plan is approximated by how much the courses of action of the underlying a couple of sub-issues. This procedure 

has in like manner been used to handle the nonlinear game plan of second solicitation limit regard issues (Yusufoglu, 

2007), immediate and nonlinear states of hotness move (Ganji, 2007, Rajabi and Ganji, 2007 and Ganji and Sadighi, 

2007), non straight Schrödinger conditions (Biazar and Ghazvini, 2007) and irreplaceable circumstances 

(Abbasbandy, 2008). The Fokker-Planck condition arises in different fields like speculative science, engineered actual 

science, circuit speculation, quantum optics and solid state actual science. 

Most as of late, Jafari et al. right off the bat applied Laplace change in the iterative technique and proposed another 

immediate strategy called iterative Laplace change strategy (Jafari et al, 2013) to look for mathematical arrangements 

of an arrangement of fragmentary incomplete differential conditions. By utilizing the strategy for Laplace Transform, 

Jafari and Seifi (2009) effectively got the mathematical arrangements of two frameworks of room time fragmentary 

differential conditions. It has been shown that, with this technique, one can find a few arrangements found by the 

current strategies, for example, homotopy annoyance strategy, Laplace Adomian disintegration strategy, and 

variational iterative strategy (Ongun, 2011). By utilizing the Laplace change procedure, Arda and Sever (2012) 

concentrated on careful bound state arrangements and comparing standardized Eigen elements of the outspread 

Schrödinger condition for the pseudo-symphonious and Mie-type possibilities. It is shown the variety of the initial six 

standardized wave elements of the above possibilities. It is additionally given mathematical outcomes for the bound 

conditions of two diatomic sub-atomic possibilities, and contrasted the outcomes and the ones acquired in writing. 

Yin et al (2014) introduced a coupled strategy for Laplace change and Legendre wavelets for the estimated 
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arrangements of nonlinear Klein–Gordon conditions. By utilizing Laplace administrator and Legendre wavelets 

functional networks, the Klein–Gordon condition is changed over into an arithmetical framework. Then, at that point, 

the obscure Legendre wavelets coefficients are determined as series whose parts are processed by applying a recursive 

connection.  

Tsaur and Wang (2014), Das and Arda (2015), Nogueira et al (2016) and Zarrinkamar et al (2017) has effectively 

applied the Laplace fundamental change to Fokker-Planck condition and different wave conditions of quantum 

mechanics including Schrödinger, Dirac and Klein-Gordon conditions for various possibilities including consonant, 

Morse, and so forth Hemeda and Eladdad (2018) proposed the new iterative strategy and acquaint the essential iterative 

technique with address straight and nonlinear Fokker-Planck conditions and some comparative conditions. The 

outcomes got by the two strategies are contrasted and those acquired by both Adomian deterioration and variational 

cycle techniques. By applying Laplace Transforms, Gupta et al (2019a) tracked down the overall arrangements of one 

dimensional Schrodinger's time free wave condition for a molecule in a limitless square well potential. In this paper, 

we will examine the Eigen energy esteems and Eigen elements of a molecule in a boundless square well potential. 

Gupta et al (2019b) acquired the quantum mechanical reflection and transmission coefficients for a molecule through 

a one-dimensional vertical advance potential. De Castro (2020) asserted the quantum issue of a molecule in a 

boundless square well potential to be tackled by means of Laplace change and recommended that the right 

arrangements were found for an Eigen esteem issue with variable characterized on a limited reach and called attention 

to painstakingly and unmistakably those missteps that may happen with the utilization of improper strategies for a 

given Eigen esteem issue.  

In the current examination, a scientific guess to the arrangement of the nonlinear Fokker–Planck condition is acquired 

utilizing the Laplace Transform and Homotopy Perturbation Method (LTHPM). The outcomes got by means of 

LTHPM affirm the legitimacy of the proposed strategy and are contrasted and those acquired by Adomian decay 

technique. 

2. NON-LINEAR FOKKER-PLANCK EQUATION 

For Variable x, generalized Fokker–Planck equation is stated as follows: 

2

2
( ) ( )

f
g x h x f

t x x

   
= − + 

   
        (1) 

under the condition that: 

( ,0) ( )f x u x=            (2) 

f(x, t) obscure capacities in this situation and 𝑥 is a genuine number, the float coefficient g(x), the dissemination 

coefficient h(x), and more prominent than nothing. Since the float and dissemination coefficients are time-reliant, the 

condition above can likewise be composed as follows: 

2

2
( , ) ( , )

f
g x t h x t f

t x x

   
= − + 

   
        (3) 

As a dissemination condition with a first-request subordinate of x, Equation 2 is a second-request straight halfway 

differential condition. 

Pattern formation, laser physics, surface physics, population dynamics, plasma physics, polymer physics and 

biophysics, as well as nonlinear hydrodynamics, neurosciences and psychology, require the Nonlinear Fokker–Planck 

equation to be nonlinear. It is stated as follows: 

2

,

1 , 1

( , , ) ( , , )
N N

i i j

i i ji i j

f
g X t f h X t f f

t x x x= =

   
= − + 

    
        (4) 

Linearization of the nonlinear Fokker–Planck equation previously stated when ( , , ) ( )i ig X t f g X= and

, ,( , , ) ( )i j i jh X t f h X= . 
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3. HOMOTOPY PERTURBATION METHOD AND APPLICATION OF LAPLACE TRANSFORM 

METHOD 

Take a look at a nonlinear differential equation like follows: 

( ) ( ) 0,      B f y y D− =           (5) 

only if certain conditions are met: 

1

0 1 2 1(0) ,    (0) , (0) ,..., (0)n

nf f f f   −

−
 = = = =       (6) 

Where ( )y  is a known scientific capacity and B is an overall differential administrator. The administrator, B, would 

be isolated into two sections, l and n, where l is a straight and n is a nonlinear administrator. Thusly, Eq. (5) can be 

reworked as: 

( ) ( ) ( ) 0l f n f y+ − =          (7) 

In this case, a homotopy is constructed ( , ) :    [0,1]F y p D  →  so that it fulfils 

0( , ) (1 )[ ( ) ] [ ( ) ( )] 0,   [0,1],   H F p p l F f p B F y p r D= − − + − =      (8) 

which can take the form 

0 0( , ) ( ) [ ( ) ( )] 0H F p l F f pf p n F y= − + + − =       (9) 

where 0f  is an underlying guess to arrangement of condition (5) and p alludes to the implanting boundary. From 

conditions (8) and (9), we get 

0( ,0) ( ) 0H F l F f= − =          (10) 

( ,1) ( ) ( ) 0H F B F y= − =          (11) 

At the point when we apply the Laplace transform to condition (9), we get 

 0 0( ) [ ( ) ( )] 0L l F f pf p n F y− + + − =        (12) 

Here, the Transform of Derivative Property of Laplace Transform is employed to illustrate the concept. 

  ( ) ( ) ( )  1 2 1

0 00 0 ... 0 [ ( ) ( )]n n n ns L F s F s F F L f pf p n F y− − −− − − − = − − −   (13) 

Then, using the inverse Laplace transform, we arrive to 

( ) ( ) ( )  1 1 2 1

0 0

1
0 0 ... 0 [ ( ) ( )]n n n

n
F L s F s F F L f pf p n F y

s
− − − − 

 = + + + + − − −  
 

  (14) 

After that, we suppose that the solution of equation (14) can be found as a power series in p, which is consistent with 

the Homotopy Perturbation Method. 

0

( ) r

r

r

F x p F


=

=           (15) 

We reach the following result by incorporating equation (15) into equation (14).

( ) ( ) ( )1 1 2 1

0 0

0 0

1
0 0 ... 0 [ ( ) ( )]r n n n r

r rn
r r

p F L s F s F F L f pf p n p F y
s


 

− − − −

= =

    
= + + + + − − −    

    
 

            

 (16) 

Putting the multiple powers of p on both sides of the equation in the same equation (16) 

( ) ( ) ( )  1 1 2 1

0 0

1
0 0 ... 0n n n

n
F L s F s F F L f

s

− − − − 
 = + + + +  

 
     (17) 
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( ) ( ) 1

1 0 0

1
n

F L L n F f y
s

−  
= − − 

 
        (18) 

( ) 1

2 0 1

1
,  

n
F L L n F F

s

−  
=  

 
         (19) 

( ) 1

3 0 1 2

1
,  ,  

n
F L L n F F F

s

−  
=  

 
        (20) 

In the same way, we have 

( ) 1

0 1 2 1

1
,  ,  ,...,  j jn

F L L n F F F F
s

−

−

 
=  

 
       (21) 

and so forth. 

Consider for a moment that the initial estimate had the following form: 

1

0 0 1 2 1(0) ,  F (0) ,  (0) ,...,  (0)n

nF f F F   −

−
 = = = = =

 
Then, at that point, the specific arrangement may be obtained as: 

0 1 2
1

lim ...
p

f F F F F
→

= = + + +          (22) 

4. METHOD APPLIED TO NON-LINEAR FOKKER-PLANCK EQUATION 

Since then, the Fokker-Planck equation can be expressed in nonlinear form as follows: 

2
* *

,

1 , 1

( , , ) ( , , )
N N

i i j

i i ji i j

f
g X t f h X t f

t x x x= =

  
= − +

  
        (23) 

where 
* *

, ,( , , ) ( , , )  and ( , , ) ( , , )i i i j i jg X t f g X t f f h X t f h X t f= =
 

After that, the following homotopy is formed in order to answer the previous equation: 

( )( ) ( ) ( )0, , , ,tH F X t p F X t f X t= − +     

( )
2

* *

0 ,

1 , 1

, ( , , ) ( , , ) 0
N N

i i j

i i ji i j

p f X t g X t F h X t F
x x x= =

    
+ − =       
       (24) 

where ( )0 ,f X t is an underlying estimate of the answer for condition (23). Also, from condition (24), we can get: 

( )( ) ( ) ( )0, ,0 , , 0tH F X t F X t f X t= − =
       

(25) 

( )( ) ( )
2

* *

,

1 , 1

, ,1 , ( , , ) ( , , ) 0
N N

t i i j

i i ji i j

H F X t F X t g X t F h X t F
x x x= =

  
= + − =    

     (26) 

Taking Laplace transform and utilizing the property 'Change of Derivatives' in condition (24), we get 

( )  ( ) ( ) ( ) *

0 0

1

2
*

,

, 1

, ,0 , , ( , , )

( , , )

N

i

i i

N

i j

i j i j

sL F X t f X L f X t p f X t g X t F
x

h X t F
x x

=

=

   
− = − +   

 
−   





   (27) 

Then we'll be able to get 
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( ) ( ) ( ) ( )1 *

0 0

1

2
*

,

, 1

1
, ,0 , , ( , , )

( , , )

N

i

i i

N

i j

i j i j

F X t L f X L f X t p f X t g X t F
s x

h X t F
x x

−

=

=

       
= + − +       

 
−   





   (28) 

As indicated by Homotopy Perturbation strategy, we expect p as a little amount and arrangement of condition of above 

condition can be taken as 

0

( , ) ( , )r

r

r

F X t p F X t


=

=          (29) 

Equation (29) is used in equation (28) and we obtain by comparing various powers of p that 

( ) ( ) ( ) ( )1

0 0

1
, ,0 ,F X t L f X L f X t

s

−  
= + 

 
       (30) 

( ) ( )
2

1 * *

1 0 0 , 0

1 , 1

1
, , ( , , ) ( , , )

N N

i i j

i i ji i j

F X t L L f X t g X t F h X t F
s x x x

−

= =

    
= − + −  

    
     (31) 

( )
2

1 * *

2 0 1 , 0 1

1 , 1

1
, ( , , , ) ( , , , )

N N

i i j

i i ji i j

F X t L L g X t F F h X t F F
s x x x

−

= =

    
= − −  

    
      (32) 

We have something comparable to this. 

( )
2

1 * *

0 1 1 , 0 1 1

1 , 1

1
, ( , , , ,..., ) ( , , , ,..., )

N N

j i j i j j

i i ji i j

F X t L L g X t F F F h X t F F F
s x x x

−

− −

= =

    
= − −  

    
    (33) 

and so forth. 

Allow us to consider that that the underlying estimation got the structure: . Then, at that point, the specific arrangement 

may be gained as: 

0 1 2
1

( , ) lim ( , ) ( , ) ( , ) ( , ) ...
p

f X t F X t F X t F X t F X t
→

= = + + +      (34) 

5. Illustrations 

Illustration 1. To simplify things, the following nonlinear Fokker-Planck equation can be written as 

( )2 21
( ,0) ,   ( , , ) 12 ,   ( , , ) ,   

3
f x x g x t f f x h x t f f x

x
= = − =      (35) 

When solving equation (35) it was observed that the exact result was as follows:
 

2( , ) tf x t x e=  

It is necessary to establish the following homotopy in order to solve problem (35) using LTHPM. 

2
2

0 0 2

8 4
( , ) ( , ) ( , ) 2 2 0

3 3

x x
t x xx

FF xFF F
F x t f x t p f x t F FF

x x

 
− + + − − − − − = 

 
   (36) 

With the Laplace transform and the 'Transform of Derivatives' property in equation (36), we may get the following 

result: 

 
2

2

0 0 2

8 4
( , ) ( ,0) ( , ) ( , ) 2 2

3 3

x x
x xx

FF xFF F
sL F x t F x L f x t p f x t F FF

x x

   
− = − + − − − − −  

   
 (37) 

Then there's the matter of 
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1

0 0

2
2

2

81
( , ) ( ,0) ( , ) ( , )

4
2 2

3 3

x

x
x xx

FF
F x t L F x L f x t p f x t

s x

xFF F
F FF

x

−
   

= + − +  
 

 
− − − − −    

     (38) 

Let's assume that equation (38)'s solution is: 

2

0 1 2( , ) ( , ) ( , ) ( , ) ...F X t F X t pF X t p F X t= + + +       (39) 

Substituting (39) into (38) and looking at the two sides' force coefficients, we get: 

  1

0 0

1
( , ) ( ,0) ( , )F x t L F x L f x t

s

−  
= + 

 
       (40) 

2
1 20 0 0 0 0

1 0 0 0 02

8 41
( , ) ( , ) 2 2

3 3

x x
x xx

F F F F xF
F x t L L f x t F F F

s x x

−
   

= − + − − − − −  
   

  

 (41) 

1 0 1 0 1 11
2 0 1 0 1 0 1 0 1 0 12

8 41
( , ) 2

3 3

x x
x x x xx xx

F F F F xFF
F x t L L F F F F F F F F F F

s x x

−   
= − + − + − − + − −  

  
(42) 

We have something comparable to this. 

1 1
1

1 12
0 0

1 1
1 1

1 1

0 0

1 8 4
( , )

2 2
3 3

j j

j k j k x k j k

k k

j j
j j x

kx j k x k j k x

k k

F x t L L F F F F
s x x

F xF
F F F F

− −
−

− − − −

= =

− −
− −

− − − −

= =

 
= − − 




− − − − 



 

 

      (43) 

etc. 

Expecting 
2

0( , ) ( ,0)f x t F x x= = and addressing conditions ( , ),   0,1,...jF x t j =  (40)- (43) for yields 

( )2

0 ( , ) 1F x t x t= +           (44) 

2 2

1( , )
2

x t
F x t =            (45) 

2 3

2 ( , )
3!

x t
F x t =            (46) 

2 4

3( , )
4!

x t
F x t =            (47) 

2 5

4 ( , )
5!

x t
F x t =            (48) 

and so forth. 

Subsequently, the answer for condition (35) can be composed as 

2 3 4 5
2 2

0 1 2( , ) ( , ) ( , ) ( , ) ... 1 ...
2! 3! 4! 5!

tt t t t
f x t F x t F x t F x t x t x e

 
= + + + = + + + + + + = 

 
  

which is same as definite arrangement. 
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Figure 1 2-D representation of exact solution of the problem in example 1 

 

 
Figure 2 3D representation of exact solution of the problem in example 1 
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Illustration 2. It is possible to express the following generalized Fokker-Planck equation in nonlinear form as follows: 

2 2

1,1

1,21

2,1
2

2,2

( ,0) ,    ( , )

( , , )
4

( , , ) 1( , , )
     

( , , ) 1
( , , )     

( , , )

tf x x X x z

h X t f f
f

h X t fg X t f
x

h X t f
g X t f z

h X t f f

= = 

=
 

== 
 

= =
 =

       (49) 

The specific arrangement of condition (49) was gotten to be:
 

2( , ) tf x t x e−=  

It is necessary to establish the following homotopy in order to solve problem (49) using LTHPM. 



2

0 0 2

2 2

8 4
( , ) ( , ) ( , )

2 2 2 2 0

x
t

z xx x xz zx zz z

FF F
F X t f X t p f X t F

x x

zF FF F F F FF F


− + + − +



+ − − − − − − =

      (50) 

Using the Laplace transform and the property 'Transform of Derivatives' in equation (50), we may reach the following 

result: 
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Then there's the matter of 
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    (52) 

Now, we'll assume that the answer to equation (51) has the following representation: 
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Subbing condition (52) into condition (51) ,we get 
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     (55) 
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     (56) 

We have something comparable to this. 
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   (57) 

and so forth. 

Assuming 
2

0( , ) ( ,0)f X t F X x= = and solving equations (54)-(57) for ( , ),   0,1,...jF X t j = the purpose of 

obtaining 
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and etc. 

Accordingly, the answer for condition (49) can be composed as 
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tt t t t
f x t F X t F X t F X t x t x e− 

= + + + = − + − + − + = 
 

  (63) 

This is the same as the precise solution 
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Figure 3 2D representation of exact solution of the problem in example 2 

 
Figure 4 3D representation of exact solution of the problem in example 2 

 

6. CONCLUDING REMARKS 

In the ongoing survey, one more technique reliant upon blend of Laplace Transform and Homotopy Perturbation 

Method is proposed to settle the nonlinear Fokker-Planck condition. The new system, utilized in the ongoing work, is 
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really applied on various frameworks. Not by any stretch of the imagination like the Homotopy Perturbation technique, 

handling a couple of rehash differential circumstances isn't needed here. Speak Laplace change engages to instantly 

get the course of action approximations. The guideline advantage of the Laplace Transform and Homotopy 

Perturbation Method over Adomian Decomposition Method is that there is no great explanation to register Adomian 

polynomials to acquire the plan. The results gained demonstrate the way that this approach can decipher the issue 

effectively. 

 

REFERENCES: 

1. Abbasbandy, S. (2008) “Numerical solutions of the integral equations: homotopy perturbation and Adomian 

decomposition method”, Applied Mathematics and Computation, 173; 493–500. 

2. Arda, A. and Sever, R. (2012) “Exact solutions of the Schrödinger equation via Laplace transform approach: 

pseudo-harmonic potential and Mie-type potentials”, Journal of Mathematical Chemistry, 50; 971-980.  

3. Biazar, J. and Ghazvini, H. (2007) “Exact solutions for nonlinear Schrödinger equations by He’s homotopy 

perturbation method”, Physics Letters A, 366; 79–84. 

4. Das, T. and Arda, A. (2015) “Exact Analytical Solution of the N-Dimensional Radial Schrödinger Equation 

with Pseudo-harmonic Potential via Laplace Transform Approach”, Advances in High Energy Physics, 2015(4); 

137038 

5. De Castro, A. S. (2020) “Frustrating use of the Laplace transform for the quantum states of a particle in a 

box”, Revista Brasileira de Ensino de Física, 42(e20200079); 1-3. 

6. Ganji, D. D. (2007) “The application of He’s homotopy perturbation method to nonlinear equations arising 

in heat transfer”, Physics Letters A, 355; 337–341. 

7. Ganji, D. D. and Sadighi, A. (2007) “Application of homotopy perturbation and variational iteration methods 

to nonlinear heat transfer and porous media equations”, Journal of Computational and Applied Mathematics, 207; 24–

34. 

8. Gupta, R., Gupta, R. and Verma, D. (2019a) “Eigen Energy Values and Eigen Functions of a Particle in an 

Infinite Square Well Potential by Laplace Transforms”, International Journal of Innovative Technology and Exploring 

Engineering, 8(3); 6-9. 

9. Gupta, R., Singhal, T. and Verma, D. (2019b) “Quantum Mechanical Reflection and Transmission 

Coefficients for a Particle through a One-Dimensional Vertical Step Potential”, International Journal of Innovative 

Technology and Exploring Engineering, 8(11); 2882-2886. 

10. He, J. H. (1999) “Homotopy perturbation technique”, Computer Methods in Applied Mechanics and 

Engineering, 178; 257–262. 

11. He, J. H. (2004) “The homotopy perturbation method for nonlinear oscillators with discontinuities”, Applied 

Mathematics and Computation, 151; 287–292. 

12. He, J. H. (2005) “Application of homotopy perturbation method to nonlinear wave equations”, Chaos, 

Solitons and Fractals, 26; 695–700. 

13. He, J. H. (2006) “New interpretation of homotopy perturbation method”, International Journal of Modern 

Physics B, 20; 2561–2568. 

14. He, J. H. (2008) “Recent development of homotopy perturbation method”, Topological Methods in Nonlinear 

Analysis, 31; 205–209. 

15. Hemeda, A. A. and Eladdad, E. E. (2018) “New Iterative Methods for Solving Fokker-Planck Equation”, 

Mathematical Problems in Engineering, Hindawi, 2018, Article ID 6462174; 9 pages. 

16. Jafari, H. and Seifi, S. (2009) “Solving a system of nonlinear fractional partial differential equations using 

homotopy analysis method,” Communications in Nonlinear Science and Numerical Simulation, 14(5); 1962–1969. 

17. Jafari, H., Nazari, M., Baleanu, D. and Khalique, C. M. (2013) “A new approach for solving a system of 

fractional partial differential equations,” Computers & Mathematics with Applications, 66(5); 838–843.  

18. Narendra Kumar et al:  “A Computational Study of Metabolism Distribution during Sprinting” 

International Journal of -Engineering, Vol. 24, and No. 1- 2011,pp 75-80, IJE Transactions B: Applications-2011. 



JOURNAL OF ALGEBRAIC STATISTICS 

Volume 13, No. 2, 2022, p. 2446 - 2457 

https://publishoa.com  

ISSN: 1309-3452 

 

2457 
 

19. Narendra Kumar at el: “A Computational Study of Elastico-Viscous Flow between Two Rotating Discs of 

Different Transpiration for High Reynolds Number” International Journal of Engineering, vol-22(2), aug-2009, pp. 

115-122. 

20. Narendra Kumar et al: “A Mathematical Model of Growth of Homogeneous Tumor with Delay Time” In 

International journal of Engineering, vol-22(1), April -2009, pp. 49-56 

21. Narendra Kumar and Sanjeev Kumar: “A Computational Study of Oxygen Transport in the Body of 

Living Organism” in the International Journal of Engineering, pp. 351-359, vol. 18, number-4, 2005. 

22. Narendra Kumar at al: “Performance for Mathematical Model of DNA Supercoil.” In the Bio-Science 

Research Bulletin, vol 22(2), pp79-87, 2007. 

23. Narendra Kumarat el:  “A Mathematical Model of Growth of Heterogeneous Tumor” in the   Pragyan IT, 

vol-6(1), pp-15-21, 2008  

24. Nogueira, P. H. F., de Castro, A. S. and Pimentel, D. R. M. (2016) “A large class of bound-state solutions of 

the Schrödinger equation via Laplace transform of the confluent hyper-geometric equation” Journal of Mathematical 

Chemistry, 54(6), 1287-1292. 

25. Ongun, M. Y. (2011) “The Laplace Adomian decomposition method for solving a model for HIV infection 

of CD4+ cells”, Mathematical and Computer Modelling, 53(5-6); 597–603. 

26. Rajabi, A. and Ganji, D. D. (2007) “Application of homotopy perturbation method in nonlinear heat 

conduction and convection equations”, Physics Letters A, 360; 570–573. 

27. Tsaur, G. and Wang, J. (2014) “A universal Laplace-transform approach to solving Schrödinger equations 

for all known solvable models”, European Journal of Physics, 35(1); 015006. 

28. Yin, F., Song, J. and Lu, F. (2014) “A coupled method of Laplace transform and Legendre wavelets for 

nonlinear Klein-Gordon equations”, Mathematical Methods in the Applied Sciences, 37(6); 781-792. 

29. Yusufoglu, E. (2007) “Homotopy perturbation method for solving a nonlinear system of second order 

boundary value problems”, International Journal of Nonlinear Sciences and Numerical Simulation, 8; 353–358. 

30. Zarrinkamar, S., Panahi, H. and Hosseini, F. (2017) “Laplace Transform approach for one-dimensional 

Fokker-Planck equation”, U.P.B. Science Bulletin Series A, 79(3); 213-220. 

 

 


