
JOURNAL OF ALGEBRAIC STATISTICS 

Volume 13, No. 2, 2022, p. 2346-2357 

https://publishoa.com 

ISSN: 1309-3452 

 

2346 
 

Stability conditions for limit cycle of Smooth Transition Hyperbolic 

Tangent Autoregressive model 

Rouaa I. Mohammed1, Azher A. Mohammad2 

1,2Department of Mathematics, College of computer Science and Mathematics, Tikrit University, Tikrit, Iraq 
1Rouaa.I.Muhammed35430@st.tu.edu.iq 
2drazh64@tu.edu.iq 

Departmentof Mathematics, College of computer Science and Mathematics, Tikrit University,Tikrit, Iraq 

 

ABSTRACT 

In this paper, we suggest one of a discrete time non-linear time series model, known as Smooth transition Hyperbolic tangent 

Autoregressive model of order 𝑝STtanhAR(p) , and finding stability condition of a limit cyclewhen the model processes a 

limit cycle of period 𝑞 > 1 .  At first we find a stability condition of a limit cycle of STtanhAR(1)  by using a local 

linearization method , then generalized this conditions to the p-order model with tow examples. 

Keywords: Smooth Transition Hyperbolic tangent autoregressive model, Non- linear time series, Limit cycle, Stability,Local 
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1.Introduction 

A limit cycle is one of the non-linear natures when the system or model has a periodic solution. A local linearization 

technique is a useful tool used to studying the behavior of trajectoriesnear (closed) to each point of a limit cycle. In 

continuous time dynamical system a limit cycle is a closed curve represent a periodic solution of the system and the limit 

cycle is stable when the orbit of solution approaches the closed curve as  𝑡 → ∞ . While in a discrete time dynamical systems 

or models a limit cycle is a finite set of points {𝑥𝑡 , 𝑥𝑡+1, … , 𝑥𝑡+𝑞} such that  𝑥𝑡+𝑞 = 𝑥𝑡 , where 𝑞 is a minimum positive 

integer greater than one .Many of searchers are studying the stability conditions of a limit cycle for many of non-linear time 

series models. In (1977) Oda and Ozaki studied exponential autoregressive model.[1] . in (1982) , Ozaki,T., Studied the 

Statistical Analysis of perturbed Limit cycle processes Using time series models.[2] , In (1985) Ozaki,T., Studied Nonlinear 

Time series models and Dynamical Systems.[3],and for  the Special cases, Chan (1985)and Tong(1990) give the sufficient 

and necessary conditions for the geometric ergodicity of the threshold autoregressive model.[4], In (1986) Tsay R.S. studied 

the stability of non-linear time series.[5] ,In (1988) priestley M.B. studied the non-stability and non-linear time series.[6] .In 

(2010) Mohammed and Ghannam studied Cauchy autoregressive model.[7] In (2012) Salim and Youns studied the stability 

of a non-linear autoregressive models with trigonometric function.[8] 

 

2. Concepts and definitions: 

In this section we introduce some basic concepts and definitionsof STtanhAR(p) model   and related  dynamical concepts to a 

limit cycle and asymptotically stability of a limit cycle. 

Definition 2.1 

Let {𝑥𝑡} be a discrete time non-linear time series then the STtanhAR(p) model is defined by: 

𝑥𝑡 = ∑[𝛼𝑖 + 𝛽𝑖  𝑡𝑎𝑛ℎ (𝑎(𝑥𝑡−1 − 𝑐)2]

𝑝

𝑖=1

𝑥𝑡−𝑖  + 𝑍𝑡               … (2.2) 
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Where         𝑍𝑡  ~ 𝑖𝑖𝑑𝑁(0, 𝜎𝑧
2) 

Where {𝑍𝑡} be a white noise process, 𝑎 and 𝑐 are shape and scale parameters respectively, {𝛼𝑖} and {𝛽𝑖} are constants     𝑖 =

1,2,3, … , 𝑝 

Definition 2.2: [5] 

Let 𝑇 be a finite positive integer.  A 𝑘-dimensional vector𝐗∗ is called periodic point with period 𝑇    if𝐗∗ = 𝑓𝑇(𝐗∗) and 𝐗∗ ≠

𝑓𝑗(𝐗∗)for  1 ≤ j < 𝑇 

Here 𝐗∗ is a fixed point of  𝑓𝑇, we say that 𝐗∗ is a periodic point with period 𝑇 for some 𝑇 ≥ 1. And the ordered set 

{𝐗∗, 𝑓(𝐗∗), 𝑓2(X∗), … , 𝑓𝑇−1(𝐗∗)} is called a 𝑇-cycle. We say that 𝐗0 is eventually periodic if there is  a positive integer  𝑛 

such that  𝐗∗ = 𝑓𝑛(𝐗𝟎) is periodic. We say that 𝐗𝟎 is asymptotically periodic if there exists periodic point 𝐗∗ for which     

‖𝑓𝑛(𝐗𝟎) − 𝑓𝑇(𝐗∗)‖ → 0    𝑎𝑠  𝑛 → ∞    . 

Definition 2.3: [2] and [3] 

A limit cycle of a model   𝑆𝑇 = 𝑓(𝑆𝑇−1, 𝑆𝑇−2, . . . , 𝑆𝑇−𝑝)   where 𝑓  is nonlinear function is defined as an closed isolated 

trajectory 

𝑥𝑇 , 𝑥𝑇+1 ,𝑥𝑇+2,…. , 𝑥𝑇+𝑞 = 𝑥𝑇      … (2.3) 

Where the period  𝑞 > 1 be a smallest positive integer such that 𝑦𝑇+𝑞 = 𝑦𝑇  . Closed means that if the 

initialvalue (𝑥1, 𝑥2 , 𝑥3 , … . , 𝑥𝑝)belongs to the limit cycle, then(𝑥1+𝑘𝑞 , 𝑥2+𝑘𝑞 , …… , 𝑥𝑝+𝑘𝑞)  = ( 𝑥1, 𝑥2 , 𝑥3 , … . , 𝑥𝑝)for any 𝑘 ∈

𝑍+. By  Isolated we  mean that every trajectory being sufficiently closed to   the limit cycle approaches to it  for T → ∞ or  

𝑇 → −∞   If it approaches to  the limit cycle for  𝑇 → ∞, then the limit cycle is , but if it approaches to  the limit cycle for 

𝑇  → −∞, then the limit cycle is unstable. 

 

Definition 2.4: [5] 

By an attractor for f we mean a compact set A such that the set 

𝐵 = {𝑠: lim
𝑛→∞

‖𝑓𝑛(𝑠) − 𝑥‖𝑥∈𝐴
𝑖𝑛𝑓

= 0}  have a positive Lebesque measure and 𝐴 is minimal with respect to this property. The set 

𝐵 is called the Basin of attraction for 𝐴 and it is some time denoted by (𝐴) . if the attractor is a set of 𝑇 points {𝑠1, 𝑠2, … , 𝑠𝑇} 

such that 𝑓(𝑠𝑛) = 𝑠𝑛+1 ,   𝑛 = 1,2, …  𝑇 − 1 and 𝑓(𝑠𝑇) = 𝑠1 then we call the attractor 𝐴  a limit cycle and if 𝑇 = 1 then we 

call it a limit point.[] 

Definition 2.5: [2] and [3] 

A singular point 𝜇of  a (proposed) model (𝑋𝑇) = 𝑓(𝑋𝑇−1, 𝑋𝑇−2, … , 𝑋𝑇−𝑝) where 𝑓 a Non-linear function is defined to be 

appoint for which every trajectory of the model beginning sufficiently closed to the singular point 𝜇 approaches to it either 

for 𝑇 → ∞ or 𝑇 → −∞. If  it approaches to a singular point for 𝑇 → ∞ , then it is stable singular point , and if it approaches 

to a singular point for 𝑇 → −∞ , then it is unstable singular point  

3. Preliminaries 

In the following proposition we find the stability condition of a limit cycle when 

STtanhAR (1) has  a limit cycle of period 𝑞 > 1 

PROPOSITION 3.1 
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The limit cycle 𝑞 (if it Exist) for model STtanhAR(1) is Orbitally Stable if the following condition is met. 

|∏

𝑞

𝑖=1

[[𝛼1 + 𝛽1𝑡𝑎𝑛ℎ [𝑎(𝑥𝑡+𝑞−𝑖 − 𝑐)2] + 2(1 − 𝑘)𝑥𝑡+𝑞−𝑖 ∙ √𝑎 ∗ 𝑡𝑎𝑛ℎ−1(𝑘)]| < 1 

         … (3.1) 

Proof: 

Suppose that this model has a limit cycle of period𝑞 and 𝑞 > 1 and be in shape 

𝑥𝑡 , 𝑥𝑡+1, 𝑥𝑡+2, … , 𝑥𝑡+𝑞 = 𝑥𝑡  

It is an isolated and closed trajectory and by using the local linear approximation technique and around every point𝑥𝑠 and 

radius 𝜇𝑠 small enough that𝜇𝑠
𝑛 → 0 for all 𝑛 ≥ 2 and 𝑠 = 𝑡, 𝑡 − 1and by using arithmetic substitution equations of the form 

𝑥𝑡 = 𝑥𝑡 + 𝜇𝑡 and 𝑥𝑡−1 = 𝑥𝑡−1 + 𝜇𝑡−1and substitute it into the form STtanhAR(1) after canceling the white  noise effect 𝑧𝑡we 

get 

𝑥𝑡 + μ𝑡 = [𝛼1 + 𝛽1𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡−1 + 𝜇𝑡−1 − 𝑐 )2]](𝑥𝑡−1 + 𝜇𝑡−1) 

…(3.2) 

We can simplify the Expression𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡−1  +  𝜇𝑡−1 − 𝑐 )2] in the form 

𝑡𝑎𝑛ℎ[𝑎((𝑥𝑡−1 − 𝑐) + 𝜇𝑡−1)
2] =  𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡−1 − 𝑐)2 + 2𝑎(𝑥𝑡−1 − 𝑐)𝜇𝑡−1 + 𝑎𝜇𝑡−1

2 ] 

Where 𝜇𝑡−1
2 → 0 

∴ 𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡−1 + 𝜇𝑡−1 − 𝑐)2]  = 𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡−1 − 𝑐)2 + 2𝑎(𝑥𝑡−1 − 𝑐)𝜇𝑡−1 

= 
𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡−1 − 𝑐)2] + 𝑡𝑎𝑛ℎ[2𝑎(𝑥𝑡−1 − 𝑐)𝜇𝑡−1

1 + 𝑡𝑎𝑛ℎ[2𝑎(𝑥𝑡−1 − 𝑐)𝜇𝑡−1]
          … (3.3) 

According to match 𝑡𝑎𝑛ℎ( 𝐴 + 𝐵) =
𝑡𝑎𝑛ℎ 𝐴+𝑡𝑎𝑛ℎ 𝐵

1+𝑡𝑎𝑛ℎ 𝐵
 

And since 

𝑡𝑎𝑛ℎ[2𝑎(𝑥𝑡−1 − 𝑐)𝜇𝑡−1] =
𝑒2𝑎𝜇𝑡−1(𝑥𝑡−1−𝑐) − 𝑒−2𝑎𝜇𝑡−1(𝑥𝑡−1−𝑐)

𝑒2𝑎𝜇𝑡−1(𝑥𝑡−1−𝑐) + 𝑒−2𝑎𝜇𝑡−1(𝑥𝑡−1−𝑐)
 

By the property 𝑡𝑎𝑛ℎ(𝑥) =  
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 

By multiplying the numerator and denominator by the expression [e2𝑎𝜇𝑡−1(𝑥𝑡−1−𝑐)] 

We get  

𝑡𝑎𝑛ℎ[2𝑎(𝑥𝑡−1 − 𝑐)𝜇𝑡−1] =
𝑒4𝑎𝜇𝑡−1(𝑥𝑡−1−𝑐) − 1

𝑒4𝑎𝜇𝑡−1(𝑥𝑡−1−𝑐) + 1
                      … (3.4) 

And by using Taylor expansion of the exponential function , we get 
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𝑒4𝑎𝜇𝑡−1(𝑥𝑡−1−𝑐) = 1 + 4𝑎𝜇𝑡−1(𝑥𝑡−1 − 𝑐) +
16

2!
𝑎2𝜇𝑡−1

2 (𝑥𝑡−1 − 𝑐)2 + ⋯ 

≈ 1 + 4𝑎𝜇𝑡−1(𝑥𝑡−1 − 𝑐) 

We substitute the approximation into the equation (3.4) to get 

𝑡𝑎𝑛ℎ[2𝑎(𝑥𝑡−1 − 𝑐)𝜇𝑡−1] =
1 + 4𝑎𝜇𝑡−1(𝑥𝑡−1 − 𝑐) − 1

1 + 4𝑎𝜇𝑡−1(𝑥𝑡−1 − 𝑐) + 1
 

𝑡𝑎𝑛ℎ[2𝑎(𝑥𝑡−1 − 𝑐)𝜇𝑡−1] =
4𝑎𝜇𝑡−1(𝑥𝑡−1 − 𝑐)

4𝑎𝜇𝑡−1(𝑥𝑡−1 − 𝑐) + 2
 

After doing some algebraic operations, we get 

𝑡𝑎𝑛ℎ[2𝑎(𝑥𝑡−1 − 𝑐)𝜇𝑡−1] 

= 𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡−1 − 𝑐)2] + 2𝑎(𝑥𝑡−1 − 𝑐)𝜇𝑡−1[1 − 𝑡𝑎𝑛ℎ(𝑎(𝑥𝑡−1 − 𝑐)2)] 

Since 𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡−1 − 𝑐)2] = 𝑘 and (𝑥𝑡−1 − 𝑐) = √
𝑡𝑎𝑛ℎ−1(𝑘)

𝑎
 

∴ 𝑡𝑎𝑛ℎ[2𝑎(𝑥𝑡−1 − 𝑐)𝜇𝑡−1] = 𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡−1 − 𝑐)2] + 2(1 − 𝑘) √𝑎 ∗ 𝑡𝑎𝑛ℎ−1(𝑘) . 𝜇𝑡−1 

                                                                                     … (3.5) 

By substituting equation(3.5) in equation(3.2) we get 

𝑥𝑡 + 𝜇𝑡 = ∑ [𝛼1 + 𝛽1𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡−1 − 𝑐 )2 + 2(1 − 𝑘)√𝑎 ∗ 𝑡𝑎𝑛ℎ−1(𝑘)]𝜇𝑡−1] (𝑥𝑡−1 + 𝜇𝑡−1)

𝑝

𝑖=1

 

= 𝛼1𝑥𝑡−1 + 𝛼1𝜇𝑡−1 + 𝛽1𝑥𝑡−1 𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡−1 − 𝑐)2] 

+𝛽1 𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡−1 − 𝑐)2]𝜇𝑡−1𝜇 + 2(1 − 𝑘)𝛽1𝑥𝑡−1𝜇𝑡−1√𝑎 ∗ 𝑡𝑎𝑛ℎ−1(𝑘) 

+2(1 − 𝑘)𝛽1𝜇𝑡−1
2 √𝑎 ∗ 𝑡𝑎𝑛ℎ−1(𝑘) 

Since 𝜇𝑡−𝑖
𝑛 → 0 for all𝑖 = 0,1, … , 𝑝 and  𝑛 ≥ 2 

Therefore 

𝑥𝑡 + 𝜇𝑡 = [𝛼1 + 𝛽1 𝑡𝑎𝑛ℎ(𝑎(𝑥𝑡−1 − 𝑐)2)]𝑥𝑡−1 

+ [𝛼1 + 𝛽1 𝑡𝑎𝑛ℎ(𝑎(𝑥𝑡−1 − 𝑐)2) + 2(1 − 𝑘)𝛽1𝑥𝑡−1√𝑎 ∗ 𝑡𝑎𝑛ℎ−1(𝑘)] 𝜇𝑡−1 

And since 𝑥𝑡 = [𝛼1 + 𝛽1 𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡−1 − 𝑐)2]]𝑥𝑡−1 so 

𝜇𝑡 = [𝛼1 + 𝛽1 𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡−1 − 𝑐)2] + 2(1 − 𝑘)𝛽1𝑥𝑡−1√𝑎 ∗ 𝑡𝑎𝑛ℎ−1(𝑘)] 𝜇𝑡−1 

… (3.6) 
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Where 𝑘 =
1−∑ 𝛼𝑖

𝑝
𝑖=1

∑ 𝛽𝑖
𝑝
𝑖=1

 

This equation(3.6) represent afirst-order linear differential equation with unstable coefficients, it is difficult to find an exact 

solution to it but for theconvergence of this equation, the ratio test can be used to consider whether the difference equation 

converges towards zero as (𝑡) increases without limit to infinity𝑡 → ∞, if the solution is convergent, then this means that the 

end cycle is orbitally  stable. 

This convergence towards zero occurs only if the ratio is 

|
𝜇𝑡+𝑞

𝜇𝑡
| < 1                                                                       … (3.7) 

Where 𝑞 is the number of cycles of a limit periodic 

We can write the equation (3.6) in the form 

𝜇𝑡 = 𝑇(𝑥𝑡−1)𝜇𝑡−1                                                               … (3.8) 

where 

𝑇(𝑥𝑡−1) = 𝛼1 + 𝛽1 𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡−1 − 𝑐)2] + 2𝛽1(1 − 𝑘)𝑥𝑡−1√𝑎 ∗ 𝑡𝑎𝑛ℎ−1(𝑘) 

And after 𝑞 of iterations of (3.8) we get 

𝜇𝑡+𝑞 = 𝑇(𝑥𝑡+𝑞−1). 𝜇𝑡+𝑞−1 = 𝑇(𝑥𝑡+𝑞−1). 𝑇(𝑥𝑡+𝑞−2)…𝑇(𝑥𝑡)𝜇𝑡 

Continuing to repeat 𝑞 times, we get 

𝜇𝑡+𝑞 = ∏ 𝑇(𝑥𝑡+𝑞−𝑖). 𝜇𝑡

𝑞

𝑖=1

 

From it we get the required percentago 

|
𝜇𝑡+𝑞

𝜇𝑡

| = |∏𝑇(𝑥𝑡+𝑞−𝑖)

𝑞

𝑖=1

| 

From the convergence condition mentioned in relation(3.7), the limit cycle of period𝑞, is orbitally stable if the condition is 

fulfilled 

|∏𝑇(𝑥𝑡+𝑞−𝑖)

𝑞

𝑖=1

| < 1 

Or otherwise 

|∏[𝛼1 + 𝛽1𝑡𝑎𝑛ℎ (𝑎(𝑥𝑡+𝑞−𝑖 − 𝑐)2) + 2(1 − 𝑘). 𝑥𝑡+𝑞−𝑖√𝑎 ∗ 𝑡𝑎𝑛ℎ−1(𝑘)]

𝑞

𝑖=1

| < 1 

Or  
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|∏
[𝛼1 + 𝛽1𝑡𝑎𝑛ℎ (𝑎(𝑥𝑡+𝑞−𝑖 − 𝑐)2)

+2(1 − 𝑘). 𝑥𝑡+𝑞−𝑖√𝑎 ∗ 𝑡𝑎𝑛ℎ−1(𝑘)]

𝑞
𝑖=1 | < 1                                   … (*) 

And this ends the proof. 

The following proposition is a generalization of proposition(3.1) when the model has a rank of 𝑝 and 𝑝 > 1 and in this case 

we will have to adopt the representation of the modelSTtanhAR(p) in the state space to be of the following form . 

𝑋𝑡  =  𝛼 +  𝛽 𝑡𝑎𝑛ℎ(𝑎( 𝑥𝑡−1 − 𝑐 )2)𝑋𝑡−1  + ∈𝑡                 … (3.9) 

Note that 𝛼 , 𝛽 are two matrices in the form  

𝛼 = 

[
 
 
 
 
𝛼1 𝛼2 ⋯
1 0 ⋯
0 1 ⋯

𝛼𝑝−1 𝛼𝑝

0 0
0 0

⋮    ⋮ ⋱
0  0 ⋯

⋮    ⋮
1    0 ]

 
 
 
 

              ,  𝛽 =  

[
 
 
 
 
𝛽1 𝛽2 ⋯
0 0 ⋯
0 0 ⋯

𝛽𝑝−1 𝛽𝑝

0 0
0 0

⋮   ⋮ ⋱
0   0 ⋯

⋮     ⋮
 0     0 ]

 
 
 
 

 

Where both 𝑋𝑡  , 𝑋𝑡−1 , ∈𝑡 are vectors defined by 

𝑋𝑡 = (𝑥𝑡 , 𝑥𝑡−1, … , 𝑥𝑡−𝑝+1)
𝑇           ,     𝑋𝑡−1 = (𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−𝑝)

𝑇 

∈𝑡= (𝑧𝑡 , 0, … ,0)𝑇 

Since ∈𝑡 is the white noise vector 

And that the elements of matrix(𝛼 + 𝛽 𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡−1 − 𝑐)2]) depend on the random variable 𝑥𝑡−1 and we will use for this 

matrix the symbol𝐴( 𝑥𝑡−1) which is not fixed and written in the following form 

𝐴(𝑥𝑡−1)  =  𝛼 +  𝛽 𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡−1 – 𝑐)2] 

 

The model is expressed in equation(3.9) in the form below 

𝑋𝑡  =  𝐴(𝑥𝑡−1)𝑋𝑡−1 + ∈𝑡  

It is also written as 

𝑋𝑡+1  =  𝐴(𝑥𝑡)𝑋𝑡  + ∈𝑡+1                                                 … (3.10) 

 

Proposition 3.2 

The limit cycle of period 𝑞 and 𝑞 > 1, if it exist of the model STtanhAR(p) is Orbitally stable if all the eigenvalues of matrix 

𝐴 have absolute less than 1, where 

𝐴 =  𝐴𝑞𝐴𝑞−1 …𝐴1  =  ∏𝐴𝑗

𝑞

𝑗=1

 

And  
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𝐴𝑗 = 

[
 
 
 
 𝑎1,1

(𝑗)
𝑎1,2

(𝑗)
⋯

1 0 ⋯
0 1 ⋯

𝑎1,𝑝−1
(𝑗)

𝑎1,𝑝
(𝑗)

0 0
0 0

⋮       ⋮   ⋱
0      0    ⋯

⋮      ⋮
1      0 ]

 
 
 
 

                ; 𝑗 = 1,2, … , 𝑞 

 

Since  

𝑎1,1
(𝑗)

= 𝛼1 + 𝛽1𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡+𝑗−1 – 𝑐)2] + 2(1 − 𝑘)𝑥𝑡+𝑗−1√𝑎 ∗ tanh−1(𝑘) 

 

𝑎1,𝑘
(𝑗)

= 𝛼𝑘 + 𝛽𝑘 tanh[𝑎(𝑥𝑡+𝑗−1 − 𝑐)2] , 𝑘 = 2,3,4, … , 𝑝      … (3.11) 

 

Proof:  

Let Model STtanhAR(p) have a representation in the state space and have a limit cycle of period 𝑞 and 𝑞 > 1 defined by the 

form 

𝑥𝑡  , 𝑥𝑡−1 , 𝑥𝑡−2 , … , 𝑥𝑡+𝑞  =  𝑥𝑡 

Which produce a closed and isolated trajectory. And by using the same assumptions used in the proof of the previous 

theorem and substituting in model (3.9), we get 

X𝑡+1 + 𝜇𝑡+1 = [ 𝛼 +  𝛽𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡  +  𝜇𝑡 − 𝑐 )2]] ( 𝑋 𝑡 + 𝜇𝑡 ) 

 

Where 𝜇𝑡 and μ𝑡+1 vectors are defined as 

𝜇𝑇 = [

𝜇𝑡

𝜇𝑡−1

⋮
𝜇𝑡−𝑝+1

]              ,   𝜇𝑡+1 = [

𝜇𝑡+1

𝜇𝑡

⋮
𝜇𝑡−𝑝+2

] 

After performing some algebraic operations, as in the proof of the previous theorem, we get 

𝜇𝑡+1 = 

[
 
 
 
 𝑎1,1

(1)
𝑎1,2

(1)

1 0

⋯
⋯

𝑎1,𝑝−1
(1)

0

𝑎1,𝑝
(1)

0
0   1
⋮     ⋮

⋯   
⋱    

0  
⋮   

0
⋮

0   0 …      1   0 ]
 
 
 
 

𝜇𝑡 … (3.12) 

Since the matrix on the right side of equation (3.12) is denoted by the symbol  

𝐴1 and written as 
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𝐴1 =  

[
 
 
 
 𝑎1,1

(1)
𝑎1,2

(1)

1 0

…
⋯

𝑎1,𝑝−1
(1)

0

𝑎1,𝑝
(1)

0
0    1
⋮     ⋮

⋯
⋱

⋮
0

0
⋮

0    0 … 1 0 ]
 
 
 
 

𝜇𝑡 

𝑎1,1
(1)

= 𝛼1 + 𝛽1𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡– 𝑐 )2] + 2(1 − 𝑘)𝑥𝑡√𝑎 ∗ tanh−1(𝑘) 

𝑎1,𝑘
(1)

= 𝛼𝑘 + 𝛽𝑘𝑡𝑎𝑛ℎ[𝑎( 𝑥𝑡  –  𝑐 )2], 𝑘 =  2,3, … , 𝑝 

And write Equation (3.12) as 

𝜇𝑡+1 = 𝐴1𝜇𝑡 

Therefore, it is 

𝜇𝑡+2 = 𝐴2𝜇𝑡+1 

By repeating this process for 𝑞 times, taking into account the mathematical changes that occur in the equation, we get 

𝜇𝑡+𝑞 = 𝐴𝑞𝜇𝑡+𝑞−1  =  𝐴𝑞𝐴𝑞−1 … . 𝐴1𝜇𝑡 

That is 

𝜇𝑡+𝑞 = 𝐴𝑞𝐴𝑞−1  … 𝐴1𝜇𝑡                                                 … (3.13) 

Where 

𝐴𝑗 =

[
 
 
 
 𝑎1,1

(𝑗)
𝑎1,2

(𝑗)
…

1    0     …

𝑎1,𝑝−1
(𝑗)

0

𝑎1,𝑝
(𝑗)

0
0    1    …
⋮     ⋮     ⋱

⋮
0

0
0

0    0     … 1 0 ]
 
 
 
 

                                        … (3.14) 

𝑗 =  1,2,3, … , 𝑞 

and  

𝑎1,1
(𝑗)

= 𝛼1 + 𝛽1𝑡𝑎𝑛ℎ[𝑎(𝑥𝑡  – 𝑐)2] +  2(1 − 𝑘)𝑥𝑡√𝑎 ∗ 𝑡𝑎𝑛ℎ−1(𝑘) 

𝑎1,𝑘
(𝑗)

= 𝛼1 + 𝛽1𝑡𝑎𝑛ℎ[𝑎( 𝑥𝑡  –  𝑐 )2]                        , 𝑘 =  2,3, … , 𝑝 

And write Equation (3.13) as follows 

𝜇𝑡+𝑞  = ∏ 𝐴𝑗
𝑞
𝑗=1 𝜇𝑡                                                          … (3.15)  

And let the product of the matrices be 𝐴𝑗 where 𝑗 = 1,2, … , 𝑞 is the matrix 𝐴 and so we can write equation (3.15) in the form 

𝜇𝑡+𝑞 =  𝐴 𝜇𝑡                                                                       … (3.16) 
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And in order for the convergence to be towards zero, that is 𝐴𝑗 → 0 as it approaches → ∞ , the absolute values of the 

eigenvalues of matrix 𝐴 must be less than one. In other words, if the eigenvalues of matrix 𝐴𝑗 mentioned in equation (3.14) 

for 𝑗 = 1,2, … , 𝑞 are less than one 

Therefore, the limit cycle of period 𝑞 of model STtanhAR(p) is Orbitally stable under the above condition 

And this ends the proof. 

We can apply the conditions of proposition (3.1) by taking two examples with an arbitrary values of parameters such that one 

of them is stable and other unstable for clarification the stability of limit cycle. 

Example 3.1 

Let STtanhAR(1) model is given by 

𝑥𝑡 = [𝛼1 + 𝛽1𝑡𝑎𝑛ℎ (𝑎(𝑥𝑡−1 − 𝑐)2)]𝑥𝑡−1 + 𝑧𝑡 

𝑥𝑡 = [ 1.6 − 2 𝑡𝑎𝑛ℎ(2.851883242(𝑥𝑡−1 − 0.5)2)] 𝑥𝑡−1 + 𝑧𝑡        … (**) 

Has non-zero Singular point𝜇 = 0.8294 and a limit cycle of period 5 which is 

{0.9627,0.4919,0.7868,0.8963,0.6808,0.9627}.  we can calculate that by using 

|∏[1.6 − 2 tanh (2.851883242(𝑥𝑡+𝑞−𝑖 − 0.5)2) + 2(1 − 0.3). 𝑥𝑡+𝑞−𝑖 . √2.851883242 ∗ tanh−1(0.3)]

6

𝑖=1

| 

= 21.0993 > 1 . the condition (*) does not satisfy, andthe limit cycle is orbitally unstable . note that Figure (3.1) below with 

different initial values. 
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Figure (3.1) plotting the limit cycle orbitally unstable of STtanhAR(1)  with different initial values 

 

Example 3.2 

Consider the following 0f STtanhAR(1) model 

𝑥𝑡 = [ 1.6 − 1.5 𝑡𝑎𝑛ℎ(1.851883242(𝑥𝑡−1 − 0.5)2)] 𝑥𝑡−1 + 𝑧𝑡       … (∗∗∗) 

 

Has a non-zero singular point 𝜇 = 0.9783and  a limit cycle of  period2 which is {1.08,0.8319,1.08} we can calculate that by 

using 

|∏[1.6 − 1.5 𝑡𝑎𝑛ℎ (1.851883242(𝑥𝑡+𝑞−𝑖 − 0.5)2) + 2(1 − 0.4). 𝑥𝑡+𝑞−𝑖 . √1.851883242 ∗ 𝑡𝑎𝑛ℎ−1(0.4)]

6

𝑖=1

| 

 

= 0.3767 < 1 

 

the condition (*) is satisfying therefore the limit cycle is Orbitally stable . Note thatFigure(3.2) below shows the stability of 

limit cycle with different initial values.  
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Figure (3.2) plotting the limit cycle orbitally stable with different initial values 
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