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ABSTRACT 

A non-empty set of vertices is a bi-domination set if biD  is dominating set of ( , )G V E= and every biv D  dominates 

exactly two vertices in biV D−  such that ( ) ( ) 2biN v V D − = .The bi-domination number ( )bi G  is the minimum 

cardinality over all bi-dominating set in G . In this paper we determine bi-domination number ( )bi G  for the brick 

product graph of even cycle graphs. 
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1. Introduction 

All graphs considered in this paper are simple connected graphs without loops and multiple edges. The concept of a 

dominating set is well known in graph theoretic literature. In this paper we study the bi- domination number of a graph 

G  and determine the bi- domination in brick product of even cycle graphs where (2 , , ) , 3,5,7,11C k p q q = . 

The concept of brick product of even cycles was introduced by Alspach et.al. [2] in which the Hamiltonian laceability 

properties of brick products was explored. Using the concept of brick-products, Alspach and Zhang show in [3] that all 

cubic Cayley graphsover dihedral groups are Hamiltonian. It was also conjectured that all brick product graphs C (2n, m, 

r) are Hamiltonian laceable. Chen et.al. in [4] have shown that the conjecture is true for m is even. In [6] the authors 

Leena Shenoy and Murali and in [5] the authors Girisha and Murali studied the Hamiltonian laceability properties in 

cyclic product graphs associated with even cycles. 

Definition 1.1.  A set biD  of vertices in a graph  G   is a bi- dominating set [1] if every biv D  dominates  exactly 

two vertices in  biV D−   such that  ( ) ( ) 2biN v V D − = .  The bi-domination number ( )bi G is the minimum 

size of a bi-dominating set. Throughout this paper we will denote dominating set by Dst . 
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Definition 1.2.  Let ,k pand q  be positive integers. 2 0 1 2 2 1 0, , ... ,k kLet C v v v v v−=  denote a cycle of order 2k . The 

( , )p q -brick product of 2kC  denoted by (2 , , )C k p q  is defined as follows: 

For 1p = , we require that q  be odd and greater than 1. Then, (2 , , )C k p q  is obtained from 2kC  by adding chords 

2 2( , ) , 1,2....r r qv v r k+ = , where the computation is performed under modulo 2k . 

For 1p  , we require that p q+  be even. Then (2 , , )C k p q  is obtained by first taking disjoint union of k  copies of 

2kC namely , 2 2 2 2(1), (2), (3)...... ( )k k k kC C C C p  where for each 1,2,....i p=  , 

2 ( ) (1), (2), (3)........ (2 )k i i i iC i v v v v k= . Next , for each odd 1,2,.... 1i p= −  and each even 0,1,2.....2 2r k= −  

an edge (called a brick edge) drawn to join ( 1)i r i rv to v + , whereas , for each even 1,2,.... 1i p= −  and each odd 

0,1,2.....2 1r k= − , an edge (also called a brick edge) is drawn to join ( 1)i r i rv to v + . 

Finally , for each odd 0,1,2.....2 1r k= − , an edge (called a hooking edge) is known to join 1 ( )r p r qv to v + . An edge 

in (2 , , )C k p q which is neither a brick edge nor a hooking edge is called a flat edge. 

 

2. Main Results 

Theorem 2.1. 

 Let (2 , , )G C k p q=  then for 1, 3p k=   and 3q =  

 

Proof. 

We Consider the vertex set G as  0 1 2 2 1 2 0( ) , , ,...., ,k kV G v v v v v v−= =   and 

 the edge set of G as    ( ) :1 2 :1j jE G e j k e j k=       where je  is the edge 1( . )i iv v−  and je  is the edge 

2 2( , )r r qv v +  

 0,1,2,3... . 2r k Here r q= +   is computed modulo 2k . 

( ) :Case i For 3 4, 1,2,3,4......k a a= + =  

We consider the set     3 2 2bi jD v v−=      where 1 2 1
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( ):Case ii For 3 5 , 1,2,3,4.......k b b= + =  

We consider the set  3 2bi jD v −=      where 1 2
3

k
j

 
   

 
 

( ) :Case iii  For 3 6, 1,2,3,4......k c c= + =  

We consider the set  3 2bi jD v −=     where 
2

1
3

k
j   

The above cases of biD are the minimal bi- Dst . Hence, for every , biu w V D −  is adjacent to     biv D  such that 

( ) ( ) 2biN v V D − =  and every u v−  path contain a vertex of  biD . 

Therefore , biD  is minimal bi- Dst  and Since     
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Hence the proof. 

Theorem 2.2. 

Let (2 , , )G C k p q=  then for 1, 5p k=   and 5q =  
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Proof. 

We Consider the vertex set G as  0 1 2 2 1 2 0( ) , , ,...., ,k kV G v v v v v v−= =   and 

 the edge set of G as    ( ) :1 2 :1j jE G e j k e j k=       where je  is the edge 1( , )i iv v−  and je  is the edge 

2 2( , )r r qv v +  

0,1,2,3... . 2r k Here r q= +   is computed modulo 2k . 

( ):Case i For 2 6 , 1,2,3,4......k a a= + =  

We consider the  set            1 4 1 4 2 6 2bi j j k kD v v v v v− −=      

Where 1 1 , 1 2
2 2

k k
j j  −   −  

( ):Case ii For 2 7 , 1,2,3,4......k b b= + =  

We consider the set         1 4 1 4 2 4bi j j kD v v v v− −=     
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The above cases of biD are the minimal bi- Dst . Hence, for every , biu w V D −  is adjacent to     biv D  such that 

( ) ( ) 2biN v V D − =  and every u v−  path contain a vertex of  biD . 

Therefore , biD  is minimal bi- Dst  and Since 
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Hence the proof. 

 

Theorem: 2.3. 

Let (2 , , )G C k p q=  then for 1, 7 7p k and q=  =  
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Proof. 

We Consider the vertex set G as  0 1 2 2 1 2 0( ) , , ,...., ,k kV G v v v v v v−= =   and 

 the edge set of G as    ( ) :1 2 :1j jE G e j k e j k=       where je  is the edge 1( , )i iv v−  and e  is the edge 

2 2( , )r r qv v +  

0,1,2,3... . 2r k Here r q= +   is computed modulo 2k . 

( ) :Case i  For 2 6, 1,2,3,4......k a a= + =  

We consider the set      4 3 4bi j jD v v −=   where 1 , 1
2 2

k k
j j     

( ) :Case ii 2 7, 1,2,3,4......k b b= + =  

we consider the set         4 3 4 2 2 4bi j j k kD v v v v− −=      

where 1 , 1 2
2 2

k k
j j

   
    −   

   
 

The above cases of biD are the minimal bi- Dst . Hence, for every , biu w V D −  is adjacent to     biv D  such that 

( ) ( ) 2biN v V D − =  and every u v−  path contain a vertex of  biD . 

Therefore , biD  is minimal bi- Dst  and Since 
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Hence the proof. 

 

Theorem: 2.4. 
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Let (2 , , )G C k p q=  then for 1, 11p k=   and 11q =  

, 0(mod 2)
( )
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Proof. 

We Consider the vertex set G as  0 1 2 2 1 2 0( ) , , ,...., ,k kV G v v v v v v−= =   and 

 the edge set of G as    ( ) :1 2 :1j jE G e j k e j k=       

where je  is the edge 1( , )i iv v−  and je  is the edge 
2 2( , )r r qv v + 0,1,2,3... . 2r k Here r q= +   is computed modulo

2k . 

( ) :Case i 2 6, 1,2,3,4......k a a= + =  

We consider the set     4 3 4bi j jD v v −=   where 1 , 1
2 2

k k
j j     

( ):Case ii 2 7, 1,2,3,4......k b b= + =  

We consider the set         4 3 4 2 2 4bi j j k kD v v v v− −=     

Where       1 , 1 2
2 2

k k
j j

   
    −   

   
 

The above cases of biD are the minimal bi- Dst . Hence, for every , biu w V D −  is adjacent to     biv D  such that 

( ) ( ) 2biN v V D − =  and every u v−  path contain a vertex of  biD . 

Therefore , biD  is minimal bi- Dst and Since 
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Hence the proof. 
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