Volume 13, No. 2, 2022, p. 1455 - 1462 https://publishoa.com ISSN: 1309-3452

El-Algebra in Soft Sets

Pooja Yadav, Rashmi Singh*

Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, INDIA

ABSTRACT

A soft set can be calculated by a set-valued mapping that assigns precisely one crisp subset of the universe to each parameter. In 1998, X. Liu gave Axiomatic Fuzzy set structure and El-algebra. They pointed out that ordinary fuzzy concepts or human concepts can be represented through any molecular or atomic fuzzy concepts in El-algebra over any finite set of fuzzy concepts. However, this isn't the only way to represent transitive human ideas. The definition of soft sets was extended to El-algebra in this article by taking El-algebra as universe of discourse in soft sets, and certain properties of soft El-algebras were investigated. We also introduced homomorphism between two El-algebras.

Keywords: Soft set, El-algebra, Soft El-algebra, Homomorphism etc.

Introduction

Some fields like economics, engineering and environment have high degree of uncertainties. For these complex problems, we cannot effectively utilize classical approaches. As a mathematical tool to deal with complexity in mathematics, there are three concepts that we can accept: the theory of probability, Fuzzy sets and interval mathematics. But all these concepts, as pointed out by Molodtsov [2], have their own difficulties. It was proposed by Molodtsov [2] and Maji with others in [7] that one explanation for these problems might be the deficiency of the parameterization approach. In order to resolve these challenges, Molodtsov presented the soft set concept as a revolutionary mathematical tool for interacting with ambiguity. Soft sets are free of the challenges that have associated with normal scientific procedures. Molodtsov has identified several approaches for the objectives of the soft set. At the moment, attempts based on the soft set theory are gaining momentum. Maji with others [7] identified the classification of the soft sets. Many researchers have looked at the algebraic framework of set theories that deal with ambiguity. The fuzzy sets theory is the most suitable theory for working with uncertainties, established [3] by Zadeh.

The author Liu Xiaodong [1] defined an infinite distributive molecular lattice and called it El-algebra and Ell-algebra. They also gave a new system "AFS Structure" of fuzzy sets and systems, which is more appropriate than the classical mathematical opinions. This paper applied soft sets to El-algebra and proposed Soft El-algebra with its basic properties.

1. Basic Results on soft sets:

Definition 1.1 ([2]): Let E and U be the sets of parameters/attributes and essential universe respectively. P(U) be the power set of U, and A \subseteq E. A couple (F, A) or F_A is a *soft set* on U, here F is a mapping defined as:

$F: A \rightarrow P(U).$

Soft set F_A is simply not a classical set, it is a parameterized family of subsets of the universe U. For $\varepsilon \in A$, $F(\varepsilon)$ may be considered as the set of ε -approximate elements of the soft set (F, A). Molodtsov produced a lot of details for the illustration in [2].

Volume 13, No. 2, 2022, p. 1455 - 1462 https://publishoa.com ISSN: 1309-3452

Definition 1.2 ([8]): Let F_A and G_B are two soft sets on a common universe set U, then *intersection* is specified as a soft set H_C , that meets the following requirements:

(i) $C = A \cap B$,

(ii) $\forall c \in C, H(c) = F(c) \text{ or } H(c) = G(c)$, (due to the fact that both sets are similar).

In this context, we're writing $F_A \cap G_B = H_C$.

Definition 1.3 ([8]): Let F_A and G_B are two soft sets on a common universe set U, then *union* is specified as a soft set H_C satisfying the following conditions:

(i) $C = A \cup B$,

(ii) for all
$$c \in C$$

 $H(c) = \begin{cases} F(c) & , \text{ if } c \in A \setminus B, \\ G(c) & , \text{ if } c \in B \setminus A, \\ F(c) \cup G(c) & , \text{ if } c \in A \cap B. \end{cases}$

In this case, we're writing $F_A \widetilde{U} G_B = H_C$.

Definition 1.4 ([8]): "*AND*" of two soft sets F_A and G_B can be written as $F_A \approx G_B$ and characterized by $F_A \approx G_B = H_{A \times B}$, where $H(a, b) = F(a) \cap G(b) \forall (a, b) \in A \times B$.

Definition 1.5 ([8]): "*OR*" of two soft sets F_A and G_B can be written as $F_A \tilde{\lor} G_B$ and characterized by $F_A \tilde{\lor} G_B = H_{A \times B}$, where $H(a, b) = F(a) \cup G(b) \forall (a, b) \in A \times B$.

Definition 1.6 ([8]): Let F_A and G_B are two soft sets. Then F_A is a *soft subset* of G_B , represented by $F_A \simeq G_B$, if it satisfies the following requirements:

(i) $A \subset B$, (ii) For each $a \in A$, F(a) and G(a) are approximations, that are similar.

2. Basic Definitions on El-algebra:

Definition 2.1 ([1]): Let T be any set and P(T) be non-empty power set of T. Define ET = $\{\sum_{i \in I} T_i \mid T_i \in P(T), i \in I, I \text{ is an index set}\}$, where $\sum_{i \in I} T_i$ is written in sum form. When T_i ($i \in I$) are summed by different orders, $\sum_{i \in I} T_i$ indicates the same element of ET. For example $\sum_{i \in \{1,2\}} T_i$, $T_1 + T_2$ and $T_2 + T_1$ are the same element of ET, $T_1, T_2 \in P(T)$.

Let R be a binary relation on ET expressed as: $\sum_{i \in I} T_i, \sum_{j \in J} L_j \in ET$, $\sum_{i \in I} T_i R \sum_{j \in J} L_j \Leftrightarrow \forall T_i (i \in I), \exists L_h (h \in J)$ such that $T_i \supseteq L_h$ and $\forall L_j (j \in J), \exists T_u (u \in I)$ such that $L_j \supseteq T_u$. It can be seen that R is an equivalence relation.

Then (ET, \lor , \land) is called El-algebra over T, if \lor and \land are operations on ET defined as:

 $\sum_{i \in I} T_i \vee \sum_{j \in J} L_j = \sum_{k \in I \cup J} P_k; I \cup J \text{ is the disjoin union of } I \text{ and } J, P_k = T_k \text{ if } k \in I; P_k = L_k \text{ if } k \in J, \text{ and } \sum_{i \in I} T_i \land \sum_{i \in I} L_i = \sum_{i \in I, i \in J} T_i \cup L_i.$

(ET, \lor , \land) has the following common properties:

- (1) $(\sum_{i \in I} T_i) \land (\sum_{i \in I} T_i) = \sum_{i \in I} T_i$,
- (2) $(\sum_{i \in I} T_i) \lor (\sum_{i \in I} T_i) = \sum_{i \in I} T_i$,

Volume 13, No. 2, 2022, p. 1455 - 1462 https://publishoa.com ISSN: 1309-3452

- (3) $\phi \vee \sum_{i \in I} T_i = \phi$,
- (4) $T \vee \sum_{i \in I} T_i = \sum_{i \in I} T_i$,
- (5) $\phi \wedge \sum_{i \in I} T_i = \sum_{i \in I} T_i$,
- (6) $T \wedge \sum_{i \in I} T_i = T$,

 $(7) \left[(\sum_{i \in I} T_i) \lor (\sum_{k \in U} P_k) \right] \land \left[(\sum_{j \in J} L_j) \lor (\sum_{k \in U} P_k) \right] = \left[(\sum_{i \in I} T_i) \land (\sum_{j \in J} L_j) \right] \lor (\sum_{k \in U} P_k).$

Since, T and ϕ are the units of (ET, \lor) and (ET, \land) respectively.

Definition 2.2 (see [6]): If $S \subseteq ET$, then (S, \land, \lor) is called an El sub-algebra of (ET, \land, \lor) if for any $s_1, s_2 \in S$, (1). $s_1 \lor s_2 \in S$, and (2). $s_1 \land s_2 \in S$.

Proposition 2.3 (see [1]): Let $\sum_{u \in I} T_u \in ET$. If there exist j, $k \in I$, $j \neq k$ such that $T_j \subseteq T_k$, then $\sum_{u \in I} T_u = \sum_{u \in I, u \neq k} T_u$.

3. Soft El algebra:

{2}.

Let T and E be any non-empty sets and (ET, \land , \lor) be an El-algebra defined on T. Then a function F: E \rightarrow P(ET) is being characterized as:

$$F(e) = \{\alpha_j \in ET \mid e \mathrel{R} \alpha_j\}, e \in E,$$

Where, R is a binary relation between E and ET, that is $R \subseteq E \times ET$. Then the pair (F, E) or F_E is known as a soft set over El-algebra ET.

Definition 3.01: A soft set F_E over El-algebra (ET, \land , \lor) is known as a *soft El-algebra* over ET, if for all $e \in E$, F(e) is an El-subalgebra of an El-algebra ET, that is for every $\alpha_i, \alpha_j \in F(e)$ (i, $j \in I$), $\alpha_i \land \alpha_j \in F(e)$ and $\alpha_i \lor \alpha_j \in F(e)$.

Example 3.02: Let $T = \{1, 2\}$, $E = \{e, x\}$ and $ET = \{\alpha_1, \alpha_2\}$ be an El-algebra. Let $F: E \rightarrow P(ET)$ be defined as:

 $\begin{aligned} F(e) &= \{\alpha_1\} \\ F(x) &= \{\alpha_1, \alpha_2\} \\ \text{Where, } \alpha_1 &= \{1\} \text{ and } \alpha_2 &= \{1\} \lor \{2\}. \end{aligned}$ $\text{Now, } \{1\} \lor \{1\} &= \{1\}, \{1\} \land \{1\} &= \{1\}, [\{1\} \lor \{2\}] \lor [\{1\} \lor \{2\}] = \{1\} \lor \{2\}, [\{1\} \lor \{2\}] \land [\{1\} \lor \{2\}] = \{1\} \lor \{2\}, [\{1\} \lor \{2\}] \land [\{1\} \lor \{2\}] = \{1\} \lor \{2\}, [\{1\} \lor \{2\}] \land [\{1\} \lor \{2\}] = \{1\} \lor \{2\}, [\{1\} \lor \{2\}] \land [\{1\} \lor \{2\}] = \{1\} \lor \{2\}, [\{1\} \lor \{2\}] \land [\{1\} \lor \{2\}] = \{1\} \lor \{2\}, [\{1\} \lor \{2\}] \land [\{1\} \lor \{2\}] = \{1\} \lor \{2\}, [\{1\} \lor \{2\}] \land [\{1\} \lor \{2\}] = \{1\} \lor \{2\}, [\{1\} \lor \{2\}] \land [\{1\} \lor \{2\}] = \{1\} \lor \{2\}, [\{1\} \lor \{2\}] \land [\{1\} \lor \{2\}] = \{1\} \lor \{2\}, [\{1\} \lor \{2\}] \land [\{1\} \lor \{2\}] = \{1\} \lor \{2\}, [\{1\} \lor \{2\}] \land [\{1\} \lor \{2\}] = \{1\} \lor \{2\}, [\{1\} \lor \{2\}] \land [\{1\} \lor \{2\}] = \{1\} \lor \{2\}, [\{1\} \lor \{2\}] \land [\{1\} \lor \{2\}] = \{1\} \lor \{2\}, [\{1\} \lor \{2\}] \land [\{1\} \lor \{2\}] = \{1\} \lor \{2\}, [\{1\} \lor \{2\}] \land [\{1\} \lor \{2\}] = \{1\} \lor \{2\}, [\{1\} \lor \{2\}] \land [\{1\} \lor \{2\}] = \{1\} \lor \{2\}, [\{1\} \lor \{2\}] \land [\{1\} \lor \{2\}\} \land [\{1\} \lor \{2\} \lor \{$

So, $\{\alpha_1\}$ and $\{\alpha_1, \alpha_2\}$ are El-subalgebras of El-algebra ET, written as $(\alpha_1)_{El}$ and $(\alpha_1, \alpha_2)_{El}$ respectively. Hence α_1, α_2

is the base of ET. Similarly by the definition of Soft El-algebra, F_E is then called Soft El-algebra over ET. **Example 3.03:** Let $T = \{t_1, t_2, t_3, t_4\}$ and $ET = \{\sum_{i \in I} T_i \mid i \in I, T_i \subseteq T\}$ or $ET = \{\alpha_1, \alpha_2, \dots, \alpha_{13}\}$ be an El-algebra,

where $\alpha_{1} = \{ t_{1} \}, \alpha_{2} = \{ t_{1} \} \lor \{ t_{2} \}, \alpha_{3} = \{ t_{3} \} \lor \{ t_{4} \}, \alpha_{4} = \{ t_{2} \} \lor \{ t_{3} \} \lor \{ t_{4} \}, \alpha_{5} = \{ t_{1} \} \lor \{ t_{2} \} \lor \{ t_{3} \} \lor \{ t_{4} \}, \alpha_{6} = \{ t_{1} \} \lor \{ t_{4} \}, \alpha_{6} = \{ t_{1} \} \lor \{ t_{3} \} \lor \{ t_{4} \}, \alpha_{7} = \{ t_{1}, t_{3} \} \lor \{ t_{1}, t_{4} \}, \alpha_{8} = \{ t_{1}, t_{2} \} \lor \{ t_{1}, t_{3} \} \lor \{ t_{1}, t_{4} \}, \alpha_{9} = \{ t_{1}, t_{3} \} \lor \{ t_{1}, t_{4} \} \lor \{ t_{2}, t_{3} \} \lor \{ t_{2}, t_{4} \}, \alpha_{10} = \{ t_{3} \} \lor \{ t_{4} \} \lor \{ t_{1}, t_{2} \}, \alpha_{11} = \{ t_{1}, t_{3} \} \lor \{ t_{1}, t_{4} \} \lor \{ t_{2}, t_{3} \} \lor \{ t_{2}, t_{4} \} and \alpha_{13} = \{ t_{1}, t_{2} \} \lor \{ t_{1}, t_{3} \} \lor \{ t_{1}, t_{4} \} \lor \{ t_{2}, t_{3} \} \lor \{ t_{2}, t_{4} \}.$

Let $E = \{e_1, e_2, e_3, e_4\}$ and $G: E \rightarrow P(ET)$ be defined as: $G(e_1) = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)_{El},$ $G(e_2) = \{\alpha_1, \alpha_3, \alpha_{11}\} = (\alpha_1, \alpha_3, \alpha_{11})_{El},$

Volume 13, No. 2, 2022, p. 1455 - 1462 https://publishoa.com ISSN: 1309-3452

$$\begin{split} &G(e_3) = \{\alpha_1, \alpha_7\} = (\alpha_1, \alpha_7)_{El}, \\ &G(e_4) = \{\alpha_1, \alpha_3, \alpha_6, \alpha_7\} = (\alpha_1, \alpha_3, \alpha_6, \alpha_7)_{El}. \end{split}$$

Then, (G, E) or G_E is called Soft El-algebra over ET.

Definition 3.04: Let G_E be a soft El-algebra defined on ET. Then, (i). if $G(e) = \phi$ for all $e \in E$, then G_E is referred to *trivial soft El-algebra* over ET. (ii). if G(e) = ET for all $e \in E$, then G_E is referred to *whole soft El-algebra* over ET.

Theorem 3.05: If F_E and G_H be two soft El-algebras defined on ET, then $F_E \approx G_H$ is also a soft El-algebra over ET.

Proof: From 1.4, we have $F_E \land G_H = K_{E \times H}$, where $K(e, h) = F(e) \cap G(h) \forall (e, h) \in E \times H$. But F(e) and G(h) are Elsubalgebras of El-algebra ET and so their intersection $F(e) \cap G(h)$ is also an El-subalgebra of ET. Therefore K(e, h) is an El-subalgebra of ET for all $(e, h) \in E \times H$. Hence $F_E \land G_H = K_{E \times H}$ is a soft El-algebra over ET.

Theorem 3.06: Let F_E and G_H are two non-empty soft El-algebras defined on ET. Then $F_E \cap G_H$ is also soft El-algebra over ET, if $E \cap H \neq \phi$.

Proof: From 1.2, we can write $F_E \cap G_H = K_D$, where $D = E \cap H \neq \phi$ and K(d) = F(d) or G(d) for all $d \in D$. Here, K: $D \rightarrow P(ET)$ is a mapping, and so K_D is a soft set defined on ET. Now, F_E and G_H are soft El-algebras over ET, therefore K(d) = F(d) is an El-subalgebra of ET, or K(d) = G(d) is also an El-subalgebra of ET for all $d \in D$. Therefore, $F_E \cap G_H$ is a soft El-algebra over ET.

Theorem 3.07: Let F_E and G_H are non-empty soft El-algebras defined on ET. If $E \cap H = \phi$, then their soft union i.e., $F_E \widetilde{U} G_H$ is also a soft El-algebra defined on ET.

Proof: From 1.3, we can write $F_E \widetilde{U} G_H = K_C$, where $C = E \cup H$ and for every $c \in C$,

 $K(c) = \begin{cases} F(c) & \text{if } c \in E \setminus H, \\ G(c) & \text{if } c \in H \setminus E, \\ F(c) \cup G(c) & \text{if } c \in E \cap H. \end{cases}$

Since $E \cap H = \phi$, then for all $c \in C$ either $c \in E \setminus H$ or $c \in H \setminus E$. If $c \in E \setminus H$, then K(c) = F(c) is a soft Elsubalgebra, and if $c \in H \setminus E$ then K(c) = G(c) is also a soft El-subalgebra, since F_E and G_H are soft El-algebras over ET. Hence $K_C = F_E \widetilde{U} G_H$ is a soft El-algebra over ET.

Remark: If $E \cap H \neq \phi$ and for every $\alpha_i \in F(e)$ ($i \in I, e \in E$), $\beta_j \in G(h)$ ($j \in J, h \in H$), $\alpha_i \lor \beta_j \in F(e) \cup G(h)$ and $\alpha_i \land \beta_j \in F(e) \cup G(h)$, then $F_E \widetilde{\cup} G_H$ is a soft El-algebra defined on ET.

Example 3.08: Let $T = \{x_1, x_2, x_3, x_4, x_5, x_6\}$ be the set of six persons and $E = \{A = Age, We = Weight, H = Height, S = Salary, W = Woman, M = Man\}$ be the set of attributes.

Let $ET = \{\sum_{i \in I} T_i \mid T_i \subseteq T, i \in I\}$ and (ET, \lor, \land) is an El-algebra. Let $B = \{A, We, H, S\}$ and $C = \{A, We, W, M\}$ are two subsets of E. (F, B) and (G, C) are two soft sets over El-algebra ET, defined as:

 $F: B \rightarrow P(ET)$

$$\begin{split} F(A) &= \{ \{ x_3 \} \}, \\ F(We) &= \{ \{ x_2 \}, \{ x_2 \} \lor \{ x_5 \} \}, \end{split}$$

Volume 13, No. 2, 2022, p. 1455 - 1462 https://publishoa.com ISSN: 1309-3452

$$\begin{split} F(H) &= \{ \{x_3\}, \{x_3\} \lor \{x_2\}, \{x_6\} \lor \{x_5\}, \{x_2\} \lor \{x_6\} \lor \{x_5\} \}, \\ F(S) &= \{ \{x_1\}, \{x_1, x_3\} \lor \{x_1, x_4\} \lor \{x_2\}, \{x_3\} \lor \{x_4\} \}. \end{split}$$

and, G: C \rightarrow P(ET), be defined as:

$$\begin{split} &G(A) = \{\{x_3\}\}, \\ &G(We) = \{\{x_2\}, \{x_2\} \lor \{x_5\}\}, \\ &G(W) = \{\{x_6\}, \{x_6, x_4\} \lor \{x_6, x_3\} \lor \{x_5\}, \{x_4, x_3\}\}, \\ &G(M) = \{\{x_1\}\}. \end{split}$$

Now,

(1). From definition 1.2 $F_B \cap G_C = H_D$, where $D = \{A, We\} \neq \phi$, and $H(A) = \{\{x_3\}\}, H(We) = \{\{x_2\}, \{x_2\} \lor \{x_5\}\}$ both are El-subalgebra. Hence, H_D is a soft El-algebra.

(2). From definition 1.3 $F_B \widetilde{U} G_C = H_D$, where $D = B \cup C = \{A, We, H, S, W, M\}$ and

$$\begin{split} H(A) &= F(A) \cup G(A) = (\{x_3\})_{El}, \\ H(We) &= F(We) \cup G(We) = (\{x_2\}, \{x_2\} \vee \{x_5\})_{El}, \\ H(H) &= F(H) = (\{x_3\}, \{x_3\} \vee \{x_2\}, \{x_6\} \vee \{x_5\}, \{x_2\} \vee \{x_6\} \vee \{x_5\})_{El}, \\ H(S) &= (\{x_1\}, \{x_1, x_3\} \vee \{x_1, x_4\} \vee \{x_2\}, \{x_3\} \vee \{x_4\})_{El}, \\ H(W) &= (\{x_6\}, \{x_6, x_4\} \vee \{x_6, x_3\} \vee \{x_5\}, \{x_4, x_3\})_{El}, \\ H(M) &= (\{x_1\})_{El}. \end{split}$$

Hence, H_D is a soft El-algebra.

(3). From definition 1.4 $F_B \approx G_C = H_D$, where $D = B \times C = \{(b, c) | b \in B \text{ and } c \in C\}$ and $H(b, c) = F(b) \cap G(c)$ for all $(b, c) \in D$. So, $H(A, M) = F(A) \cap G(M) = \{\{x_1\}\} = (\{x_1\})_{El} = H(S, M) = H(We, M)$, $H(We, A) = \{x_3\} = (\{x_3\})_{El} = H(H, A)$, $H(b, c) = \phi, \forall (b, c) \in D-\{(A, M), (S, M), (We, M), (We, A), (H, A)\}$.

Hence, H_D is a soft El-algebra.

Proposition 3.09: Let F_E and G_H are two soft El-algebras over ET. Then $F_E \tilde{\lor} G_H$ need not be a soft El-algebra over ET (see example 3.10).

Example 3.10: From definition 1.5 and Example 3.08, let $F_B \lor G_C = H_D$, where $D = B \times C$ and $H(b, c) = F(b) \cup G(c) \forall (b, c) \in D$.

So, if we take $(A, A) \in D$, then $H(A, A) = \{\{x_3\}\} = (\{x_3\})_{El}$, but if we take $(A, We) \in D$, then $H(A, We) = \{\{x_3\}, \{x_2\}, \{x_2\} \lor \{x_5\}\}$ is not an El-subalgebra of a soft El-algebra (ET, \lor , \land). Hence H_D is not a soft El-algebra over ET.

Theorem 3.11: Let F_E be a soft El-algebra defined on ET. If $H \subset E$, then F_H is a soft El-algebra over ET.

Proof: Follow definitions 1.6 and 3.01.

We give following example in which a soft set F_E defined on ET is not a soft El-algebra over ET but there exists $H \subset E$, such that F_H is a soft El-algebra over ET.

Volume 13, No. 2, 2022, p. 1455 - 1462 https://publishoa.com ISSN: 1309-3452

Example 3.12: Consider T = {u, v, w} be any set and ET = { $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7, \alpha_8$ } be an El-algebra where, $\alpha_1 = {u}, \alpha_2 = {u} \lor {v, w}, \alpha_3 = {v} \lor {w}, \alpha_4 = {u, v} \lor {v, w}, \alpha_5 = {u} \lor {v} \lor {w}, \alpha_6 = {u, v} \lor {u, w}, \alpha_7 = {u, v}, \alpha_8 = {u, v} \lor {u, w} \lor {v, w}$. Let G_E be a soft set over El-algebra ET, that is G: E \rightarrow P(ET) and E = {e₁, e₂, e₃, e₄, e₅}, such that

 $\begin{array}{l} G(e_1) = \{ \alpha_1, \, \alpha_2 \}, \\ G(e_2) = \{ \alpha_4, \, \alpha_6 \}, \\ G(e_3) = \{ \alpha_4, \, \alpha_6, \, \alpha_7, \, \alpha_8 \}, \\ G(e_4) = \{ \alpha_1, \, \alpha_3, \, \alpha_7 \}, \\ G(e_5) = \{ \alpha_2, \, \alpha_5 \}. \end{array}$

Since $G(e_2)$ and $G(e_4)$ are not an El-subalgebras of ET, so G_E is not a soft El-algebra. But, when $H = \{e_1, e_3, e_5\} \subset E$, then G_H is a soft El-algebra defined on ET.

4. Soft El-subalgebra:

Definition 4.1: Let F_E and G_H are two soft El-algebras over El-algebra ET. Then G_H is said to be a *soft subalgebra* of F_E , if it meets the following criteria: (i) $H \subset E$, (ii) G(h) is an El-subalgebra of F(h) for all $h \in H$.

It can be written as $G_H \approx F_E$.

Example 4.2: Let $ET = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7, \alpha_8\}$ be an El-algebra defined in Example 3.12 and F_E be a soft El-algebra defined as: F: E \rightarrow P(ET), as

 $\begin{aligned} F(e_1) &= \{ \alpha_1, \, \alpha_2 \}, \\ F(e_2) &= \{ \alpha_4, \, \alpha_6, \, \alpha_7, \, \alpha_8 \}, \\ F(e_3) &= \{ \alpha_4, \, \alpha_6, \, \alpha_7, \, \alpha_8 \}, \\ F(e_4) &= \{ \alpha_1, \, \alpha_3, \, \alpha_5, \, \alpha_6, \, \alpha_7 \}, \\ F(e_5) &= \{ \alpha_2, \, \alpha_5 \}. \end{aligned}$

Now, we take $H = \{e_1, e_4, e_5\}$ as a subset of E and G_H be a soft set defined as: G: $H \rightarrow P(ET)$, such that

 $\begin{aligned} G(e_1) &= \{ \alpha_1 \}, \\ G(e_4) &= \{ \alpha_1, \, \alpha_3, \, \alpha_5, \, \alpha_6 \}, \\ G(e_5) &= \{ \alpha_5 \}. \end{aligned}$

Note that $G(e_1)$, $G(e_4)$ and $G(e_5)$ are El-subalgebra of $F(e_1)$, $F(e_4)$ and $F(e_5)$ respectively. Hence G_H is a soft El-subalgebra of F_E .

Theorem 4.3: Let F_E be a soft El-algebra defined on ET and $G_H \stackrel{\sim}{\leftarrow} F_E$, $K_D \stackrel{\sim}{\leftarrow} F_E$. Then (i) $G_H \cap K_D \stackrel{\sim}{\leftarrow} F_E$, (ii) If $H \cap D = \phi$, then $G_H \cup K_D \stackrel{\sim}{\leftarrow} F_E$.

Proof: (i) From Definition 1.2, we can write

 $G_H \cap K_D = R_S$

Where, $S = H \cap D$ and R(s) = G(s) or K(s), $\forall s \in S$. Obviously, $S \subset E$. Let $s \in S$. Then $s \in H$ and $s \in D$. If $s \in H$, then R(s) = H(s) and if $s \in D$, then R(s) = K(s). Here, both G(s) and K(s) are El-subalgebras of F(s) since $G_H \in F_E$ and $K_D \in F_E$. Hence, $G_H \cap K_D = R_s \in F_E$.

(ii) Assume that $H \cap D = \phi$. We can write $G_H \widetilde{\cup} K_D = R_S$ where, $S = H \cup D$ and

Volume 13, No. 2, 2022, p. 1455 - 1462 https://publishoa.com ISSN: 1309-3452

	G(s)	if $s \in H \setminus D$,	
$R(s) = \langle$	K(s)	if $s \in D \setminus H$,	$\forall \ s \in S.$
	$ \begin{array}{l} G(s) \\ K(s) \\ G(s) \cup K(s) \end{array} $	if $s \in H \cap D$.	

Since $G_H \stackrel{\sim}{\leftarrow} F_E$, $K_D \stackrel{\sim}{\leftarrow} F_E$, $S = H \cup D \subset E$, and G(s) and K(s) are El-subalgebras of F(s) for all $s \in H$ or $s \in D$. Since $H \cap D = \phi$, so G(s) is an El-subalgebra of F(s), $\forall s \in S$. Hence, $G_H \widetilde{\cup} K_D = R_S \stackrel{\sim}{\leftarrow} F_E$.

5. Homomorphism on Soft El-algebras:

Let ET_1 and ET_2 are two soft El-algebras, and g: $ET_1 \rightarrow ET_2$ be a map. For a soft set H_E over ET_1 , $g(H)_E$ is a soft set defined on ET_2 . Here, g(H): $E \rightarrow P(ET_2)$ be a mapping described by g(H)(e) = g(H(e)) for all $e \in E$.

Lemma 5.1: Let g: $ET_1 \rightarrow ET_2$ be a homomorphism between El-algebras ET_1 and ET_2 . If H_E is a soft El-algebra defined on ET_1 , then $g(H)_E$ is also a soft El-algebra defined on ET_2 .

Proof: Although H(e), for all $e \in E$ is an El-subalgebra of an El-algebra ET_1 and g(H)(e) = g(H(e)). Now, g be a homomorphism between El-algebras ET_1 and ET_2 . Also, we know that homomorphic image of an El-subalgebra must be an El-subalgebra. Therefore, $g(H)_E$ is a soft El-algebra defined on ET_2 .

Theorem 5.2: Let g: $ET_1 \rightarrow ET_2$ be a homomorphism between El-algebras ET_1 and ET_2 and G_E be a soft El-algebra defined on ET_1 .

(i) if G(e) = ker(g) for all $e \in E$, then $g(G)_E$ is the trivial soft El-algebra over ET₂.

(ii) if g is onto homomorphism and G_E is a whole soft El-algebra defined on ET_1 , then $g(G)_E$ is also a whole soft El-algebra defined on ET_2 .

Proof: Let ϕ_1 and ϕ_2 are the identities of El-algebras ET₁ and ET₂ respectively, and ker(g) = { $\alpha \in ET_1 | g(\alpha) = \phi_2$ }. (i) Consider that G(e) = ker(g) for all $e \in E$. But g is a homomorphism, and so ker(g) = { ϕ_1 }. Therefore g(G)(e) = g(G(e)) = g({\phi_1}) = {\phi_2} for all $e \in E$. Hence g(G)_E is the trivial soft El-algebra defined on ET₂ from Lemma 5.1 and Definition 3.04.

(ii) Assume that g is an onto homomorphism and G_E is a whole soft El-algebra over ET. Therefore, $G(e) = ET_1$ for all $e \in E$, and so $g(G)(e) = g(G(e)) = g(ET_1) = ET_2$ for all $e \in E$. Hence from lemma 5.1 and Definition 3.04, $g(G)_E$ is also a whole soft El-algebra defined on ET_2 .

Theorem 5.3: Let $g: ET_1 \rightarrow ET_2$ be a homomorphism between El-algebras ET_1 and ET_2 . Let F_E and G_H are two soft El-algebras over ET_1 . Then

$$F_E \, \widetilde{<}\, G_H \Longrightarrow g(F)_E \, \widetilde{<}\, g(G)_H.$$

Proof: Consider that $F_E \stackrel{<}{\sim} G_H$. Let $e \in E$. Then $E \subset H$ and F(e) is an El-subalgebra of G(e). Now, g is a homomorphism, so g(F)(e) = g(F(e)) is an El-subalgebra of g(G)(e) = g(G(e)). Hence, $g(F)_E \stackrel{<}{\sim} g(G)_H$.

CONCLUSION

The present paper gives some essential and compulsory propositions which provides the base to the investigation of El-algebras in soft set theory. These results can be used to study the algebraic structure of El-algebras. El-algebras has expected applications in data mining and fuzzy clustering analysis. We had examined our results through examples at length, which will be helpful in additional studies.

Volume 13, No. 2, 2022, p. 1455 - 1462 https://publishoa.com ISSN: 1309-3452

References

- [1] X. Liu, "*The fuzzy sets and systems based on AFS structure, E1 algebra and Ell algebra*", Fuzzy sets and System, 95 (1998) 179-188.
- [2] D. Molodtsov, "Soft set theory First results", Comput. Math. Appl., 37(1999), 19-31.
- [3] L.A. Zadeh, "Fuzzy sets", Inform. Control 8 (1965) 338-353.
- [4] X. Liu, "*The Fuzzy Theory Based on AFS Algebras and AFS Structure*", Journal of Mathematical Analysis and Applications, 217, 459-478 (1998).
- [5] X. Liu, "*The Topology of AFS Structure and AFS Algebras*", Journal of Mathematical Analysis and Applications, 217, 479-489 (1998).
- [6] X. Wang and X. Liu, *"The Base of Finite El Algebra"*, Proceedings of International conference on Machine Learning and Cybernetics (IEEE), 2004, DOI: 10.1109/ICMLC.2004.1382123.
- [7] P.K. Maji, A.R. Roy and R. Biswas, "An application of soft sets in a decision making problem", Comput. Math. Appl. 44 (2002) 1077-1083.
- [8] P. K. Maji, R. Biswas and A. R. Roy, "Soft set theory", Comput. Math. Appl., 45(2003), 555-562.
- [9] R. Singh and A.K. Umrao, "On Finite Order Nearness in Soft Set Theory", WSEAS TRANSACTIONS on MATHEMATICS, Volume 18, 118-122 (2019).
- [10] R. Singh and R. Chauhan, "On soft heminearness spaces", Emerging Trends in Mathematical Sciences and its Applications, <u>https://doi.org/10.1063/1.5086638</u>.
- [11] R. Singh and Y. Shekhar, "*L- Soft contiguity Spaces*", Journal of Advanced Research in Dynamical and Control Systems, ELSEVIER, 2017, 06 Sp, 1750-1764.
- [12] P. Yadav, R. Singh and K. Khurana, "A Review on soft topological spaces", PSYCHOLOGY AND EDUCATION (2020) 57(9): 1430-1442.
- [13] P. Yadav and R. Singh, "On Soft Sets based on ES Structure, El-Algebra", 5th International Conference on Information Systems and Computer Networks (ISCON 2021), IEEE proceedings, DOI: 10.1109/ISCON52037.2021.9702321.