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ABSTRACT  

In this paper, an IVP for a system of two singularly perturbed delay differential equations with Robin initial conditions is 

considered. A Shishkin piecewise uniform mesh is implemented and combined with a classical finite difference method to 

create a numerical method for solving this problem. The numerical approximations obtained are essentially first order 

convergence uniformly with respect to the singular perturbation parameters. Numerical result is provided in support of the 

theory. 
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1. Introduction: 

In this section, the initial value problem for a system of two singularly perturbed delay differential equations with Robin 

initial conditions is considered 

�⃗� �⃗� (𝑥) = 𝐸�⃗�  ′(𝑥) + 𝐴(𝑥)�⃗� (𝑥) + 𝐵(𝑥)�⃗� (𝑥 − 1) = 𝑓 (𝑥) on (0, 2]                                           (1.1) 

𝛽 �⃗� (𝑥) = �⃗� (𝑥) − 𝐸�⃗�  ′(𝑥) = 𝑙 (𝑥)  where 𝑥 ∈ Ω∗ = [−1,0],                                       (1.2) 

For all 𝑥 ∈ [0,2], �⃗� (𝑥) = (𝑢1(𝑥), 𝑢2(𝑥))
𝑇
 and 𝑓 (𝑥) = (𝑓1(𝑥), 𝑓2(𝑥))

𝑇
. 𝐸, 𝐴(𝑥) and 𝐵(𝑥) are 2 × 2 matrices. 𝐸 =

𝑑𝑖𝑎𝑔(𝜀 ), 𝜀 = (𝜀1, 𝜀2) with 0 < 𝜀1 ≤ 𝜀2 < 1, 𝐵(𝑥) = 𝑑𝑖𝑎𝑔 (�⃗� ), �⃗� = (𝑏1(𝑥), 𝑏2(𝑥)). For all 𝑥 ∈ [0,2], the components 𝑎𝑖𝑗(𝑥) 

and 𝑏𝑖(𝑥) of 𝐴(𝑥) and 𝐵(𝑥)  are expected to satisfy 

𝑏𝑖(𝑥), 𝑎𝑖𝑗(𝑥) ≤ 0 for 1 ≤ 𝑖 ≠ 𝑗 ≤ 2 and 𝑎𝑖𝑖(𝑥) > ∑ |𝑎𝑖𝑗(𝑥) + 𝑏𝑖(𝑥)|𝑖≠𝑗                     (1.3) 

and 0 < 𝛼 < 𝑚𝑖𝑛
𝑥∈[0,2]

(∑ 𝑎𝑖𝑗(𝑥) + 𝑏𝑖(𝑥)2
𝑗=1 )                                                   (1.4) 

Furthermore, the functions 𝑓𝑖(𝑥), 𝑎𝑖𝑗(𝑥), 𝑏𝑖(𝑥),≤  𝑖, 𝑗 ≤ 2 are considered to be in 𝐶2([0,2]).  

Based on the foregoing assumptions, �⃗� ∈ 𝐶2 where 𝐶 = 𝐶0([−1,2]) ∩ 𝐶1([0,2]) ∩ 𝐶2((0,1) ∪ (1,2]). The problems (1) and 

(2) can be rephrased as follows; 

�⃗� �⃗� (𝑥) = {
�⃗� 1�⃗� (𝑥) = 𝐸�⃗� ′(𝑥) + 𝐴(𝑥)�⃗� (𝑥) = 𝑔 (𝑥)  𝑜𝑛 (0,1]

�⃗� 2�⃗� (𝑥) = 𝐸�⃗� ′(𝑥) + 𝐴(𝑥)�⃗� (𝑥) + 𝐵(𝑥)�⃗� (𝑥 − 1) = 𝑔 (𝑥)  𝑜𝑛 (1,2]
               (1.5) 

where 𝑔 (𝑥) = 𝑓 (𝑥) − 𝐵(𝑥)�⃗� (𝑥 − 1) and �⃗� (0) = �⃗� (0). The reduced problem that corresponds to (1.5) is  
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{
𝐴(𝑥)�⃗� 0(𝑥) = 𝑓 (𝑥) − 𝐵(𝑥)�⃗� (𝑥 − 1) 𝑜𝑛 (0,1]

𝐴(𝑥)�⃗� 0(𝑥) + 𝐵(𝑥)�⃗� (𝑥 − 1) = 𝑓 (𝑥) 𝑜𝑛 (1,2].
 

2. Analytical Results 

Lemma 2.1 Maximum Principle 

If 𝜁  is any function in the domain of �⃗�  such that 𝛽 𝜁 (0) ≥ 0⃗ , then �⃗� 𝜁 (𝑥) ≥ 0⃗  on (0,2] implies that 𝜁 (𝑥) ≥ 0⃗  on [0, 2]. 

Proof. 

Let 𝜁𝑖∗(𝑥
∗) = min

𝑖,𝑥
𝜁𝑖(𝑥),   𝑖 = 1,2 and assume that 𝜁𝑖∗(𝑥

∗) < 0. Without loss of generality, let 𝑖∗ = 1.  By the hypothesis, 

𝑥∗ ≠ 0 and note that 𝜁1
′(𝑥∗) = 0. 

If 𝑥∗ = 0,  

                    (𝛽 𝜁 )
1
(𝑥∗) = 𝜁1(𝑥

∗) − 𝜀𝑖𝜁1
’ (𝑥∗) 

                                      < 0, a contradiction.  

∴ 𝑥∗ ≠ 0. 

Suppose 𝑥∗ ∈ Ω− = (0,1], then  

(�⃗� 𝜁 )
1
(𝑥∗) = (�⃗� 1𝜁 )1

(𝑥∗) = 𝜀1𝜁1
′(𝑥∗) + 𝑎11(𝑥

∗)𝜁1(𝑥
∗) + 𝑎12(𝑥

∗)𝜁2(𝑥
∗) 

                                               ≤ (𝑎11 + 𝑎12)(𝑥
∗)𝜁1(𝑥

∗) 

                                               < 0, 

which is a contradiction. 

Suppose 𝑥∗ ∈ Ω+ = (1,2],  

(�⃗� 𝜁 )
1
(𝑥∗) = (�⃗� 2𝜁 )1

(𝑥∗) = 𝜀1𝜁1
′(𝑥∗) + 𝑎11(𝑥

∗)𝜁1(𝑥
∗) + 𝑎12(𝑥

∗)𝜁2(𝑥
∗) + 𝑏1(𝑥

∗)𝜁1(𝑥
∗ − 1) 

                                               ≤ (𝑎11 + 𝑎12)(𝑥
∗)𝜁1(𝑥

∗) + 𝑏1(𝑥
∗)𝜁1(𝑥

∗) 

                                              < 0, 

which is a contradiction. As a result, the inference is incorrect. Therefore, 𝜁𝑖∗(𝑥
∗) ≥ 0, which establishes the lemma. 

As a direct result of the above lemma, the stability result is defined as follows. 

Lemma 2.2 Let 𝜁  is any function in the domain of �⃗� , such that for each 𝑥 ∈ [0,2], then for each 𝑖, 1 ≤ 𝑖 ≤ 2,  

                                     |𝜁 (𝑥)| ≤ 𝐶 𝑚𝑎𝑥 {‖𝛽 𝜁 (0)‖,
1

𝛼
‖�⃗� 𝜁 ‖}.        

Proof. 

       Consider the barrier functions 

Ʌ⃗⃗ ±(𝑥) = 𝐶𝑀 ± 𝜁  

where 𝑀 = 𝑚𝑎𝑥 {‖𝛽 𝜁 (0)‖,
1

𝛼
‖�⃗� 𝜁 ‖} . Then it  is not difficult to verify that 𝛽  Ʌ⃗⃗ ±(0) ≥ 0⃗  and �⃗�  Ʌ⃗⃗ ±(𝑥) ≥ 0⃗  on 𝛺. 

From lemma (2.1), it follows that  
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Ʌ⃗⃗ ±(𝑥) ≥ 0⃗  on 𝛺. 

Hence |𝜁 (𝑥)| ≤ 𝐶 𝑚𝑎𝑥 {‖𝛽 𝜁 (0)‖,
1

𝛼
‖�⃗� 𝜁 ‖}. 

Lemma 2.3 Let �⃗�  be the solution of (1.1), (1.2). Then, there exists a constant C such that for each 𝑖 = 1,2, 𝑥 ∈ (0, 2], we 

have 

                                                         |𝑢𝑖(𝑥)| ≤ 𝐶{‖𝑙 ‖ + ‖𝑓 ‖} 

|𝑢𝑖
′(𝑥)| ≤ 𝐶𝜀𝑖

−1{‖𝑙 ‖ + ‖𝑓 ‖} 

           |𝑢𝑖
"(𝑥)| ≤ 𝐶𝜀𝑖

−2{‖𝑙 ‖ + ‖𝑓 ‖ + ‖𝑓 ′‖} 

Proof. The proof is analogous to [9] 

3. Bounds on the solution and its derivatives 

The decomposition of  �⃗�  by Shishkin is given by �⃗� = 𝑣 + �⃗⃗� , where 𝑣 = (𝑣1, 𝑣2)
𝑇 is the solution of  

�⃗� 1𝑣 (𝑥) = 𝐸𝑣 ′(𝑥) + 𝐴(𝑥)𝑣 (𝑥) = 𝑔 (𝑥) 𝑜𝑛 (0,1]                               (1.6) 

�⃗� 2𝑣 (𝑥) = 𝐸𝑣 ′(𝑥) + 𝐴(𝑥)𝑣 (𝑥) + 𝐵(𝑥)𝑣 (𝑥 − 1) = 𝑓 (𝑥) 𝑜𝑛 (1,2]                               (1.7) 

with 𝛽 𝑣 (0) = �⃗� 0(0) − 𝐸�⃗� 0
′ (0) and �⃗⃗� = (𝑤1, 𝑤2)

𝑇 satisfies �⃗� 1�⃗⃗� (𝑥) = 0⃗  for 𝑥 ∈ (0,1] and �⃗� 2�⃗⃗� (𝑥) = 0⃗  for 𝑥 ∈ (1,2] with 

𝛽 �⃗⃗� (0) = 𝛽 (�⃗� (0) − 𝑣 (0)). Here, 𝑣  and �⃗⃗� , are called the smooth   and the singular component of �⃗� . 

 

 

Lemma 2.4 

For 𝑖 = 1,2 there exists a constant 𝐶 such that ||𝑣𝑖
(𝑘)

|| ≤ 𝐶 for 𝑘 = 0,1 and ||𝑣𝑖
′′|| ≤ 𝐶𝜀𝑖

−1. 

Proof. The proof is analogous to [7]. 

The solution components 𝑢𝑖 , 𝑖 = 1,2 have exponential layers represented by 𝑒𝛼𝑥/𝜀𝑖 and 𝑒𝛼(𝑥−1)/𝜀𝑖 . The following layer 

functions are defined as 

𝔅𝑝,𝑖(𝑥) = 𝑒−(𝑥−𝑝)𝛼/𝜀𝑖 , 𝑝 = 0,1; 𝑖 = 1,2  𝑜𝑛 [0,2]. 

The bounds on the singular component �⃗⃗� , in terms of these layer functions, are contained in the following lemma. 

Lemma 3.2. Let 𝐴(𝑥), 𝐵(𝑥) satisfies (1.3) and (1.4). Then there exist a constant C, such that for each 𝑥 ∈ [0,1), 

|𝑤𝑖(𝑥)| ≤ 𝐶𝔅0,2(𝑥), 

|𝑤𝑖
′(𝑥)| ≤ 𝐶 ∑

𝔅0,𝑞(𝑥)

𝜀𝑞

2

𝑞=1

 

|𝜀𝑖𝑤𝑖
′′(𝑥)| ≤ 𝐶 ∑

𝔅0,𝑞(𝑥)

𝜀𝑞

2

𝑞=1
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and for 𝑥 ∈ [1,2] 

|𝑤𝑖(𝑥)| ≤ 𝐶𝔅1,2(𝑥), 

|𝑤𝑖
′(𝑥)| ≤ 𝐶 ∑

𝔅1,𝑞(𝑥)

𝜀𝑞

2

𝑞=1

 

|𝜀𝑖𝑤𝑖
′′(𝑥)| ≤ 𝐶 ∑

𝔅1,𝑞(𝑥)

𝜀𝑞

2

𝑞=1

 

Lemma 3.4.  

Suppose that 𝜀2 ∈ (2𝜀1, 2𝛼). Then, the functions are 

𝑤1,1(𝑥), 𝑤1,2(𝑥), 𝑤2,1(𝑥), 𝑤2,2(𝑥) 

such that  

𝑤1(𝑥) = 𝑤1,1(𝑥) + 𝑤1,2(𝑥), 𝑤2(𝑥) = 𝑤2,1(𝑥) + 𝑤2,2(𝑥) 

and  

|𝑤1,1
′ (𝑥)| ≤ 𝐶𝜀1

−1𝔅0,1(𝑥), |𝑤1,2
′ (𝑥)| ≤ 𝐶𝜀1

−1𝜀2
−1𝔅0,2(𝑥) 

|𝑤2,1
′ (𝑥)| ≤ 𝐶𝜀2

−1𝔅0,1(𝑥), |𝑤2,2
′ (𝑥)| ≤ 𝐶𝜀2

−1𝔅0,2(𝑥), 𝑥 ∈ [0,1] 

and  

|𝑤1,1
′ (𝑥)| ≤ 𝐶𝜀1

−1𝔅1,1(𝑥), |𝑤1,2
′ (𝑥)| ≤ 𝐶𝜀1

−1𝜀2
−1𝔅1,2(𝑥) 

|𝑤2,1
′ (𝑥)| ≤ 𝐶𝜀2

−1𝔅1,1(𝑥), |𝑤2,2
′ (𝑥)| ≤ 𝐶𝜀2

−1𝔅1,2(𝑥), 𝑥 ∈ [1,2] 

4. The Shishkin mesh 

A piecewise uniform Shishkin mesh 𝛺
𝑁

= 𝛺
−𝑁

∪ 𝛺
+𝑁

  where 𝛺
−𝑁

= {𝑥𝑗}0
𝑁/2

 and 𝛺
+𝑁

= {𝑥𝑗}𝑁

2
+1

𝑁
 with N mesh intervals is 

now constructed on 𝛺 = [0,2] as follows for the case 𝜀1 < 𝜀2. In the case 𝜀1 = 𝜀2 𝑎 simpler construction requiring just one 

parameter 𝜏 suffices. The interval [0, 1] is subdivided into 3 subintervals, [0, 𝜏1] ∪ (𝜏1, 𝜏2] ∪ (𝜏2, 1]. The parameters 𝜏𝑟 , 𝑟 =

1,2 The points dividing the uniform meshes are determined by 

𝜏2 = 𝑚𝑖𝑛 {
1

2
,
𝜀2

𝛼
𝑙𝑛 𝑁}                                                           (4.1) 

and  

                                                          𝜏1 = 𝑚𝑖𝑛 {
𝜏2

2
,
𝜀1

𝛼
𝑙𝑛 𝑁}                                                           (4.2) 

Clearly 0 < 𝜏1 < 𝜏2 ≤
1

2
 

Then on the subinterval (𝜏2, 1] a uniform mesh with 
𝑁

4
 mesh points is placed and on each of the subintervals (0, 𝜏1] and 

(𝜏1, 𝜏2], a uniform mesh of 
𝑁

8
 mesh points is placed. Similarly, the interval [1,2] is also divided into 3 subintervals [1,1 + 𝜏1),
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(1 + 𝜏1, 1 + 𝜏2], (1 + 𝜏2, 2] having the same number of mesh intervals as in the interval [0, 𝜏1] ∪ (𝜏1, 𝜏2] ∪ (𝜏2, 1] 

respectively. 

Note that, when both the parameters 𝜏𝑟 , 𝑟 = 1,2, take on their hand value, the Shishkin mesh becomes a classical uniform 

mesh on [0,2]. This construction leads to a class of eight possible Shishkin piecewise uniform meshes 𝑀�⃗�  where �⃗� = (𝑏1, 𝑏2) 

with 𝑏𝑖 = 0 if 𝜏𝑖 =
𝜏𝑖+1

2
 and 𝑏𝑖 = 1 otherwise. 

5. The Discrete Problem 

The backward Euler technique is applied to the Piecewise uniform fitted mesh 𝛺
𝑁

to discretize the initial value problem (1.1), 

(1.2). The discrete problem is as follows:  

�⃗� 𝑁 �⃗⃗� (𝑥𝑗) = 𝐸𝐷−�⃗⃗� (𝑥𝑗) + 𝐴(𝑥𝑗)�⃗⃗� (𝑥𝑗) + 𝐵(𝑥𝑗)�⃗⃗� (𝑥𝑗 − 1) = 𝑓 (𝑥𝑗), 𝑥𝑗 ∈ Ω𝑁                 (5.1) 

𝛽 𝑁�⃗⃗� (𝑥𝑗) = �⃗⃗� (𝑥𝑗) − 𝐸𝐷+�⃗⃗� (𝑥𝑗), 𝑥𝑗 ∈ Ω∗𝑁 ,                                                  (5.2)                                  

where 𝐷−�⃗⃗� (𝑥𝑗) =
�⃗⃗� (𝑥𝑗)−�⃗⃗� (𝑥𝑗−1)

𝑥𝑗−𝑥𝑗−1
,   𝐷+�⃗⃗� (𝑥𝑗) =

�⃗⃗� (𝑥𝑗+1)−�⃗⃗� (𝑥𝑗)

𝑥𝑗+1−𝑥𝑗
,                  𝑗 = 1,2. . . , 𝑁  

The problem (5.1) - (5.2) can be rephrased as follows. 

{
(�⃗� 1

𝑁
�⃗⃗� ) (𝑥𝑗) = 𝐸𝐷−�⃗⃗� (𝑥𝑗) + 𝐴(𝑥𝑗)�⃗⃗� (𝑥𝑗) = 𝑓 (𝑥𝑗) − 𝐵(𝑥𝑗)�⃗� (𝑥𝑗 − 1),   𝑥𝑗 ∈ Ω−𝑁 

(�⃗� 2
𝑁
�⃗⃗� ) (𝑥𝑗) = 𝐸𝐷−�⃗⃗� (𝑥𝑗) + 𝐴(𝑥𝑗)�⃗⃗� (𝑥𝑗) + 𝐵(𝑥𝑗)�⃗⃗� (𝑥𝑗 − 1) = 𝑓 (𝑥𝑗),   𝑥𝑗 ∈ Ω+𝑁

          (5.3) 

with       𝛽 𝑁�⃗⃗� (𝑥𝑗) = �⃗⃗� (𝑥𝑗) − 𝐸𝐷+�⃗⃗� (𝑥𝑗) = 𝑙 (𝑥𝑗), 𝑥𝑗 ∈ Ω∗𝑁. 

Lemma 5.1 If �⃗� (𝒙𝒋) is any mesh function such that �⃗⃗�  ϒ⃗⃗ (𝟎) ≥ �⃗⃗�  and �⃗⃗� 𝑵 ϒ⃗⃗ (𝒙𝒋) ≥ �⃗⃗�  for 1 ≤ 𝑘 ≤ 𝑁, then ϒ⃗⃗ (𝑥𝑗) ≥ 0⃗  for all 

0 ≤ 𝑗 ≤ 𝑁.  

Proof. 

Let 𝑖∗, 𝑘 be such that ϒ𝒊∗(𝑥𝑘) = 𝑚𝑖𝑛
𝑖,𝑗

{ϒ𝒊(𝑥𝑗)}, 𝑓𝑜𝑟 0 ≤ 𝑗 ≤ 𝑁. 

If 𝑥𝑘 = 0, 

(𝛽  𝑁 ϒ⃗⃗ )
𝑖∗
(0) = ϒ𝒊∗(𝑥𝑘) − 𝜀𝑖∗𝐷

+ϒ𝒊∗(𝑥𝑘) 

= ϒ𝒊∗(𝑥𝑘) − 𝜀𝑖∗ (
ϒ𝑖∗(𝑥𝑘+1) − ϒ𝑖∗(𝑥𝑘)

ℎ𝑘+1

) < 0, 

< 0 

which is a contradiction. 

Suppose 𝑗∗ ∈ 𝛺−𝑁 

(�⃗� 𝑁 ϒ⃗⃗ )
𝑖∗
(𝑥𝑘) =(�⃗� 1

𝑁
ϒ⃗⃗ )

𝑖∗
(𝑥𝑘) = 𝜀𝑖∗𝐷

−ϒ𝒊∗(𝑥𝑘) + ∑ 𝑎𝑖∗𝑗
2
𝑗=1 (𝑥𝑘)ϒ𝑗(𝑥𝑘) 

= 𝜀𝑖∗𝐷
−ϒ𝒊∗(𝑥𝑘) + ∑𝑎𝑖∗𝑗

2

𝑗=1

(𝑥𝑘)ϒ𝑖∗(𝑥𝑘)         
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which is false and for 𝑥𝑘 ∈ Ω+𝑁
 

(�⃗� 𝑁 ϒ⃗⃗ )
𝑖∗
(𝑥𝑘) =(�⃗� 2

𝑁
ϒ⃗⃗ )

𝑖∗
(𝑥𝑘) = 𝜀𝑖∗𝐷

−ϒ𝒊∗(𝑥𝑘) + ∑ 𝑎𝑖∗𝑗
2
𝑗=1 (𝑥𝑘)ϒ𝑗(𝑥𝑘) + 𝑏𝑖∗ 

                            =  𝜀𝑖∗𝐷
−ϒ𝒊∗(𝑥𝑘) + ∑𝑎𝑖∗𝑗

2

𝑗=1

(𝑥𝑘)ϒ𝑗(𝑥𝑘) + 𝑏𝑖∗(𝑥𝑘)ϒ𝑗(𝑥𝑘 − 1) < 0, 

which contradicts the given statement and proves the lemma. 

Lemma 5.2(Stability result) 

Let �⃗�  be any vector-valued function in the domain of �⃗� 𝑁 . Then  

                              ‖�⃗� (𝑥𝑗)‖ ≤ 𝑚𝑎𝑥 {‖𝛽 𝑁�⃗� (0)‖,
1

𝛼
‖�⃗� 𝑁�⃗� (𝑥𝑗)‖𝑥𝑗∈Ω𝑁}. 

6. The Local Truncation Error 

From the discrete stability result, it is seen that in order to bound the error �⃗⃗� − �⃗� , it suffices to bound �⃗� 𝑁(�⃗⃗� − �⃗� ). Notice that, 

for 𝑥𝑗 ∈ 𝛺𝑁,  

�⃗� 𝑁(�⃗� (𝑥𝑗) − �⃗⃗� (𝑥𝑗)) = �⃗� 𝑁�⃗� (𝑥𝑗) − �⃗� 𝑁 �⃗⃗� (𝑥𝑗) 

                            = (�⃗� − �⃗� 𝑁)�⃗� (𝑥𝑗) 

and  

(�⃗� − �⃗� 𝑁)�⃗� (𝑥𝑗) = 𝜀𝑖(𝐷
− − 𝐷)𝑣𝑖(𝑥𝑗) + 𝜀𝑖(𝐷

− − 𝐷)𝑤𝑖(𝑥𝑗) 

which is the local truncation of the first derivative. Then, by the triangle inequality, 

|(�⃗� − �⃗� 𝑁)�⃗� (𝑥𝑗)| ≤ |𝜀𝑖(𝐷
− − 𝐷)𝑣𝑖(𝑥𝑗)| + |𝜀𝑖(𝐷

− − 𝐷)𝑤𝑖(𝑥𝑗)| 

The proof is similar to [9] 

In the same way as the continuous case, the discrete solution �⃗⃗�  can be split into �⃗�  and �⃗⃗⃗�  which are defined as the solutions 

to the discrete problems listed below 

       (�⃗� 1
𝑁
�⃗� ) (𝑥𝑗

∗) = 𝐸𝐷−�⃗� (𝑥𝑗) + 𝐴(𝑥𝑗)�⃗� (𝑥𝑗) = 𝑓 (𝑥𝑗) − 𝐵(𝑥𝑗)�⃗� (𝑥𝑗 − 1),        𝑥𝑗 ∈ 𝛺−𝑁 (6.1) 

        (�⃗� 2
𝑁
�⃗� ) (𝑥𝑗

∗) = 𝐸𝐷−�⃗� (𝑥𝑗) + 𝐴(𝑥𝑗)�⃗� (𝑥𝑗) + 𝐵(𝑥𝑗)�⃗� (𝑥𝑗 − 1) = 𝑓 (𝑥𝑗),  𝑥𝑗 ∈ Ω+𝑁    (6.2) 

                                 𝛽 𝑁�⃗� (𝑥𝑗) = 𝛽 𝑁𝑣 (𝑥𝑗) 

 and  

(�⃗� 1
𝑁
�⃗⃗⃗� ) (𝑥𝑗) = 0, 𝑥𝑗 ∈ 𝛺−𝑁 

(�⃗� 2
𝑁
�⃗⃗⃗� ) (𝑥𝑗) = 0, 𝑥𝑗 ∈ 𝛺+𝑁 
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                                                            𝛽 𝑁�⃗⃗⃗� (𝑥𝑗) = 𝛽 𝑁�⃗⃗� (𝑥𝑗) 

The error at each point 𝑥𝑗 ∈ 𝛺
𝑁

is denoted by �⃗⃗� (𝑥𝑗) − �⃗� (𝑥𝑗). Then the local truncation error �⃗� 𝑁𝑒 (𝑥𝑗) has the decomposition 

�⃗� 𝑁𝑒 (𝑥𝑗) = �⃗� 𝑁(�⃗� − 𝑣 )(𝑥𝑗) + �⃗� 𝑁(�⃗⃗⃗� − �⃗⃗� )(𝑥𝑗). It is to be noted that for any smooth function 𝜎, the following two distinct 

estimates of the local truncation of its first derivative hold. 

                                |(𝐷− − 𝐷)𝜎 (𝑥𝑗)| ≤ 2𝑚𝑎𝑥
𝑠∈𝐼𝑗

|𝜎 ′(𝑠)|                                                (6.3) 

& 

                               |(𝐷− − 𝐷)𝜎 (𝑥𝑗)| ≤
ℎ𝑗

2
𝑚𝑎𝑥
𝑠∈𝐼𝑗

|𝜎 ′′(𝑠)|                                              (6.4)    

where 𝐼𝑗 = 𝑥𝑗 − 𝑥𝑗−1           

7. Error estimate 

Theorem 6.1  

Let 𝑣  denote the smooth component of the solution of the problem (1.1), (1.2) and 𝑉denote the smooth component of the 

solution of the problem (5.1), (5.2). Then  

                                                           |�⃗� 𝑁(�⃗� − 𝑣 )(𝑥𝑗)| ≤ 𝐶𝑁−1. 

Theorem 6.2 Let �⃗⃗�  denote the singular component of the solution of the problem (1.1), (1.2) and �⃗⃗⃗� denote the singular 

component of the solution of the problem (5.1), (5.2). Then  

                                                          |�⃗� 𝑁(�⃗⃗⃗� − �⃗⃗� )(𝑥𝑗)| ≤ 𝐶𝑁−1 𝑙𝑛 𝑁 

Theorem 6.3 Let �⃗�  denote the singular component of the solution of the problem (1.1), (1.2) and �⃗⃗� denote the singular 

component of the solution of the problem (5.1), (5.2). Then  

                                                          ‖�⃗⃗� (𝑥𝑗) − �⃗� (𝑥𝑗)‖ ≤ 𝐶𝑁−1 𝑙𝑛 𝑁. 

Proof. It is clear that, in order to prove the above theorem it suffices to prove that                                                           

‖(�⃗� 𝑁(�⃗⃗� − �⃗� ))‖ ≤ 𝐶𝑁−1 𝑙𝑛 𝑁. But ‖(�⃗� 𝑁(�⃗⃗� − �⃗� ))‖ ≤ ‖(�⃗� 𝑁(�⃗� − 𝑣 ))‖ + ‖(�⃗� 𝑁(�⃗⃗⃗� − �⃗⃗� ))‖. Hence using theorem (6.1) and 

(6.2), the above result is derived. 

The numerical method proposed above is illustrated through an example presented in this section. 

Example 1. Consider the initial value problem 

 

𝐸�⃗� ′(𝑥) + 𝐴(𝑥)�⃗� (𝑥) = 𝑔 (𝑥)     ∀𝑥 ∈ (0,1] 

𝐸�⃗� ′(𝑥) + 𝐴(𝑥)�⃗� (𝑥) + 𝐵(𝑥)�⃗� (𝑥 − 1) = 𝑓 (𝑥)     ∀𝑥 ∈ (1,2] 

with  

−𝑢1(0) − 𝜀𝑢1
′ (0) = 1 

𝑢2(0) − 𝜀𝑢2
′ (0) = 1. 

Where 𝐴(𝑥) = (
3 + 𝑥 −1
−1 5 + 𝑥

) , 𝐵(𝑥) = 𝑑𝑖𝑎𝑔(−1,−1), 𝑓 (𝑥) = (1,1)𝑇 , 𝑔 (𝑥) = (3,1)𝑇 , 𝐸 = 𝑑𝑖𝑎𝑔(𝜀1, 𝜀2) 

The numerical solution obtained by applying the fitted mesh method (6.1) and (6.2) to the Example is shown in Figure 1. The 

order of convergence and the error constant are calculated and are presented in Table 1. 
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TABLE I 

Values of 𝐷𝜀
𝑁 , 𝐷𝑁 , 𝑝𝑁 , 𝑝∗ and 𝐶𝑝∗

𝑁  generated for the example 

 

𝜼 
Number of mesh points 

64 128 256 512 

0.100E+01 0.312E-01 0.195E-01 0.111E-01 0.591E-02 

0.125E+00 0.427E-01 0.367E-01 0.278E-01 0.189E-01 

0.156E-01 0.434E-01 0.374E-01 0.284E-01 0.194E-01 

0.195E-02 0.435E-01 0.375E-01 0.285E-01 0.194E-01 

0.244E-03 0.435E-01 0.375E-01 0.285E-01 0.194E-01 

𝐷𝑁 0.435E-01 0.375E-01 0.285E-01 0.194E-01 

𝑝𝑁 0.215E+00 0.396E+00 0.552E+00  

𝐶𝑝
𝑁 0.768E+00 0.768E+00 0.678E+00 0.537E+00 

The Order of Convergence =  0.2150E+00 

The Error Constant =   0.7684E+00 
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