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ABSTRACT 

 

The emergence of neural networking designs with great performance in computer tasks which are vision-related has sparked 

interest in radiology artificial intelligence (AI). Radiologists could get advantage from a greater understanding the principles 

of AI as AI-based software systems become more incorporated into the clinical workflow. Machine learning (ML) is 

becoming increasingly popular in the domains of medical imaging, radiomics, and medical image analysis. Deep learning is a 

sort of machine learning that originated in the field of computer vision and has since expanded in popularity across a wide-

aspect range of sectors. Deep learning has demonstrated outstanding performance in a variety of fields, including picture 

classification, object detection, and segmentation. This work gives an overall overview of recent achievements in this area by 

surveying deep learning architectures and DL approaches used to diagnose disease based on medical images. 
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1. Introduction 

CNN (Deep Convolutional Neural Networks) is a kind of neural networking which has won multiple competitions in the 

fields of computer vision and processing images. Image categorization and segmentation, object identification, processing the 

video, natural language processing, and the recognition of speech are a few of CNN's interesting application domains. In the 

field of medical imaging, this technology has sparked an interest. Preliminary research has shown encouraging findings, with 

comparable performance in various detecting tasks to that of qualified radiologists.[1] 

Shallow networks, which have only one input and output layer and no more than one hidden layer between them, are used in 

traditional machine learning. It is classified as deep learning when a network has more than three levels, including input and 

output layers. As a result, as the number of hidden layers grows, the network becomes more complex. 

The Convolutional Neural Network (CNN) is one of the most important deep learning algorithms, and this study reviews the 

general concepts of neural network construction and its applications to radiologic image processing.[2] 

2. Basic CNN components 

Kunihiko Fukushima was the first to present CNN[3]. A typical CNN architecture consists of convolution and pooling layers 

alternated within one single or more fully linked layers at the end. A completely connected layer can be substituted with a 

global average pooling layer in some instances. To optimize CNN performance, many controlling units like batch 

normalization and dropout are implemented in addition to different mapping functions. To create novel architectures and 

achieve improved performance, the arrangement of CNN components is critical. 

 

2.1. Convolutional layer 

The output of linked inputs in the receptive field is determined by such layer, which is the main construction element of a 

convolutional neural networking[4]. Kernels are combined along the height and width of the information[5, and the dot 

product between input and filter values is computed. As a result, a 2-D activation map for that filter is generated. Once a 

given type of feature is seen at a particular geographical place in the input, CNN quickly learns which filters to activate. 
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2.2. Pooling layer 

The outputs of a neuron in single layer can be combined with the outputs of an only one neuron in the following layer using 

local or global subsampling layers in CNN.[6]. Its major goal is to reduce the number of parameters and calculations in the 

model by scaling down the spatial size of the representation[7, 8]. It not only makes the calculations go faster, but it also 

prevents overfitting. Max pooling is the most prevalent type of pooling layer. 

2.3. Entirely interconnected layer 

The layers of FC could be normal deep NN layers that seek to generate classification or regression predictions from 

activations[9]. It functions similarly to a multiplelayer perceptron neural system (MLP). Such a layer collects all of the 

interconnections to each single activation in the preceding layer, where such activations are into calculation by employing 

matrix multiplication and a bias counterbalance[10]. 

 
Fig (1): Basic CNN architecture 

 

3. Advantages and limitations of CNN 

Some of the advantages of using CNNs in the computer vision environment over other types of neural networks are as 

follows: 

1. The weight sharing aspect, minimizing the amount of trainable networking parameters and so allows the networking to 

gain generality while avoiding over-fitting, is the main reason to choose CNN. 

2. The aspect of extraction layers and the layer of classification must be learned at the same time resulting in a well-organized 

model output that is dependent on the extracted features. 

3. When compared to other neural networks, CNN simplifies the establishment of large-scale networks.[11] 

The limitations are: 

1. Due to the enormous dimensionality of input data, training has a very high computational cost. 

2. the vast amount of training photos required.[12]  

 

4. CNN models 

Various advancements in the CNN model have been realized since 1989[2, 13]. These breakthroughs include parameter 

optimization, structural reformulation, regularization, and other enhancements. However, it appears that the essential driver 

of CNN performance increase was the reorganization of processing units and the creation of novel blocks. The majority of 

CNN architectural developments have focused on depth and spatial exploitation. Such kind of  exploitation, multiple-path, 

exploitation of feature-map, depth, width, and attention-based CNNs are the six categories of CNNs depending on the types 

of architectural changes utilized. 
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Figure (2) depicts the taxonomy of CNN architectures graphically. The architectural elements of up-to-date CNN 

architectures, settings, and performance regarding the datasets of benchmark are summarized in Table (1). 

 

 
 

Fig (2): CNN Taxonomy 

 

 

4.1. Spatial Exploitation based CNN 

Weights, biases,  processing units (neurons), total of layers, filter size, function of activation, progress, rate of learning, and 

other parameters and hyper-parameters abound in CNNs.[14, 15]. Because convolutional procedures assess the proximity 

(locality) of input pixels, different filter sizes may be used to analyze different levels of correlation. Filters of various sizes 

encompass various levels of granularity; characteristically, small-size filters extract good data while large-size filters retrieve 

poorly graded data. As a result, in the early 2000s, researchers used spatial filters for increasing performance and investigated 

the relationship between a spatial filter and network learning. Various studies from the period revealed that by adjusting the 

filters, CNN may conduct well on all of the coarse and good details. 
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4.1.1. LeNet  

Yann LeCun dubbed it LeNet-5 after a prior successful iteration[16]. The LeNet architecture was mostly utilized for 

character recognition jobs like scanning zip codes and numerals, among other things.[17]. The image LeNet input is 32 × 32 

× 1 (image by grayscale), that is passed via the convolution layers and afterwards the sub-sampling one. Then there's a 

pooling layer, which is followed by another set of convolution layers. Finally, there are three layers of FC, with the output 

layer being one of them. The primary purpose of architecture in post offices was to recognize the patterns of handwritten digit 

and postal code identification. It makes use of a 5 5filter with a stride of one.[18] 

 

 

Fig (3): The architecture of LeNet 

4.1.2. AlexNet  

is among the most important deep CNNs, having won the 2012 ILSVRC competition[19]. The comparable architecture is 

more complex, with eight layers in total, five of which are convolutional and three of which are fully linked. AlexNet's 

effective contribution is based on several design and training features. 

First, it included the Rectified Linear Unit (ReLU) non-linearity, which assisted in overcoming the vanishing gradient 

problem and accelerated training. AlexNet also includes a dropout stage, which involves setting a predetermined percentage 

of layer parameters to zero. To reduce the impact of overfitting, this approach reduces learning parameters and modulates 

neuron correlation. 

Third, when momentum builds, the training process accelerates, and the conditional learning rate decreases (e.g. when 

learning stagnates). Finally, the number of training data is artificially enhanced by producing versions of the original images 

that are randomly displaced. As a result, the usage of invariant data representations improves network learning.[20] 

 

 

Fig (4): The architecture of AlexNet 
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4.1.3. ZFNet.  

Matthew and Rob Fergus proposed it.[21]. The ZFNet was the name given to it. It was better than AlexNet because the 

architecture hyper-parameters were tweaked, especially the size of the intermediate convolutional layers, and the filter size 

and stride on the first layer were reduced.[17] 

 

 

Fig (5): The architecture of ZefNet 

4.1.4. VGGNet. 

VGG group, Oxford was the runner-up in the ILSVRC 2014 competition.[22] It contains 19 layers in total, which is an 

improvement over AlexNet. Its key contribution was to demonstrate that network depth, or the number of layers is an 

important factor in optimal performance. Even though VGGNet achieves fantastic accuracy on the ImageNet dataset, its 

deployment on even the smallest Graphics Processing Units (GPUs) is difficulty due to massive computing needs in terms of 

memory and time. Due to the huge breadth of the convolutional layers, it becomes inefficient.[17] 

 

Fig (6): The architecture of VGG 

4.1.5. GoogLeNet. 

On the ImageNet classification challenge ILSVRC14, GoogleNet achieves the best results.[23]. The increased usage of 

computer resources in the model is the primary indicator of this model. This is performed using the "inception module," a 

building element that takes into consideration the model's increased depth and width. This is single kind of first CNN 

architectures that diverge out of the conventional practice of heaping convolution and pooling layers in sequential order. This 

network has 22 layers of depth and is substantially quicker than VGG.[18] 

 
Fig (7): The basic structure of Google Block 
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4.2. Depth-basedCNN 

DeepCNN architectures could be centered upon the premise that as the network's depth grows, the more nonlinear mappings 

and upgraded feature hierarchies it will be able to best mimic the goal function.[24] The network depth has been linked to the 

effectiveness of supervised training. According to theoretical studies[25]. Deep networking can convey particular kinds of 

function more effective than superficial structures. Csáji developed a global approximation proposition in 2001, claiming that 

any function may be estimated using only one unseen layer. This, however, is at the cost of an ever-increasing total of 

neurons, computationally rendering it unfeasible [26]. In this regard, Bengio proposes that the more deep networking could 

conserve the communicative power of networking at a lower cost.[27, 28] . is a phrase that can be used to describe a 

situation. As established by Bengio et al. in 2013[24, 29]. deep networks are computationally more efficient for demanding 

jobs. The winners of the 2014-ILSVRC competition, Inception and VGG, confirm the concept that network depth is an 

essential element in regulating learning ability.[22, 23]. 

 

 

4.2.1.  ResNet 

ResNet [30] is a 152-layer model that combines categorization, localization, and detection into a single spectacular model. 

Recognize skip interconnections are started. Thus, The inputs of one layer can be copied to the next layer, which overcomes 

the challenge of training a deep model. This technique is based on the idea that the following layer must learn things fresh 

and unique from the previous input. ResNet reduces top-1 error by 3.5 percent. 

 
Fig (8): The block diagram for ResNet 

4.2.2. Inception V3/V4 

The goal of Inception-V3 was to reduce computing costs while maintaining deeper network generalization by using 

asymmetric filters of small-size (1 × 5 and 1×7) instead of filters of large-size (7 ×7 and 5 ×5); also, they implemented a 

bottleneck of 1×1 convolution before the filters of large-size. The operation of classic convolution is now extremely similar 

to cross-channel correlation as a result of these improvements. The input data is divided into three or four spaceswhich are 

isolated that are tinier than the original input areas using Inception-V3 using the 1 ×1 convolutional technique. Then, using 

conventional 5 ×5 or 3 ×3 convolutions, all of these correlations are diagramed onto these tiny areas. In Inception, replace 

The inception block and residual learning power are brought together by the filter concatenation with the residual connection. 

 

4.2.3. Highway Network 

Raising networking depth improves performance, especially for complex jobs. The network training, on the other hand, 

becomes harder. In deeper networks, the presence of multiple layers may lead to tiny gradient values of back-propagation 
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error at lower levels. To address this issue, in 2015 proposed a unique CNN design dubbed Highway Network[31]. This 

strategy is built on the concept of cross-connectivity. Highway Network enables unrestricted information flow by directing 2 

gating units within the layer. The information aggregation was accomplished by combining data from the previous k layers 

with data from the following k levels, resulting in a regularization effect that simplifies the deeper network's gradient-based 

training. 

 

4.3 . Multi-Path CNNs 

Deep network training is a difficult undertaking, and it has been the focus of contemporary deep network research. Deep 

CNNs excel at a wide range of tasks. They could, nonetheless, have performance deterioration, gradient disappearance, or 

explosion concerns as a result of a depth increase rather than overfitting. The fading gradient issue causes a higher test error 

and a larger training error. The multi-path idea was created to aid in the training of deep neural networks. Multiple shortcut 

connections or paths can be used to link one layer to another in a logical sequence, skipping certain intermediary levels to 

allow specialized data to travel between them. [32, 33]. The network is divided into multiple blocks via cross-layer 

connectivity. These pathways also attempt to tackle the disappearing gradient problem by allowing lower layers to see the 

gradient. Different forms of shortcut interconnections, like zero-padded, dropout, projection-based, and 1x1 interconnections, 

are employed for this purpose. 

4.3.1. DenseNet 

To solve the vanishing gradient problem, DenseNet was developed, and it followed the same route as ResNet and the 

Highway networking. [34, 35]. Visibly conserving information through preserving individual changes is one of the ResNet 

problems, even though numerous layers provide very little or no data. 

Furthermore, because each layer has its own set of weights, ResNet contains a great number of them. In an improved way of 

addressing such an issue, DenseNet employed cross-layer connectivity. It used a feed-forward strategy to connect everysingle 

layer to all other layers in the networking. As a result, the feature maps from each preceding layer had been used as input into 

the layers that followed. 

 
Fig (9): The architecture of DenseNet Network 

 

4.3.2. High‑resolution network (HRNet) 

Position-sensitive vision processes like semantic segmentation, object recognition, and human posture prediction involve 

high representations. In today's frameworks, the picture input is encrypted as a depiction with a poor resolution employing a 

VGGNet or ResNet subnetwork, which is made up of an interconnected series of high-to-low quality convolutions. After that, 

the low-resolution image is retrieved and transformed to a high-resolution image. A High-Resolution Network, on the other 

hand, is utilized to retain high-resolution representations throughout the entire process.[36, 37] . Such a network includes two 

distinct properties. Firstly, the series of convolution from high to low resolution are joined in parallel. Secondly, data is sent 

back and forth between resolutions on a regular basis. The benefit achieved is a more precise representation in the locative 
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field and a more semantically rich representation in the semantic field. Human posture prediction, object identification, and 

semantic segmentation are all applications of HRNet., the HRNet is a more strong backbone for computer vision challenges. 

 

 
Fig (10): The HRNet general architecture 

 

4.4. Width based Multi-Connection CNNs 

Using the potential of depth, as well as the efficacy of multipass interconnections with several passes in network 

regularization, was a major focus from 2012 to 2015. On the other side, the network's width is critical. Perceptron with many 

layers compared to perceptron, got the benefit of mapping complicated functions [38]. By using numerous processing units in 

parallel within a layer. This demonstrates that, like depth, width is critical in the development of learning principles NNs with 

ReLU activation functions, as recently established, must be broad enough to preserve universal approximation during 

deepening. Additionally, if the network's maximum width is not greater than the input dimension, an arbitrarily deep network 

cannot arbitrarily well mimic a class of continuous functions on a compact set. [39]. Although stacking more layers 

(increasing depth) can assist the NN in learning more diverse feature representations, It does not necessarily improve the 

learning ability of the NN. One of the most significant disadvantages of deep architectures is the possibility that particular 

layers or processing units will fail to learn relevant characteristics. Dealing with such issue, researchers have shifted their 

focus from deep and narrow designs to thin and wide architectures. 

 

4.4.1. WideResNet 

Because blocks or transformations of specific feature offer a relatively little amount to learning, the feature reuse problem is 

the primary drawback associated with deep residual networks[40]. WideResNet proposed a solution to this issue. The depth, 

according to these scientists, has a supplemental effect, but the rest of units represent deep residual networks' basic learning 

ability. WideResNet took advantage of the remaining block power by creating the ResNet larger rather than deeper[41]. It 

increased the width by introducing a new factor, k, that deals with network width. 

In other words, comparing to deepening the rest of network, layer broadening is a highly effective method of improving 

performance. While deep residual networks boost representational capacity, they also have a number of drawbacks, including 

difficulty with exploding and disappearing gradients, aspect of re-employment (inactivation of numerous feature maps), and 

the lengthy training process. Adding a dropout among the convolutional layers (rather than within the rest of block) increased 

learning performance in WideResNet.[42]. 

 

4.4.2. Xception 

The Xception architecture is a more advanced version of the inception model, consisting completely of depthwise distinct 

convolutions followed by pointwise convolution[43]. They investigated whether spatial and cross-channel correlations can be 

sufficiently separated[44]. On ImageNet, this architecture outperforms Inception V3, ResNet, and VGGNet. 
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Fig (11): The Xception block architecture's fundamental block diagram. 

 

4.4.3. ResNext 

This is a maintainable design that uses the split–transform–merge technique with the ResNet/VGGs method of replicated 

layers[45]. ResNet/VGGs modify a stack of residual blocks with comparable topologies and rules, resulting in this model. 

The rules can be moduled as: The blocks are to be split the hyperparameters when the constructed spatial maps have the 

similar size, and when the spatial maps are assembled by 2, the width of block could be undergone multiplication by 2. 

 

 
 

Fig (12): ResNeXt block 

 

4.5. CNNs Feature-Map Exploitation  

 

CNN has become beneficial for MV processes due to its hierarchical learning and feature extraction capabilities[46]. Aspect 

of selection has a substantial effect on the performance of classification, detection, and segmentation modules. CNN tunes the 

weights related with a kernel, also recognized as a mask, to choose features dynamically. Furthermore, multiple feature 

extraction procedures are completed, letting the extraction of a diverse set of characteristics (identified as feature maps or 

channels in CNN). On the other hand, Some feature maps play a minor or non-existent function in object recognition. Large 

feature sets may generate a noise effect, leading to network overfitting[47]. This shows that feature-map selection may help 

with network generalization in addition to network engineering. Many scholars regard feature maps as channels, hence the 

terms feature maps and channels could be employed interchangeably in this section. 
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4.5.1. Squeeze and Excitation 

This paradigm is proposed to improve the network's representational power by equipping it for conducting dynamic feature 

recalibration that is channel-wise [47]. The squeeze and excitation (SE) block were proposed as a novel architectural concept 

that focuses on the interaction between the channels. SENets laid the framework for the winning ILSVRC 2017 submission 

of classification, which automatically reduces the top-5 error to 2.251 percent. 

 

4.5.2. Competitive Squeeze and Excitation 

In 2018, the CMPESE Network (Competitive Inner Imaging Squeeze and Excitation for Residual Network) was proposed, 

which used the SEblock principle to improve deep residual network learning[48]. SE-Network re-calibrates the feature maps 

which are centred on their involvement to class discrimination. The key problem with SE-Net is that ResNet only uses the 

rest of data to compute the weight of every single feature map. SEblock's impact is reduced, and ResNet data is no longer 

required. This problem was solved by combining identity mapping with residual feature maps to create feature-map-wise 

motifs. 

 

4.6. Attention-based CNNs 

The discrimination capacity of the NN is determined by several levels of abstraction. For picture recognition and localisation, 

it's vital to focus on context-relevant features in addition to learning various hierarchies of abstractions. In the human visual 

system, this phenomenon is known as attention. Man look at the sight in pieces and focus on the portions that are pertinent to 

the scenario. This approach also deduces numerous interpretations of things at that position, allowing for improved visual 

structure capture. The interpretability of RNN and LSTM is similar in various aspects. Attention modules are used in RNN 

and LSTM networks to generate sequential data, and The weighting of fresh samples is determined by their appearance in 

previous rounds. [49, 50]. In order to improve representation and overcome computational restrictions, some researchers have 

incorporated the idea of attention into CNN. CNN's capacity to distinguish items despite cluttered backgrounds and complex 

situations is aided by this concept of attentiveness. 

 

4.6.1. Residual attention neural network 

The Residual Attention Network (RAN) has been pr 

oposed to accomplish network feature representation[51]. The fundamental goal of paying attention to the CNN is to teach it 

about the object's conscious qualities. The RAN is a feed-forward CNN since it incorporates amassed residuall blocks as well 

as the attention unit. The attention module, on the other hand, is split into two sections: the mask branch and the trunk one. 

Such branches, respectively, utilize top-down and bottom-up learning approaches. Top-down attention feedback and quick 

feed-forward processing are provided by capturing two distinct methods in the attention model in a single feedforward 

process[52]. The top-down approach, in particular, generates a dense set of attributes from which to draw conclusions about 

each piece. Furthermore, In addition to substantial semantic data, the bottom-up feedforward architecture creates low-

resolution convolution layer. 

 

4.6.2. Convolutional block attention module 

The CBAM (convolutional block attention) module is a new attention-based CNN. This module can be identical to SE-

Network in terms of design and functionality. During image classification, SE-Network ignores the spatial localitization of 

object in the image and only analyzes the contribution of the channels. When it comes to object detection, the spatial 

placement of the object is crucial. The attention mappings are inferred successively by the convolutional block attention 

module[53]. To obtain the enhanced feature maps, it employs channel attention first, followed by spatial attention. As in the 

literature, spatial attention is achieved via 1 × 1  convolution and pooling functions. The use of a spatial axis in conjunction 

with feature pooling can be used to create an effective feature descriptor. Furthermore, because CBAM combines the max 

pooling and the average pooling methods, it is feasible to generate a robust spatial attention map. A set of GAP and max-

pooling processes is utilized for modelling the statistics of feature map similarly. 
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Table (1): CNN architecture 

model Main contribution Input size depth dataset 
Error 

rate 
category year 

LeNet [16] 
First CNN 

architecture 
32 × 32 ×1 5 MNIST 0.95 

Spatial 

exploitation 
1998 

AlexNet [19] 

uses Dropout 

and ReLU, deeper 

than LeNet 

227 × 227 × 3 8 ImageNet 16.4 
Spatial 

exploitation 
2012 

ZfNet [21] 

Visualization idea 

of intermediate 

layers 

224 × 224 × 3 8 ImageNet 11.7 
Spatial 

exploitation 
2014 

VGG [22] 
small filter size, 

Increase the depth 
224 × 224 × 3 16, 19 ImageNet 7.3 

Spatial 

exploitation 
2014 

GoogLeNet[23] 

Increased the 

depth used block 

concept and used 

concatenation 

concept 

224 × 224 × 3 22 ImageNet 6.7 
Spatial 

exploitation 
2015 

Highway[31] 
Present multipath 

idea 
32 × 32 ×2 19 CIFAR-10 7.76 

Depth & 

Multipath 
2015 

Inception-V3 [54] 

use small 

filter size, better 

feature 

representation 

229 × 229 × 3 48 ImageNet 3.5 
Depth & 

Width 
2015 

Inception V4 [55] 

split transform 

and integration 

concepts 

229 × 229 × 3 70 ImageNet 3.08 
Depth & 

Width 
2016 

ResNet [30] 

Due to symmetry 

mapping-based skip 

connections, it is 

resistant to 

overfitting 

224 × 224 × 3 152 ImageNet 3.57 
Depth & 

Multipath 
2016 

Inception-ResNet 

[54] 

 

- Use the idea of 

residual links 

 

229 × 229 × 3 572 
ImageNet 

 
3.52 

Depth & 

Width &  

Multipath 

2016 

WideResNet [40] 

 

increased the 

width and  decreased 

the 

depth 

 

32 × 32 ×3 28 
CIFAR-10 

CIFAR-100 

3.89 

18.85 
Width 2016 

Xception [43] 

A depthwise 

convolution followed 

by a pointwise 

convolution 

229 × 229 × 3 71 ImageNet 0.055 width 2017 

DenseNet[35] 

 

Layers that are 

related to each other 
224 × 224 × 3 201 

CIFAR-10, 

CIFAR-100 

3.46, 

17.18, 
Multipath 2017 
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5. Applications of CNN in medical imaging 

CNN has achieved great success in the field of diagnosing diseases based on medical images, where their results can be 

compared with the results of the radiologists themselves. Below are some studies in which different diseases were diagnosed 

using medical images. 

In [58] the researchers were able to diagnose breast cancer by using Shallow-Deep CNN (SD-CNN), A dataset obtained from 

a tertiary medical facility (Mayo Clinic Arizona) and a publicly available dataset from INbreast are both used and they 

achieve accuracy 92 %. In 2019 many uses of CNN in medical field, in [59] liver tumor has been diagnosed, There are 494 

hepatic lesions separated into training (n = 434) and test (n = 60) sets, and a CNN having three convolutional layers, two 

maximum pooling layers, and two fully connected layers, each with accompanying rectified linear units is utilized. They 

in blocks. ,ImageNet 

 

5.54 

ResNeXt [45] 

 
Grouped convolution  101 

ImageNet 

 
4.4 width 2017 

Squeeze-and-

excitation 

networks[47] 

 

Modeled 

interdependencies 

among channels 

229 × 229 × 3 152 
ImageNet 

 
2.3 

Feature map 

exploitation 
2017 

Networks of  

Competitive 

squeeze and 

excitation [48] 

 

Both residual and 

identity mappings 

used 

for re-scaling the 

channel 

32 × 32 ×3 152 
CIFAR-10, 

CIFAR-100 

3.58 

18.47 

Feature map 

exploitation 
2018 

Residual attention 

neural 

network[51] 

 

Offered the 

attention mechanism 
40 × 40 ×3 452 

CIFAR-10, 

CIFAR-100 

3.90 

20.4 
attention 2017 

Convolutional 

Block Attention 

[53] 

 

- Exploits both 

spatial and feature-

map information 

 

40 × 40 ×3 101 
ImageNet 

 
5.59 Attention 2018 

HRNetV2 [36] 

 

High-resolution 

representations 
224 × 224 × 3 - 

ImageNet 

 
5.4 

Depth & 

Multipath 
2020 

3D-CNN-

SVM[56] 

Three-dimensional 

convolutional neural 

networks (3D-CNNs) 

were applied 

3 × 62 × 96× 96 - ADNI - 
Spatial 

exploitation 
2020 

BrainMRNet 

hypercolumn 

technique, attention 

modules, 

and residual blocks 

- - 253 MRI - Attention 2020 

Siamese 

convolutional 

neural network 

(SCNN)[57] 

 

 two modified 

VGG16 parallel 

layers 

224 × 224 × 3 - OASIS - 
Spatial 

exploitation  
2020 
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achieve 92% accuracy, 92% sensitivity, and 98% specificity. In [60] the authors used automated algorithm kernel-based CNN 

with M-SVM to detect brain tumors by using 40 MRI images, effective brain tumor segmentation with low time complexity, 

low error rate, and high accuracy( 84%).In 2020 many papers are used to detect diseases like brain tumor classification using 

different CNN architecture [61] [62] [63]  and they achieve high accuracy as shown in table (2), also used to detect 

Alzheimer's Disease by using 3D-CNN-SVM with accuracy 95.74 [57], and Siamese convolutional neural network (SCNN) 

with Accuracy 99.05[56]. In [64], BrainMRNet was used to detect Brain tumors by using 253 MRI images, this model 

achieve an accuracy of 96.05. In 2021, a 3D convolutional neural network (3DCNN) was used to distinguish between 

hepatocellular carcinoma (HCC) and non-HCC lesions based on histological evidence [65]. In [66], the author used CNN to 

detect Left Ventricle Ischemic Scar and achieve an accuracy of 84.7%. Table (2) shows the uses of CNN in the medical field. 

Table (2): CNN uses in the medical field 

No. Ref. year dataset aim method result. 

1 [58] 2018 INbreast Breast Cancer Diagnosis SD-CNN Accuracy 92% 

2 [59] 2019 
Train 434 

Test 60 
liver tumor diagnosis CNN 

accuracy 92% 

sensitivity 92% 

specificity 98% 

3 [67] 2019 
1294 

647 

Classification of  Lesions 

at  Breast 
CNN 

Accuracy 88% 

Accuracy 83% 

 

4 [60] 2019 40 MRI images Brain Tumor Segmentation CNN with M-SVM accuracy 84% 

5 [62] 2020 

Figshare 

Radiopaedia 

Harvard 

Categorization of Brain 

Tumor 
CNN-SVM 

accuracy  95.82% 

accuracy  99.0% 

accuracy  98.7% 

 

 

 

6 [61] 2020 3064 slices Detection of Brain Tumor CNN 

Accuracy 91.3% 

Precision  91% 

Sensitivity 88% 

7 [63] 2020 21 patients Brain tumor segmentation 3D Mask R-CNN 
Precision 90% 

Recall 91% 

8 [68] 2020 

50 

schwannoma  

34 

meningioma. 

Differentiating Between 

Spinal Schwannoma and 

Meningioma 

CNN accuracy 87 % 

9 [69] 2020 
154 3D LGE-

MRIs 

Segmenting the Left 

Atrium 

double sequentially 

used CNNs 
Accuracy 93.2 

10 [57] 2020 ADNI 
Detection of Alzheimer's 

Disease 
3D-CNN-SVM Accuracy 95.74 

11 [56] 2020 OASIS 
Classification of 

Alzheimer's Disease 

Siamese 

convolutional 

neural network 

(SCNN) 

Accuracy 99.05 

12 [64] 2020 253 MRI Brain tumor BrainMRNet Accuracy 96.05 

13 [65] 2021 93  HCC distinguish hepatocellular 3D convolutional accuracy of 87.3% 
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57  non-HCC carcinoma (HCC) and non-

HCC lesions based on 

histological evidence 

neural network 

(CNN) 

14 [66] 2021 
200 train 

25 test 

Left Ventricle Ischemic 

Scar Detection 
CNN Accuracy 84.7% 

 

 

6. Conclusion 

We reviewed the past literature on convolution neural network (CNN) applications in the process of imaging which is 

medical in this overview paper. We mainly concentrated on their structure and presented more details about their 

architectures and structures due to the importance and increased issue spaces of CNNs in recent years. The merits and 

limitations of CNN were identified, as well as the network's evolution and developments, and how CNN is employed in the 

medical field. 
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