Some Generalization of Micro S_p-Locally Closed Sets in Micro Topological Spaces

M. Maheswari¹, S. Dhanalakshmi² and N. Durgadevi²

^{1,2}Research Scholar, ³Assistant Professor (Mail Id: udayar.mahesh@gmail.com) Department of Mathematics, Sri Parasakthi College for Women,Courtallam. (Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu)

ABSTRACT

In this paper, a new class of sets called Mic S_P-locally closed set in a Micro topological space is introduced. Also introduce their generalizations and study some of its properties.

Keywords: Micro Sp-open, Micro Sp-closed, Micro Spg-open, Micro Spg-closed, Micro Sp-locally closed, Micro Spg-locally closed.

1. Introduction

In 1966, the study of locally closed sets was introduced by Bourbaki [3]. In 1989, Ganster and Raily [6] studied locally closed sets extensively in topological spaces. In [1], Balachandran et. al introduced the concept of Generalization of locally closed sets in Topology. In [2], K. Bhuvaneswari et. al introduced Nano Generalized Locally closed sets in Nano topological spaces. In [1], Subramanian et.al introduced the classes of m-lc-set, mg-lc- set, mg-lc^{*-} set, mg-lc^{**-} set. In this paper, Micro S_P -locally closed set in Micro topological spaces is introduced and some of its generalizations are defined and analyzed.

2. Preliminaries

Definition 2.1. [9] Let $(U, \tau_R(X))$ be a Nano topological space. Then $\mu_R(X) = \{N \cup (N' \cap \mu): N, N' \in \tau_R(X) \text{ and } \mu \notin \tau_R(X)\}$ is called the Micro topology on U with respect to X. The triplet $(U, \tau_R(X), \mu_R(X))$ is called Micro topological space and the elements of $\mu_R(X)$ are Micro open sets and the complement of Micro open set is called a Micro closed set.

Definition 2.3. [1] A subset A of a space (U, $\tau_R(X)$, $\mu_R(X)$) is called Micro generalized closed (briefly Mg-closed) set if MCl (A) \subseteq T whenever A \subseteq T and T is Micro open in (U, $\tau_R(X)$, $\mu_R(X)$). The complement of Mg-closed set is Mg-open set.

Definition 2.3. [9] For any $A \subseteq U$, Mg-Int (A) is defined as the union of all Mg-open sets contained in A. i.e., Mg-Int (A) = $\cup \{G: G \subseteq A \text{ and } G \text{ is Mg-open} \}.$

Definition 2.4. [9] For any $A \subseteq U$, Mg-Cl (A) is defined as the intersection of all Mg-closed sets containing A. i.e., Mg-Cl (A) = \cap {F: F is Mg-closed and $A \subseteq F$ }.

Proposition 2.5. [1] For any $A \subseteq U$, the following holds.

- 1) Mg-Int(A) is the largest Mg-open set contained in A.
- 2) A is Mg-open if and only if Mg-Int (A) = A
- 3) Mg-Int $(A \cap B) =$ Mg-Int $(A) \cap$ Mg-Int (B).
- 4) Mg-Int $(A \cup B) \supseteq$ Mg-Int $(A) \cup$ Mg-Int (B).
- 5) If $A \subseteq B$, then Mg-Int (A) \subseteq Mg-Int (B).
- 6) Mg-Int (U) = U and Mg-Int (ϕ) = ϕ .
- 7) Mg-Cl (A) is the smallest Mg-closed set containing A.
- 8) A is Mg-closed if and only if Mg-Cl (A) = A.
- 9) If $A \subseteq B$, then Mg-Cl (A) \subseteq Mg-Cl (B).
- 10) Mg-Cl $(A \cap B) \subseteq$ Mg-Cl $(A) \cap$ Mg- Cl (B).

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 200-203 https://publishoa.com ISSN: 1309-3452

11) $(Mg-Int (A))^{c} = Mg-Cl (A^{c}).$

12) Mg-Int (A) = $(Mg-Cl (A^c))^c$.

13) Mg-Cl (A) = $(Mg-Cl (A^c))^c$.

Definition 2.6. [8] Let $(U, \tau_R(X), \mu_R(X))$ be a Micro topological space and $B \subseteq U$ is called Micro S_P-closed (briefly Mic S_P-closed) if and only if its complement is Micro S_P-open.

The set of all Micro S_P-closed sets is denoted by Mic S_P-CL (U, X).

The set of all Mic S_Pg-closed sets is denoted by Mic S_PG-CL (U, X).

Definition 2.8. [9] A subset A of a Micro topological space(U, $\tau_R(X)$, $\mu_R(X)$) is called a Micro locally closed (briefly M-lc) set if $A = V \cap W$ where V is Micro open and W is Micro closed.

The class of all M-locally closed sets in a Micro topological space $(U, \tau_R(X), \mu_R(X))$ is denoted by MLC (U).

Definition 2.9. [9] A subset A of a Micro topological space (U, $\tau_R(X)$, $\mu_R(X)$) is called a Micro generalized locally closed (briefly Mg-lc) set if $A = E \cap F$ where E is Mg-open and F is Mg-closed.

The class of all Mg-locally closed sets in Micro topological spaces (U, $\tau_R(X)$, $\mu_R(X)$) is denoted by MGLC (U).

3. Micro S_P-Locally closed sets

Definition 3.1. A subset A of a Micro topological space (U, $\tau_R(X)$, $\mu_R(X)$) is called a Micro S_P-locally closed (briefly Mic S_P-lc) set if A = C \cap D where C is Mic S_P-open and D is Mic S_P-closed.

The family of all Micro S_P-locally closed sets in a Micro topological space is denoted by Mic S_P-LC (U, X).

Remark 3.2. Every Micro S_P -closed (resp. Micro S_P -open) set is Micro S_P -locally closed set but the converse need not always be true and is shown in the following example.

Example 3.3. Consider $U = \{p, q, r, s\}$ with $U|R = \{\{p\}, \{q, r, s\}\}$ and $X = \{p, q\}$. Then

 $\begin{aligned} \tau_R(X) &= \{U, \, \phi, \, \{p\}, \, \{q\}, \, \{p, \, q\}\}. \ If \, \mu = \{s\} \ then \, \mu_R(X) = \{U, \, \phi, \, \{p\}, \, \{q\}, \, \{s\}, \, \{p, \, q\}, \, \{p, \, s\}, \, \{p, \, q, \, s\}\}, \ Mic \\ S_P\text{-}O(U, X) &= \{U, \, \phi, \, \{p, \, r\}, \, \{q, \, r\}, \, \{r, \, s\}, \, \{p, \, q, \, r\}, \, \{p, \, r, \, s\}\}, \ Mic \, S_P\text{-}CL(U, X) &= \{\phi, U, \, \{q, \, s\}, \, \{p, \, q\}, \, \{p, \, q\}, \, \{q\}, \, \{q\},$

Here $\{p, r\}$ and $\{q, r\}$ are in Mic S_P-LC (U, X) but not in Mic S_P-CL (U, X).

Definition 3.4. A subset A of a Micro topological space (U, $\tau_R(X)$, $\mu_R(X)$) is called a Micro S_P-generally locally closed (briefly Mic S_Pg-lc) set if $A = E \cap F$ where E is Micro S_Pg-open and F is Micro S_Pg-closed.

The family of all Micro S_P -generalized locally closed sets in Micro topological space is denoted by Mic S_P G-LC (U, X).

Remark 3.5. Every Micro S_Pg -closed (Micro S_Pg -open) set is Micro S_Pg -locally closed set but the converse need not be true as shown in the following example.

Example 3.6. In example 3.3, Mic S_PG -CL (U, X) = { U, ϕ , {p}, {q}, {s}, {p, q}, {p, s}, {q, s}, {p, q, s}} and Mic S_PG -LC (U, X) = {U, ϕ , {p}, {q}, {r}, {s}, {p, q}, {p, r}, {p, s},

 $\{q,r\}, \{q,s\}, \{r,s\}, \{p,q,r\}, \{p,r,s\}, \{q,r,s\}, \{p,q,s\}\}.$

Here $\{p, q, r\} \in Mic S_PG-LC (U, X)$ but $\{p, q, r\} \notin Mic S_Pg-CL (U, X)$.

Remark 3.7. Every Micro S_P -lc set is Micro S_P g-lc set but the converse is not true which is shown by the following example.

 $\begin{array}{l} \textbf{Example 3.8. In example 3.3, Mic $P_G-CL (U, X) = {U, \phi, {p}, {q}, {s}, {p, q}, {p, s}, {q, s}, {p, q, s}}, Mic $P_G-O (U, X) = {\phi, U, {q, r, s}, {p, r, s}, {p, q, r}, {r, s}, {q, r}, {p, r}, {r}} and Mic $P_G-LC (U, X) = {U, \phi, {p}, {q}, {s}}, {p, q, r}, {r, s}, {p, q, r}, {r, s}, {q, r, s}}, Mic $P_G-LC (U, X) = {U, \phi, {p}, {q}, {s}, {p, q}, {r}, {p, q}, {r}, {p, r}, {p, r}, {p, r}, {s}}, Mic $P_G-LC (U, X) = {U, \phi, {p}, {q}, {s}, {p, q}, {r}, {p, q, r}, {p, r, s}}, {q, r, s}}, Mic $P_G-LC (U, X) = {U, \phi, {p}, {q}, {s}, {q, r}, {s}, {p, q, r}, {p, r}, {p, r}, {p, r}, {s}}, {q, r, s}}. \end{array}$

Here $\{r\} \in Mic S_PG-LC (U, X)$ but $\{r\} \notin Mic S_P-LC (U, X)$.

Definition 3.9. A subset A of a Micro topological space $(U, \tau_R(X), \mu_R(X))$ is called

1) Mic S_Pg-lc* set if $A = B \cap E$, where B is Mic S_Pg-open in (U, $\tau_R(X)$, $\mu_R(X)$) and E is Mic S_P-closed in (U, $\tau_R(X)$, $\mu_R(X)$).

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 200-203 https://publishoa.com ISSN: 1309-3452

2) Mic S_Pg-lc^{**} set if $A = C \cap F$, where C is Mic S_P-open in (U, $\tau_R(X)$, $\mu_R(X)$) and F is Mic S_Pg-closed in (U, $\tau_R(X)$, $\mu_R(X)$).

The collection of all Mic S_Pg-lc* (resp. Mic S_Pg-lc**) sets in a Micro topological space (U, $\tau_R(X)$, $\mu_R(X)$) is denoted by Mic S_PG-LC*(U, X) (resp. Mic S_PG-LC**(U, X))

Remarks 3.10.

- (i) Every Mic S_P -lc set is Mic S_P g-lc* set,
- (ii) Every Mic S_P -lc set is Mic S_P g-lc** set,
- (iii) Every Mic S_P -lc* set is Mic S_P g-lc set,
- (iv) Every Mic S_Pg-lc** set is Mic S_Pg-lc set
- The reverse of the above implications are may not be true as shown in the following example.

 $\begin{array}{l} \textbf{Example 3.11. In example 3.3, Mic } S_P-LC (U, X) = \{ U, \phi, \{p\}, \{q\}, \{s\}, \{p, q\}, \{p, r\}, \{p, s\}, \{q, r\}, \{q, s\}, \{r, s\}, \{p, q, r\}, \{p, r, s\}, Mic } S_PG-LC (U, X) = \{ U, \phi, \{p\}, \{q\}, \{r\}, \{s\}, \{p, q\}, \{p, r\}, \{p, s\}, \{q, r\}, \{q, s\}, \{r, s\}, \{p, q, r\}, \{p, r, s\}, \{q, r, s\}, Mic } S_PG-LC (U, X) = \{ U, \phi, \{p\}, \{q\}, \{r\}, \{s\}, \{p, q\}, \{p, r\}, \{p, s\}, \{q, r\}, \{q, s\}, \{r, s\}, \{p, q, r\}, \{p, q, s\}, Mic } S_PG-LC^* (U, X) = \{ U, \phi, \{p\}, \{q\}, \{r\}, \{s\}, \{p, q\}, \{p, q\}, \{p, r\}, \{p, q\}, \{p, r\}, \{p, q, r\}, \{p, q, s\}, \{q, r, s\}, \{q, r, s\}, \{q, r, s\}, \{q, r\}, \{p, q, r$

- (i) Here $\{r\} \in Mic S_PG-LC^*$ but $\{r\} \notin Mic S_P-LC$.
- (ii) Here $\{p,q,s\} \in Mic S_PG-LC^{**}$ but $\{p,q,s\} \notin Mic S_P-LC$ set.
- (iii) Here $\{p,q,s\} \in Mic S_PG-LC \text{ set but } \{p,q,s\} \notin Mic S_Pg-LC^* \text{ set.}$
- (iv) Here $\{r\} \in Mic S_PG-LC \text{ set but } \{r\} \notin Mic S_Pg-LC^{**} \text{ set.}$

4. Characterizations of Mic Spg-lc sets and Mic Spg-lc* sets and Mic Spg-lc** sets. Theorem 4.1.

For a subset A of (U, $\tau_R(X)$, $\mu_R(X)$), the following statements are equivalent:

- (i) $A \in Mic S_PG-LC (U, X).$
- (ii) $A = V \cap Mic S_Pg-Cl (A)$ for some Mic S_Pg-open set V.
- (iii) Mic S_P g-Cl (A) A is Mic S_P g-closed.
- (iv) $A \cup [(Mic S_Pg-Cl (A)]^c \text{ is Mic } S_Pg\text{-open.}$
- $(v) \qquad A \subseteq Mic \; S_Pg\text{-}Int \; [A \cup (Mic \; S_Pg\text{-}Cl \; (A))^c]^c$

Proof: (i) \Rightarrow (ii) Let $A \in Mic S_PG$ -LC (U, X). Then $A = V \cap W$ where V is Mic S_Pg -open and W is Mic S_Pg -closed. Since $A \subseteq W$, Mic S_Pg -Cl (A) $\subseteq W$ and so $V \cap Mic S_Pg$ -Cl (A) $\subseteq V \cap W = A$. Also, since $A \subseteq V$ and $A \subseteq Mic S_Pg$ -Cl (A) which implies $A \subseteq V \cap Mic S_Pg$ -Cl (A). Therefore $A = V \cap Mic S_Pg$ -Cl (A).

(ii) \Rightarrow (iii) $A = V \cap Mic S_Pg$ -Cl (A) which implies Mic S_Pg -Cl (A) – $A = Mic S_Pg$ -Cl (A) $\cap V^c$ which is Mic S_Pg -closed. Since V^c is Mic S_Pg -closed and Mic S_Pg -Cl (A) is Mic S_Pg -closed. Hence Mic S_Pg -Cl (A) – A is also Mic S_Pg -closed.

(iii) \Rightarrow (iv) A \cup [Mic S_Pg-Cl (A)]^c = [Mic S_Pg-Cl (A) – A]^c and by assumption, [Mic S_Pg-Cl (A) – A]^c is Mic S_Pg-open and so is A \cup [Mic S_Pg-Cl (A)]^c.

(iv) \Rightarrow (v) By assumption, A \cup [Mic S_Pg-Cl (A)]^c = Mic S_Pg-Int [A \cup (Mic S_Pg-Cl (A))^c] and hence A \subseteq Mic S_Pg-Int [A \cup (Mic S_Pg-Cl (A))^c].

 $(v) \Rightarrow (i)$ By assumption and since $A \subseteq [Mic S_Pg-Cl (A)], A = Mic S_Pg-Int[A \cup (Mic S_Pg-Cl (A))^c] \cap Mic S_Pg-Cl (A).$ Therefore $A \in Mic S_PG-LC (U, X).$

Theorem 4.2.

For a subset A of (U, $\tau_R(X)$, $\mu_R(X)$), the following statements are equivalent:

- (i) $A \in Mic S_PG-LC^*(U, X).$
- (ii) $A = V \cap Mic S_P-Cl (A)$ for some Mic S_Pg-open set V.
- (iii) Mic S_P -Cl (A) A is Mic S_P g-closed.
- $(iv) \qquad A \cup [\text{Mic } S_P\text{-}\text{Cl} \ (A)]^c \text{ is Mic } S_P\text{g-open}.$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 200-203 https://publishoa.com ISSN: 1309-3452

Proof: (i) \Rightarrow (ii) Let $A \in Mic S_PG-LC^*(U, X)$. Then there exists a Mic S_Pg -open set V and Mic S_P -closed set W such that $A = V \cap W$ Since $A \subseteq V$ and $A \subseteq Mic S_P$ -Cl (A), $A \subseteq V \cap Mic S_P$ -Cl (A). Also, since Mic S_Pg -Cl (A) $\subseteq W, V \cap Mic S_P$ -Cl (A) $\subseteq V \cap W = A$. Therefore $A = V \cap Mic S_P$ -Cl (A).

(ii) \Rightarrow (i) Since V is Mic S_Pg-open and Mic S_P-Cl (A) is Mic S_P-closed, $A = V \cap Mic S_P$ -Cl (A) $\in Mic S_P$ G-LC* (U, X).

(ii) \Rightarrow (iii) Since Mic S_P-Cl (A) – A = Mic S_P-Cl (A) \cap V^{c,} Mic S_P-Cl (A) – A is Mic S_Pg-closed, since V^c is Mic S_Pg-closed.

(iii) \Rightarrow (ii) Let $V = [Mic S_P-Cl (A) - A]^c$. Then by assumption V is Mic S_Pg-open in (U, $\tau_R(X)$, $\mu_R(X)$) and $A = V \cap Mic S_P-Cl (A)$.

(iii) \Rightarrow (iv) Let W = Mic S_P-Cl (A) – A. Then W^c = A \cup [Mic S_P-Cl (A)]^c and hence A \cup [Mic S_P-Cl (A)]^c is Mic S_Pgopen.

(iv) \Rightarrow (iii) Let V = A \cup (Mic S_P-Cl (A)]^c. Then V^c is Mic S_Pg-closed and V^c = Mic S_P-Cl (A) – A and so Mic S_P-Cl (A) – A is Mic S_Pg-closed.

Theorem 4.3. Let A be a subset of $(U, \tau_R(X), \mu_R(X))$. Then $A \in Mic S_PG-Lc^{**}(U, X)$ if and only if $A = V \cap Mic S_Pg-Cl(A)$ for some Micro S_P -open set V.

Proof: Let $A \in Mic S_PG-LC^{**}(U, X)$. Then $A = V \cap W$. where V is Micro S_P -open and G is Micro S_Pg -closed. Since $A \subseteq W$, Mic S_Pg -Cl $(A) \subseteq G$. Thus $A = A \cap Mic S_Pg$ -Cl $(A) = V \cap W \cap Mic S_Pg$ -Cl $(A) = V \cap Mic S_Pg$ -Cl (A).

Conversely, since V is Micro S_P-open and Mic S_Pg-Cl (A) is a Mic S_Pg-closed set, $A = V \cap Mic S_Pg-Cl (A) \in Mic S_PG-LC^{**}(U, X).$

Corollary 4.4. Let A be a subset of $(U, \tau_R(X), \mu_R(X))$. If $A \in Mic S_PG-LC^{**}(U, X)$, then Mic $S_Pg-Cl(A) - A$ is Mic S_Pg -closed and $A \cup [Mic S_Pg-Cl(A)]^c$ is Mic S_Pg -open.

Proof: Let $A \in Mic S_PG-LC^{**}(U, X)$. Then by Theorem 4.3, $A = V \cap Mic S_Pg-Cl (A)$ for some Micro S_P -open set V and Mic $S_Pg-Cl (A) - A = Mic S_Pg-Cl (A) \cap V^c$ is Mic S_Pg -closed in $(U, \tau_R(X), \mu_R(X))$. If $W = Mic S_Pg-Cl (A) - A$, then $W^c = A \cup [Mic S_Pg-Cl (A)]^c$ and W^c is Mic S_Pg -open and so is $A \cup [Mic S_Pg-Cl (A)]^c$.

References

- Balachandran. K, Sundaram. P and Maki. M: Generalized locally closed sets and GLC-continuous Functions, Indian J. Pure, Appl. Month, 27(3) (1996), 235-244.
- Bhuvaneswari. K and Mythili Gnanapriya. K: Nano Generalized locally closed sets and NGLC-continuous Functions in Nano Topological spaces, Int.J.Math and its Applications, 4(1 – A) (2016), 101 – 106.
- 3) Sourbaki. N: General Topology, chapter 1-4, Springer-Verlog (1989).
- Dhanalakshmi. S and Durga devi. N: Some Generalization of (1,2) S_P-locally closed sets in Bitopological spaces: J. Math computer Science, 11(2021), No.5 5931-5936.
- 5) Ganster. M, Raily. I.L: Locally closed sets and continuous functions, Int.J.Math. Sci 12(1989), 417 424.
- 6) Jayalakshmi. A and Janaki. C: A new form of Nano Locally closed sets in Nano topological spaces; Global Journal of pure and applied Mathematics, Vol.13, No.9 (2017), PP.5997 6006.
- Jeyashri. S and Arockia Jipsy J. Nano (1,2)* Locally closed sets in Nano bitopological spaces, International Journal of Research, Vol.4, Issue 1, Jan-June–2015. Page No. 21.
- Maheswari. M, Dhanalakshmi. S and Durga devi. N: On Micro S_Pg-closed sets in Micro topological spaces, Stochastic Modelling and Applications, Communicated.
- 9) Subramanian, Jayashri and Selvaraj Ganesan: Micro Generalized Locally closed sets in Micro topological spaces, International Journal of analytical and experimental modal analysis, Vol. XII, Issue IVI, June / 2020, Page No.170-185.