Volume 13, No. 2, 2022, p. 196-199 https://publishoa.com ISSN: 1309-3452

Some New Separation Axioms Of $(1,2)S_P$ -Open Sets In Bitopological Spaces

S. Dhanalakshmi¹, M. Maheswari² and N. Durga Devi³

Research Scholar¹, Research Scholar², Assistant Professor³ (Mail Id: prithira456@gmail.com) Department of Mathematics, Sri Parasakthi College for Women, Courtallam. (Affiliated to Manonmaniam Sundaranar University) Trunelveli, Tamilnadu, India.

ABSTRACT

In this paper, some new separation axioms in bitopological spaces using $(1,2)S_p$ -open sets are defined and some of its characterizations are analysed.

Key Words:

(1,2)semi-open, (1,2)pre-open, (1,2)pre-closed, $(1,2)S_p$ -open, $(1,2)S_p$ -closed, $(1,2)S_p$ -D space, $(1,2)S_p$ -D₀ space, $(1,2)S_p$ -D₁ space, $(1,2)S_p$ -D₂ space.

AMS Classifications: 54A10.

1. INTRODUCTION

Semi-open sets were introduced and investigated by Levine [4] in 1963. In 1965, Njastad [7] studied certain classes of subsets in a topological space called α -sets and β -sets. In 1963, Kelly [3] initiated the study of the bitopological spaces, which is a triplet (X, τ_1 , τ_2). Where X is a non-empty set and τ_1 , τ_2 are topologies on X. In 1991, one type of open sets called a (1,2) α -open sets was defined and developed by Lellis Thivagar [6]. The purpose of this paper is to introduce new separation axioms and to discuss its various aspects by using (1,2) S_p -open sets.

. PRELIMINARIES

Definition 2.1 [5] A subset A of a bitopological space X is called a

- (i) (1,2)semi-open if $A \subseteq \tau_1 \tau_2 Cl(\tau_1 Int(A))$.
- (ii) (1,2)pre-open if $A \subseteq \tau_1 \text{Int}(\tau_1 \tau_2 Cl(A))$.
- (iii) (1,2)regular-open if $A = \tau_1 Int(\tau_1 \tau_2 Cl(A))$.

The collection of all (1,2)semi-open, (1,2)pre-open and (1,2)regular-open sets are denoted by (1,2)SO(X), (1,2)PO(X) and (1,2)RO(X) respectively.

Definition 2.2 [5] A subset A of a bitopological space X is called a

- (i) (1,2) α -closed if $\tau_1 Cl(\tau_1 \tau_2 Int(\tau_1 Cl(A))) \subseteq A$.
- (ii) (1,2)semi-closed if $\tau_1 \tau_2 \text{Int}(\tau_1 \text{Cl}(A)) \subseteq A$.
- (iii)(1,2)pre-closed if $\tau_1 \text{Cl}(\tau_1 \tau_2 \text{Int}(A)) \subseteq A$.

Volume 13, No. 2, 2022, p. 196-199 https://publishoa.com ISSN: 1309-3452

(iv)(1,2)regular-closed if $A = \tau_1 Cl(\tau_1 \tau_2 Int(A))$.

The set of all $(1,2)\alpha$ -closed, (1,2)semi-closed, (1,2)pre-closed and (1,2)regular-closed sets are denoted as $(1,2)\alpha$ CL(X), (1,2)SCL(X), (1,2)PCL(X) and (1,2)RCL(X) respectively. Also, for any subset A of X, the $(1,2)\alpha$ -closure, (1,2)semi-closure, (1,2)pre-closure and (1,2)regular-closure of A is denoted as $(1,2)\alpha$ Cl(A), (1,2)SCl(A), (1,2)PCl(A) and (1,2)RCl(A) respectively.

Definition 2.3 [2] A (1,2)semi-open set A of a bitopological space X is called $(1,2)S_p$ -open set if for each $x \in A$, there exists a (1,2)pre-closed set F such that $x \in F \subseteq A$.

Definition 2.4. [1] A bitopological space X is called $(1,2)S_p$ - \mathcal{T}_0 space iff for every distinct points $x, y \in X$ there exists a $(1,2)S_p$ -open set containing x but not y or a $(1,2)S_p$ -open set containing y but not x.

Definition 2.5.[1] A bitopological space X is called $(1,2)S_p$ - \mathcal{T}_1 space iff for every distinct points $x, y \in X$ there exists a $(1,2)S_p$ -open set containing x but not y and a $(1,2)S_p$ -open set containing y but not x.

Definition 2.6. [1] A bitopological space X is called $(1,2)S_p$ - \mathcal{T}_2 space iff for every distinct points $x, y \in X$ there exists a $(1,2)S_p$ -open sets U and V such that $x \in U$ and $y \in V$.

2. $(1,2)S_P$ - D_i (i = 0, 1, 2) IN BITOPOLOGICAL SPACES

Definition 3.1. A subset S of X is called a $(1,2)S_p$ -difference set $((1,2)S_p$ -D set) if there exists two $(1,2)S_p$ -open sets B_1 and B_2 such that $S = (B_1 \setminus B_2)$ and $B_1 \neq X$.

The family of all $(1,2)S_p$ -D set is denoted by $(1,2)S_p$ -D(X).

Remark 3.2. Every $(1,2)S_p$ -open set is a $(1,2)S_p$ -D set.

Proof. Let S be a $(1,2)S_p$ -open set. Then there exist two $(1,2)S_p$ -open sets B_1 and B_2 such that $S = (B_1 \setminus B_2)$ with $B_2 = \Phi$. Hence S is a $(1,2)S_p$ -D set.

Definition 3.3. A bitopological space X is called a $(1,2)S_p$ -D₀ space if for $x, y \in X$ and $x \neq y$, there exists a $(1,2)S_p$ -D set containing x but not y or containing y but not x.

Definition 3.4. A bitopological space X is called a $(1,2)S_p$ -D₁ space if for $x, y \in X$ and $x \neq y$, there exist two $(1,2)S_p$ -D sets G and H such that $x \in G, x \notin H$ and $y \in H, y \notin G$.

Theorem 3.5. Every $(1,2)S_p$ - \mathcal{T}_0 space is a $(1,2)S_p$ -D₀ space and vice versa.

Proof. Every $(1,2)S_p$ - \mathcal{T}_0 space is a $(1,2)S_p$ - D_0 space by Remark 3.2.

Conversely, let X be $(1,2)S_p$ -D₀ space. Then for every $x, y \in X$ and $x \neq y$, there exists a $(1,2)S_p$ -D set S such that $x \in S$ and $y \notin S$, where $S = (B_1 \setminus B_2)$ and $B_1, B_2 \in (1,2)S_pO(X)$. Now, let $x \in S$ implies $x \in B_1$ and $x \notin B_2$. And, let $y \notin S$ implies $y \notin B_1$ or $y \in B_1$ and $\in B_2$. Hence the following two cases exist:

Case 1: $x \in B_1$ and $y \notin B_1$ implies X is $(1,2)S_p$ - \mathcal{T}_0 .

Case 2: $x \notin B_2$ and $y \in B_2$ implies X is $(1,2)S_p$ - \mathcal{T}_0 ..

Volume 13, No. 2, 2022, p. 196-199 https://publishoa.com ISSN: 1309-3452

Definition 3.6. A bitopological space X is called a $(1,2)S_p$ -D₂ space if for $x, y \in X$ and $x \neq y$, there exist two $(1,2)S_p$ -D sets G and H such that $x \in G$ and $y \in H$.

Remark 3.7. In a bitopological space X, the following holds good:

- (i) If X is $(1,2)S_p$ -D_i, then it is $(1,2)S_p$ -D_{i-1} (i = 1, 2).
- (ii) If X is $(1,2)S_p$ - \mathcal{T}_i , then it is $(1,2)S_p$ -D_i (i = 0, 1, 2).

Theorem 3.8. If a bitopological spaces X is $(1,2)S_p$ -D₁ space, then it is a $(1,2)S_p$ - \mathcal{T}_0 space.

Proof. Let X be $(1,2)S_p$ -D₁space. Then X is $(1,2)S_p$ -D₀ space. By Theorem 3.5, every $(1,2)S_p$ -D₀ space is $(1,2)S_p$ - \mathcal{T}_0 space. Hence X is $(1,2)S_p$ - \mathcal{T}_0 space.

Remark 3.9. The converse of above Theorem 3.8 is not true as shown in the following example.

Remark 3.11. The following example illustrates that $(1,2)S_p$ - D_1 does not imply $(1,2)S_p$ - \mathcal{T}_1 space.

Example 3.12. Let X = {a, b, c, d}, $\tau_1 = \{\Phi, X, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, c, d\}\},$ $\tau_2 = \{\Phi, X\},$ $(1,2)SO(X) = \{\Phi, X, \{a\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\},$ $(1,2)PCL(X) = \{X, \Phi, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\},$ $\{b, c, d\}, (1,2)S_pO(X) = \{\Phi, X, \{a, b\}, \{b, c\}, \{a, b, d\},$ $(1,2)S_p-D(X) = \{\Phi, X, \{a\}, \{c\}, \{d\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c\}, \{b, c\}, \{b, c\}, \{a, b, d\}, \{b, c\}, \{b, c\}, \{b, c\}, \{a, b, d\}, \{b, c\}, \{b, c\}, \{a, b, d\}, \{b, c, d\}\}.$

Theorem 3.13. A bitopoloXgical space X is $(1,2)S_p$ - D_1 space iff it is $(1,2)S_p$ - D_2 space.

Proof. Let X is $(1,2)S_p$ - D_2 space. Then X is $(1,2)S_p$ - D_1 space (by Remark 3.7).

Conversely, suppose X is $(1,2)S_p$ - D_1 space. Then for each $x, y \in X$ and $x \neq y$, implies $(1,2)S_p$ -D sets G_1 and G_2 such that $x \in G_1, x \notin G_2$ and $y \in G_2, y \notin G_1$, where $G_1 = (B_1 \setminus B_2)$ and $G_2 = (B_3 \setminus B_4)$, where $B_1, B_2, B_3, B_4 \in (1,2)S_pO(X)$. Now, $x \in G_1$ implies $x \in B_1$ and $x \notin B_2$, $x \notin G_2$ implies $x \notin B_3$ or $x \in B_3$ and $x \in B_4$ and $y \in G_2$ implies $y \notin B_3$ and $y \notin B_4$, $y \notin G_1$ which implies $y \notin B_1$ or $y \in B_1$ and $y \in B_2$. Hence the following three cases exist.

Case (i): Let $x \notin G_2$ and $y \notin G_1$ which implies $x \notin B_3$ and $y \notin B_1$. If $x \in G_1$, then $x \in (B_1 \setminus B_2)$ implies $x \in [(B_1 \setminus B_3) \cup B_2]$ and if $y \in G_2$, then $y \in (B_3 \setminus B_4)$, which implies $y \in [(B_3 \setminus B_4) \cup B_1]$ and also $[(B_1 \setminus B_3) \cup B_2] \cap [(B_3 \setminus B_4) \cup B_1] = \Phi$.

Case (ii): Let $y \in B_1$ and $y \in B_2 \Longrightarrow x \in (B_1 \setminus B_2)$, $y \in B_2$ and $[(B_1 \setminus B_2) \cap B_2] = \Phi$.

Case (iii): Let $x \in B_3$ and $x \in B_4 \implies y \in (B_3 \setminus B_4), x \in B_4$ implies $[(B_3 \setminus B_4) \cap B_4] = \Phi$. Hence X is $(1,2)S_p$ - D_2 space.

Volume 13, No. 2, 2022, p. 196-199 https://publishoa.com ISSN: 1309-3452

REFERENCES

- 1. Dhanalakshmi.S, Maheswari.M and Durga Devi.N: "Some more properties of separation axioms via $(1,2)S_P$ -open sets in bitopological spaces" communicated.
- 2. Hardi Ali Shareef, Durga Devi Natarajan, Raja Rajeswari Ramajeyam and Thangavelu Periannan: "(1,2)S_P-open sets in Bitopological spaces", Journal of Zankoy Sulaimani (2017) 19-2(Part A), 195-201.
- 3. Kelly.J.C: "Bitopological spaces", Proc. Londan. Math. Soc. 1963; 13: 71-89.
- 4. Levine.N: "Semi-open sets and Semi-continuiuty in topological spaces", Amer. Math. Monthly, 70(1963), 36-41.
- 5. Lellis Thivagar.M, Meera Devi.B and Navalagi.G: "(1,2)Externally disconnectedness Via Bitopological open sets", International Journal of General Topology, Vol.4, Nos 1-2, January December 2011, 915.
- 6. Lellis Thivagar.M: "Generalization of pairwise α-continuous function", Pure and Applied Mathematics and Sciences, Vol XXXIII, No. 1-2, 1991, 55-63.
- 7. Njastad.O: "On some classes of nearly open sets", Pacific. Journal of Mathematics, 15, 3, 1961.