Volume 13, No. 2, 2022, p. 140-144 https://publishoa.com ISSN: 1309-3452

Doubt Anti Fuzzy Km Ideal On K- Algebras

¹M. Meenakshi, ²A. Sekar, ³J. Kaliga Rani

¹Assistant professor, Department of Mathematics, PSNA college of Engineering and technology, Dindigul. Email : meena.anand13@psnacet.edu..in

²Professor, Department of Mathematics, Sri Ramakrishna Engineering College, Coimbatore, Tamilnadu, India, Email : sekar.arumugam@srec.ac.in

3 Assistant Professor, Department of Mathematics, G.T.N. Arts college (Autonomous), Dindigul. Email : kaligarani74@gmail.com

Abstract

Anti fuzzy KM ideal on K-algebras and doubt anti fuzzy KM ideal on K-algebras are introduced and some of their basic properties are discussed in this paper. The results of anti fuzzy KM ideal on K-algebras and doubt anti fuzzy KM ideals on K-algebra are analysed.

Keywords: K-algebras, KM ideal, fuzzy KM ideal, anti fuzzy KM ideal on K-algebras, doubt anti fuzzy KM ideal.

1. INTRODUCTION

Fuzzy logic is used in numeric fields such as control systems engineering, image processing, power engineering, industrial automation, robotics, consumer electronics, optimization etc.

The K-algebra (G,., e) on anabelian group (G, .) is same as the BCI-algebra (G,., e) and isproved in [1]. Properties, homomorphic image and inverse image on fuzzy ideals of K-Algebras are discussed in [2]. Fuzzy KM ideal on K-Algebra is introduced and its properties are studied in [3]. Discussion of soft set to K-Algebras and abelian soft K-Algebras are in [4]. Doubt fuzzy sub algebra, implicative and prime of doubt fuzzy ideal in BCK/BCI are defined and their properties are discussed in [5]. Introduction of doubt fuzzy BF algebra and their basic properties are studied in [6]. Doubt fuzzy KM ideals on K-Algebra is defined and their properties are tested in [7]. In this paper, doubt anti fuzzy KM ideals on K=Algebra is introduced and its few properties are tested.

2. PRELIMINARIES

Definition 2.1. If $\eta (a \odot b) \ge \min \{\eta (a), \eta (b)\}$ then a fuzzy set η in a K-algebra is named as fuzzy sub algebra of K.

Definition 2.2. A fuzzy set η of a K-Algebra A iscalled a Doubt Fuzzy Subalgebra of A if $\eta(a \odot b) \le \max \{ \eta(a), \eta(b) \} \forall a, b \in A.$

Definition 2.3. If $\eta (a \odot b) \le \max \{\eta (a), \eta (b)\}$ then a fuzzy set η in a K-algebra is named as anti fuzzy sub algebra of K.

Volume 13, No. 2, 2022, p. 140-144 https://publishoa.com ISSN: 1309-3452

Definition 2.4. A fuzzy set η of a K-Algebra A iscalled a Doubt Anti Fuzzy Subalgebra of A if η (a \bigcirc *b*) \ge min { η (a), η (b)} \forall a, b \in A.

Definition 2.5. Let η be a fuzzy set of K-Algebras Afor $t \in [0, 1]$, then the sets $\eta_t = \{a \in A/\eta \ (a) \ge t\}, \eta_t = \{a \in A/\eta \ (a) \le t\}, \text{ can be empty. The set } \eta_t = \emptyset \ (\text{respt. } \eta^t \ne \emptyset)$ is called the t (resptt-doubt) confidence set of η .

Definition 2.6. A fuzzy set nof K algebra Ais called a Doubt Fuzzy(DF) ideal of Aif

(1) $\eta(e) \leq \eta(a) \forall a \in G.$

(2) η (b) $\leq \max \{\eta (b \odot a), \eta (a \odot (a \odot b))\}, \forall a, b \in G.$

Definition 2.7. A fuzzy set η of K algebra Ais called a Doubt Anti Fuzzy(DAF) ideal of Aif (1) $\eta(e) \ge \eta(a) \forall a \in G$.

(2) η (b) $\geq \min \{\eta (b \odot a), \eta (a \odot (a \odot b))\}, \forall a, b \in G.$

Theorem 2.1. η is a anti fuzzy subalgebra of K-Algebra Aiff η_t is empty or sub algebra of Afor all $t \in [0,1]$. Proof. Suppose nis an anti fuzzysubalgebra of A. Therefore $(a \odot b) \le \max \{\eta(a), \eta(b)\}$ (2.1) \rightarrow To prove that η_t is a sub algebra of A. Let $a, b \in \eta_t \Longrightarrow \eta(a), \eta(b) \ge t$. Now η (a \odot *b*) \leq max {t, t} from (2.1) = ti.e. $a \odot b \in \eta_t$ Conversely, assume that η_t is a subalgebra of A. To proven is a anti fuzzy subalgebra of A. Let $a, b \in \eta$. Then η (a) = t and η (b) = s where t \leq s. This implies $a, b \in \eta_t$ \Rightarrow (a $\odot b$) $\in \eta_t$ (η_t is a sub algebra of A) $\Rightarrow \eta (a \odot b) \le t = \max \{\eta (a), \eta (b)\}$ Hence η is a anti fuzzy subalgebra of A.

Theorem 2.2. η is a anti fuzzy KM ideal of K-Algebra A iff η_t is KM ideal of A, $t \in [0,1]$. **Proof**. Suppose η is a anti fuzzy ideal of A. Here $\eta_t = \{b \in B \mid \eta(b) \ge t\},\$ $\eta(0) \ge t \Longrightarrow 0 \in \eta_t$ Let $a \odot b$, $a \odot (a \odot b)$, $b \in \eta_t$ η (b) $\leq \max \{\eta (b \odot a), \eta (a \odot (a \odot b))\} \leq \max \{t, t\}$ $\Rightarrow b \in \eta_t$ Therefore $a \odot b$, $b \in \eta_t \implies a \in \eta_t$ $\Rightarrow \eta_t$ is a KM ideal of K-Algebra. Conversely assume that η_t is a KM ideal. To prove η is a anti fuzzy KM ideal. Let $a, b \in A$ such that $\eta (a \odot b) = t$ and $\eta (a \odot (a \odot b)) = s$ where $t \le s$. Then a $\bigcirc b$, b $\in \eta_t$. Therefore $a \in \eta_t$, since η_t is a KM ideal. $\Rightarrow \eta_t \leq t \max\{t, s\}$

Volume 13, No. 2, 2022, p. 140-144 https://publishoa.com ISSN: 1309-3452

 $= \max \{ \eta (a \odot b), \eta (a \odot (a \odot b)) \}$ Hence η is a anti fuzzy KM ideal of A.

Theorem 2.3. A fuzzy subset of K-Algebra A is a anti fuzzy KM ideal of A iff its complements η^c is DAF KM ideal of A. **Proof**.Let η be a anti fuzzy ideal of A. To prove η^c is DAF KM ideal. Let a, b \in A, $\eta^{c}(0) = 1 - \eta(0)$ $\leq 1 - \eta$ (a) $=\eta^{c}(a)$ i.e. $\eta^c(0) \leq \eta^c(a)$ Now $\eta(0) \ge \eta(a) \forall a \in A$. $\Rightarrow \eta^{c}(a) = 1 - \eta(a)$ $\geq 1 - \max \{ \eta (b \odot a), \eta (a \odot (a \odot b)) \}$ $\geq 1 - \max \{ 1 - \eta^c (b \odot a), \quad 1 - \eta^c (b \odot (b \odot a)) \}$ $\geq \min \{ \eta^c (b \odot a),$ η^{c} (b $\odot(a \odot b)$) $\Rightarrow \eta^c$ is a doubt anti fuzzy KM ideal of A. Conversely let η^c is a doubt anti fuzzy KM ideal of A. To prove η is a anti fuzzy KM ideal of A. $\eta^{c}(0) \geq \eta^{c}(a) \eta^{c}(a)$ $\geq \min \{ \eta^c (b \odot a), \}$ η^{c} (b $\Theta(a \odot b)$) (i) $\Rightarrow 1 - \eta$ (0) $\ge 1 - \eta$ (a) $\Rightarrow \eta (0) \le \eta (a)$ (ii) $\Rightarrow 1 - \eta$ (a) $\geq \min \{1 - \eta^c (b \odot a), 1 - \eta^c (b \odot (a \odot b))\}$ $\geq 1 - \max \{ \eta^c (b \odot a), \eta^c (b \odot (a \odot b)) \} - \eta (a)$ $\geq - \max \{\eta (b \odot a), \eta (b \odot (a \odot b))\} - \eta (a)$ $\leq \max \{ \eta (b \odot a), \eta (b \odot (a \odot b)) \}$

 $\Rightarrow \eta$ is a anti fuzzy KM ideal

Theorem 2.4. Let η be a fuzzy subset of a K algebra A. If η is a doubt anti fuzzy KM ideal of A, then the lower level cut η_t is a KM ideal of A for all $t \in [0,1]$, $t \ge \eta$ (0).

Proof. Let η be a doubt anti fuzzy KM ideal of A.

Therefore, we have $\eta(0) \ge \eta$ (a) and

 $\eta (b) \ge \min \{ \eta (b \odot a), \eta (a \odot (a \odot b)) \}$ To prove η_t is an ideal of A.

 $\eta_t = \{a \in A / \eta (a) \ge t \}$

Let $a, b \in \eta_t$

Since $\eta(0) \ge \eta(a) \ge t \Rightarrow 0 \in \eta_t, \forall t \in [0,1]$

Let a $\bigcirc b$, a \bigcirc (a $\bigcirc b$) $\in \eta_t$

Therefore $\eta (a \odot b) \ge t, \eta (a \odot (a \odot b)) \ge t$

$$\begin{split} \eta (b) &\geq \min \{ \eta (b \odot a), \eta (a \odot (a \odot b)) \} \\ &\geq \min \{ t, t \} \\ &= t \end{split}$$

Volume 13, No. 2, 2022, p. 140-144 https://publishoa.com ISSN: 1309-3452

Hence $\eta(a) \ge t \implies a \in \eta_t$

 $a \odot b$, $b \in \eta_t \Rightarrow a \in \eta_t$

Therefore η_t is a KM ideal of A.

Theorem 2.5.Let η_1 and η_2 be two doubt anti fuzzy KM ideal of K algebra A. Then $\eta_1 \cup \eta_2$ is also a doubt anti fuzzy KM ideal of A. **Proof.** Let $a, b \in A$. Therefore $(\eta_1 \cup \eta_2) (0) = \min \{\eta_1(0), \eta_2(0)\}$ $\geq \min \{\eta_1(x), \eta_2(x)\}$ $= (\eta_1 \cup \eta_2)(x)$

Therefore $(\eta_1 \cup \eta_2) (0) \ge (\eta_1 \cup \eta_2) (x)$ Now $(\eta_1 \cup \eta_2) (x) = \min \{ \eta_1(x), \eta_2(x) \}$ $\ge \min \{ \min \{ \eta_1(b \odot a), \eta_1(a \odot (a \odot b)) \}, \min \{ \eta_2(b \odot a), \eta_2(a \odot (a \odot b)) \}$ $\ge \min \{ \min \{ \eta_1(b \odot a), \eta_2(b \odot a) \}, \min \{ \eta_1(a \odot (a \odot b), \eta_2(a \odot (a \odot b)) \} \}$ $= \min \{ (\eta_1 \cup \eta_2) (b \odot a), (\eta_1 \cup \eta_2) (a \odot (a \odot b)) \}$ Therefore $(\eta_1 \cup \eta_2)$ is a doubtanti fuzzy KM ideal of A

Theorem 2.6. If η is a doubt anti fuzzy (DAF) KM ideal of a K-algebra A, then the set $A_{\eta} = \{a \in A/\eta(b) = \eta(0)\} \text{ is an ideal of A}$

Proof. Clearly $0 \in A_{\eta}$ Let $b \odot a, b \in A_{\eta} \Longrightarrow \eta(b \odot a) = \eta(b) = \eta(0)$, since η is a DAF KM ideal $\eta(b) \ge \min\{\eta(b \odot a), \eta(a \odot (a \odot b))\}$ = min { $\eta(0), \eta(0)$ } = $\eta(0)$ Therefore, since η is a DAF KM ideal,

 $\eta(b) \ge \eta(0)$

Also $\eta(0) \ge \eta(b) \Longrightarrow \eta(b) = \eta(0)$ If $b \in A_{\eta}$ then $b \odot a, b \in A_{\eta} \Longrightarrow b \in A_{\eta}$ $\Longrightarrow A_{\eta}$ is an ideal

CONCLUSION

Doubt anti fuzzy KM ideal on K-Algebras is introduced and studied in this paper. Doubt anti fuzzy KM ideal on K-Algebras is verified with some of their properties. This paper will be useful in real time application.

REFERENCES

[1] M.Amram and H.S.Kim, "on k-algebras and BCI-algebras", International Mathematical forum,vol.2,no.9-12,2007, pp583-587.

[2] Muhammed Akram and karamat H.Dar, "Fuzzy ideals of K-Algebras", Annals of university of Craiova, Math.comp.sciser,volume34,2007 page 11-20.

[3] S.Kailasavalli, D.DuraiAruldugadevi, R.Jeya, M.Meenakshi, N.Nathiya, "Fuzzy KM Ideals on K Algebras", IJPAM, Volume 119, No.15, 2018, 129-135.

[4] K.H.Dar and M.Akram, " On K-homomorphism of K-Algebras", International Mathematical Forum, Vol.46,2007, pp 2283-2293.

Volume 13, No. 2, 2022, p. 140-144 https://publishoa.com ISSN: 1309-3452

[5] Young B Jun " Doubt fuzzy BCK/BCI algebras", Soochow Journal of Mathematics, volume 20,no-3,351-358, July 1991.

[6] S.R.Barbhuiya, "Doubt fuzzy ideals of Bf-Algebra", IOSR-Jounal of Mathematics, Volume 10, Issue 2, verVII (Mar-Apr 2014), pp 65-70.

[7] S.Kailasavalli, M.Meenakshi, C.Yamini, VE.Jayanthi, "Doubt Fuzzy KM Ideal on K Algebras", Advances in Mathematics: Scientific Journal 9 (2020), no.5,3041-3048.