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Abstract 

Encryption, the process by which plaintext (readable information) is transformed into ciphertext (meaningless symbols), 

was essentially equivalent with cryptography until the advent of modern computing (decryption). To prevent unauthorized 

access, a sender of an encrypted (coded) communication only reveals the decryption (decoding) method to the intended 

receivers. Changing the letter or number on the outer disk with the letter right beneath on the inner disk is all that's needed 

to encode a message. The proposed work creates a novel cryptographic technique where the key is the number of multiples 

of mod n using Laplace transforms. The Laplace transform has recently found a new use in the world of cryptography, 

which we describe here. In this research, By encrypting the plaintext using the Laplace transform of an appropriate 

function and decrypting it with its inverse, we provide a revolutionary iterative method to cryptography. Encryption is 

frequently employed by organizations and even governments to protect confidential information online. The techniques 

of cryptography owe a great deal to the contributions of mathematics. 

Keywords: Cryptography, Mathematical, Security, Private-Public Key, Laplace transform 

Introduction  

The basic notions and theories behind cipher systems think of the set of all potential messages as a series of 

transformations into the set of all possible cryptograms. Cryptography, the science of developing protocols for enforcing 

security on digital systems like computers and networks, is based exclusively on discrete mathematics. One reason for 

this is because digital data is sent in "bits," which are essentially independent units. In order to design and crack numerical 

passwords, cryptographers rely on number theory, a subfield of discrete mathematics. Cryptographers need a strong 

foundation in number theory to demonstrate they can create safe passwords and encryption techniques due to the high 

stakes and sensitive nature of the data being protected. 

Cryptographic algorithms in the modern era are built on the foundation of mathematical theory and computer science 

practice, with the goal of making it as difficult as possible for an opponent to break them in practice. While it is 

conceivable in theory to crack a well-designed system, doing so in reality is very unlikely. The term "computationally 

safe" is used to describe such systems if they have been constructed effectively; nonetheless, theoretical advances and 

faster computer technology need the ongoing reevaluation and, if necessary, adaption of these designs. Although 

information-theoretically secure schemes, such as the one-time pad, are invulnerable to attack, the best theoretically 

breakable but computationally secure techniques are much simpler to implement in practice. The proliferation of 

cryptography tools in the Internet Age has prompted a slew of new legal questions. Because to its potential for espionage 

and sedition, several countries have restricted or outright banned the use and export of cryptography, seeing it as a weapon. 

Keys to encrypted documents crucial to an investigation may be demanded by law enforcement in a number of nations 

according to recent laws. Cryptography is also crucial in digital media copyright infringement disputes and digital rights 

management. 

Literature Review 

Vincent P M, Durai & Iqbal, S.A. & Bhagat, K. & Kushwaha, K.K. (2013) The purpose of networking is to allow 

devices located in different physical locations to interact with one another and exchange data and other resources. These 

days, networking is utilized for everything from online shopping and banking to social media and newsgroup discussions 

to file sharing and the dissemination of important information. The administrator restricts access to these networks by 

implementing and enforcing a set of rules and regulations known as network security. The term "network security" is 
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used to describe any measure taken to safeguard a network. Having a safe and secure network is a powerful and fruitful 

convenience. Each time there is concern that security may be compromised or a weakness could be exploited, a danger 

occurs. Instead of relying on a single layer of protection, which may be breached at any moment, our method uses 

numerous levels of security to secure sensitive data. 

Adhikari, Mahima & Adhikari, Avishek (2014) Chapter 12 discusses applications and kicks off a study of 

cryptography. The term "cryptography" is common parlance in today's fast-paced digital culture. Several sites regularly 

use various forms of encryption, whether intentionally or not. From logging onto a computer to sending an email to using 

a PIN to withdraw cash from an ATM to sending a text message to making an online purchase to moving money digitally 

from one bank account to another, encryption is used in almost every aspect of modern life. In all such situations, secrecy 

in either the conveyance of information or its concealment is required. So, cryptography is related to safety in some way. 

Questions like "What is cryptography?" are to be expected. What role does it play in typical situations? In this chapter, 

we are introduced to cryptography and given an understandable and mathematical overview of the topic along with its 

main aim. Specifically, Ancient ciphers all the way up to contemporary ideas like public-key encryption, signature 

systems, secret sharing, oblivious transmission, and more are shown here using mathematical approaches mostly based 

on modern algebra. Finally, we discuss some of the difficulties in using the free software SAGE to build the RSA, 

ElGamal, and Rabin public key cryptography systems. 

Srungaram, Vasundhara (2016) Number theory has a rich history of theoretical investigation. The primary motivation 

for these studies, which date back centuries, is improved comprehension of the abstract theory. As an understanding of 

the qualities of numbers is crucial to the advancement of not just mathematics but all sciences, this is an area in which 

additional research is desperately needed. Incredible progress has been made. Connections between, on the one hand, 

classical mathematics and, on the other, new ways for attaining improved security of data transmission, are among the 

surprising elements of contemporary technological breakthroughs. In this study, we explain how current cryptography, 

including public key cryptography and private key cryptography, may be used to secure sensitive information. 

Silverberg, Alice (2013) We introduce mathematicians to completely homomorphic encryption. With the encrypted data 

Enc (m1),..,Enc (mt) and any efficiently computable function f, an unauthorized third party may generate an encrypted 

version of f(m 1,,m t) without having access to the decryption key or the original data m1,…,mt. Using concepts from 

algebraic number theory and the geometry of numbers, Craig Gentry has just found a solution to this issue. We provide 

some context for the development of cryptography, demonstrate various completely homomorphic encryption algorithms, 

and talk about the challenging mathematical difficulties at the heart of cryptography's security. 

Sikha, M. Suchithra, P. Prabha, & P. Pinchu (2014) found that although many engineering and computer science 

curricula include at least two security-related courses, students often have little opportunity to apply what they learn into 

practice. Security-solving cryptographic algorithms rely on niches of mathematics like modular arithmetic, probability 

theory, and number theory. However, students have trouble grasping the ideas because of the advanced mathematics that 

underlies them; this calls for a radical overhaul of our pedagogical approach. It is important to integrate interactive 

pedagogical tools gradually alongside traditional information in a manner that facilitates learning of both. This paper 

details an Excel-based interactive visualization tool that explains the mathematics underlying popular cryptographic 

protocols to students. Students with varying mathematical abilities are taught how to use a Microsoft Excel spreadsheet 

to conceptualize and apply complex mathematical concepts, and many well-known public key methods are covered. 

Private and Public Key Cryptography 

To grasp the significance of mathematics in cryptography, it is necessary to first familiarize oneself with it use in certain 

cryptographic procedures. The difference between private and public key cryptography is crucial, but understanding it 

requires looking closely at what a key is and why it's used. A key is a piece of data that allows both the sender and the 

recipient to encrypt and decode a communication. Go back to the Caesar cipher we discussed before as an example. Each 

letter in this cipher is shifted to the right by 23 positions. The cipher key is thus the number 23. In contrast to the encryption 

key, the decryption key is disguised in this case. Keeping in mind that there are 26 letters in the English alphabet, 

remember that moving each letter to the right by 23 is the same as shifting each letter to the left by 3. If you move each 
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letter in the encrypted message three times to the right, you'll be back to the original letters. Thus, the answer to 

deciphering this message is 3. The recipient usually just needs the decryption key to understand the message. In order to 

encrypt using a private key, only one key has to be used. This key serves as both a means of protection and decryption. 

As a more secure alternative to private key encryption, public key encryption makes use of a pair of keys: a public and a 

private one. 

Finite Fields 

Say we have a set S, and that the set of ordered pairs (s,t) where both s and t are in S → S ×S. S is mapped into itself 

through the binary operator, *. Remember that the corresponding (s,t) in S ×S must itself be a part of S. A group G is a 

set with the following characteristics: 

• Associativity: For any 𝑎, 𝑏, 𝑐 𝜖 𝐺, 𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐.  

• Identity: It is true that for each a 𝜖 G, there is an element e such that 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎  

• Inverse: There is a corresponding inverse element, a -1, for each a 𝜖 G. 𝑎 + 𝑎−1 = 𝑎 −1 + 𝑎 = 𝑒.  

If the following property also holds, we refer to the group as an abelian group: 

• Commutativity: For any 𝑎, 𝑏 𝜖 𝐺, a ⁎ b = b ⁎ a.  

A ring is a set R satisfying the following conditions for its binary operations + and ∙ 

i. With +, R is an abelian group. 

ii. The logical negation ∙ is associative in binary. 

iii. The principle of distribution holds. This means that any 

𝑎, 𝑏, 𝑐 𝜖 𝑅, 𝑎 ∙ ( 𝑏 + 𝑐 ) = 𝑎 ∙ 𝑏 + 𝑎 ∙ 𝑐 

If the following also true for a given ring, we refer to it as a field:  

• Commutativity of the binary logical operation ∙. 

• As a group, the non-zero components of R fall under 

A field with an infinite number of elements is not considered finite. The set of all finite fields mod 𝑝 is called the finite 

field 𝔽𝑝. 

Key Exchanges over Finite Fields 

Many crucial uses in cryptography may be found for the finite field 𝔽𝑝. The discrete logarithm issue is very important. 

Keep in mind that the powers of a primitive root, denoted by g, create the complete group 𝔽𝑝. Finding an 𝑥𝜖𝔽𝑝 such that 

g x = h (mod p), where g is a primitive root, and h is any non-zero integer in 𝔽𝑝, is known as the discrete logarithm 

problem. The formula for the discrete logarithm is x = log𝑔 h. If you multiply g by itself x times, you'll find that h = 𝑔 ∙ 𝑔 

∙ … ∙ 𝑔 (𝑚𝑜𝑑 𝑝). Finding log𝑔h is equivalent to determining how many times g must be multiplied by itself to get h. The 

discrete logarithm may be calculated in a straightforward manner by iteratively trying different powers of g until one is 

found for which 𝑔 i = h (mod p). Checking the powers of 2, 20, 21, . . . 27 yields the result that 27 = 7 (mod 11), hence this 

is one way to identify and a such that 2x = 7 (mod 11). Unfortunately, any huge prime number makes this approach 

exceedingly challenging. Discrete logarithm problems are at the heart of the calculations behind both the Diffie-Hellman 

and ElGamal key exchanges. 
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Number Theory and the Rsa Cipher 

The RSA Cipher is a great illustration of how concepts from basic number theory may be put to use in the real world. 

You'll notice as you read this part that we've excluded a lot of contexts for the definitions and theorems presented, leaving 

just the essentials for later memorization when we master the RSA cipher. There are a lot of great resources out there if 

you want to learn more about any of these issues. 

Definition 1. Let's pretend a and b are two numbers with a=0 and b=0. We say that a divides b, or that an is a divisor of 

b, if there exists an integer c such that b = ac. The symbol a | b, which may be interpreted as "a divides b," will be used 

often. 

Lemma 1. Let's pretend a and b are two numbers that have the common divisor d≠0. In other words, for all positive 

integers r and s, d | (ra + sb) = d.  

Proposition 1. For a=0, if we have two positive numbers a and b, we can find a unique pair of integers q and r with 0 ≤ r 

< a such that b = aq + r. When we divide b by a, we get q as the quotient and r as the remainder. 

When we do long division, we get a quotient and a residual. It is standard practice to write the result of long division as 
𝑏

𝑎
= q + 

𝑟

𝑎
, however this statement is equal to the one provided in the premise above: b = aq + r. 

Definition 2. The biggest integer c that divides both non-zero integers a and b is called their "greatest common divisor." 

We shall use the old notation throughout this essay, even though the correct form is gcd (a, b) = c. We propose that a and 

b are relatively prime if and only if their greatest common divisor is 1. 

Finding the largest common factor between two positive numbers may be a very helpful calculation. The Euclidean 

algorithm is the name for this method. Given that a and b are positive integers and that a > b, we may write d = gcd of a 

and b. (a, b). Using Proposition 1, we can express b = aq1 + r1 for every 0 ≤ r1 < a. It follows that d | r1 because r1 = b-

aq1, given that d | a and d | b. Hence, d is a factor of both a and r1. Following this, we may express an as a formula: a = 

r1q2 + r2. Because d | a and d | r1, we may write r2 = a-r1q2 to get d | r2. We may draw the same conclusion for d, which 

is a common divisor of both r1 and r2. We repeat this procedure until we find a point where rk+1 = 0. Hence, d = rk follows. 

As the remainders are decreasing with each iteration while being non-negative by definition, we know that the process 

will end when the residual becomes zero. While it's obvious that rk is a divisor of both a and b, we're going to skip over 

the demonstration that it's also the greatest common divisor. Let's go through several instances to get a feel for this method. 

Example: Find gcd(522, 213). First divide 522 by 213.  

522 = 213(2) + 96  

Next, proceed to divide 213 by the remaining 96. 

213 = 96(2) + 21  

96 = 21(4) + 12  

21 = 12(1) + 9  

12 = 9(1) + 3  

9 = 3(3) + 0. 

So gcd(522, 213) = 3. 

Theorem 2. (Arithmetical Primacy Theorem) For each positive integer n, there exists a unique product of primes that 

expresses n. 
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Examples: 10 = 2 · 5, since 2 and 5 are prime. 7800 = 23 · 3 · 5 2 · 13 because 2, 3, 5, Nevertheless, 13 is also a prime 

number. As 23 is prime, 23 equals 23. 

Definition 3. If two numbers m|(a − b)  have the same remainder when divided by our modulus, we say that they are 

congruent modulo m, where m is a positive integer. For this, we use the symbolic notation a ≡b (mod m), which may be 

interpreted as "a is congruent to b mod m." 

Examples: Because 10 | (23-3) = 20, the number 23 is equal to 3 modulo 10. Because 13 | (59 -(—6)) = 65, we also get 

59 ≡6 (mod 13). Nevertheless, 5 ∤ (7 -3) = 4 leads us to the result 7 6 ≢3 (mod 5). 

Definition 4. For any pair of positive integers n and a, the multiplicative inverse of an is the number d such that ad 1 (mod 

n). (mod n). d = a -1 is a common symbolic representation of this d. 

Finding multiplicative inverses modulo n may be made easier with the help of the Euclidean Algorithm that we discussed 

before. Using the technique, we may prove that gcd(a, n) = 1 as a first step toward our goal. Next, we use the obtained 

equations to figure out which values of d and c would result in 1 = ad + nc. If this is the case, we will know that a modulo 

n has multiplicative inverse equal to d. As proof, we may look at the solution set for the equation 1 = ad + nc modulo n 

and see that: 

1 ≡ ad + nc ≡ ad + 0 ≡ ad (mod n) 

Example: Determine 9 modulo 32's multiplicative inverse. In the left-hand column below, you'll see the results of using 

the Euclidean Algorithm to prove that gcd(32, 9) = 1. The right-hand column below displays the residual from each step 

as we answer the problem. These equations involving the remainder are then given labels in the opposite order. 

32 = 9(3) + 5 → 5 = 32 − 9(3) (1)  

9 = 5(1) + 4 → 4 = 9 − 5(1) (2)  

5 = 4(1) + 1 → 1 = 5 − 4(1) (3) 

We will now solve these equations in reverse order. To begin, let's take the third-to-last equation, which gives us 1 = [5-

4(1)]. Next, we plug in the solution from the second-to-last equation (2), where 4 = [9- 5(1)], into the original formula. 

Our words are then grouped and distributed to provide the formula 1 = 9j + 5k for any values of j and k. Finally, to get 

the required equation in terms of 32 and 9, we will substitute 5 = [32-9(3)] (1) and again group our terms. 

1 = [5 − 4(1)] (4)  

= 5 − [9 − 5(1)] (5)  

= 5 − 9 + 5 distribute  

= 9(−1) + 5(2) group terms  

= 9(−1) + 2[32 − 9(3)] (6)  

= 9(−1) + 32(2) + 9(−6) distribute  

= 32(2) + 9(−7) group terms 

As a result, we may deduce that 9−1 ≡ −7 ≡ 25 (mod 32). 9(−7) ≡ −63 ≡ 1 (mod 32) is a valid proof of this (mod 32). 

New Mathematical Modeling for Cryptography 

Definition 5: If the sender, the recipient, and anybody else with access to the message can all understand it, then it is 

plain text. 



JOURNAL OF ALGEBRAIC STATISTICS 

Volume 9, No. 1, 2018, p. 109-115 

https://publishoa.com 

ISSN: 1309-3452 

DOI: https://doi.org/10.52783/jas.v9i1.1446 

114 

Definition 6: Cipher text is defined as the outcome of encoding a plaintext message using an appropriate scheme. 

To create the Laplace Transform, we first need to ensure that f (t) is a function defined for all positive values of t. 

(7) 

if and only if the integral can be calculated. In this case, s is a real or complex integer serving as a parameter. When the 

Laplace transform is reversed, you get 

 

Theorem: One kind of linear transform is the Laplace transform. If, that is. 

(8)  

Then 

 (9) 

Where the constants c1, c2,..., cn apply. 

Some Standard Results of Laplace Transform 

The Laplace transform of every function analyzed here is assumed to exist. Additionally, let's pretend that the letter N 

stands for the set of natural numbers. The subsequent Laplace transform solutions are considered: 

1. (10) 

2. (11) 

3. (12) 

Conclusion 

Mathematics plays a crucial role in today's cryptography. In this paper, Here, we'll explore the mathematical applications 

of many distinct classes of cryptographic ciphers. As one examines the many cryptographic methods out there, the 

influence of mathematics becomes very obvious. But, as mathematics advances and security improve with each new 

cryptographic approach, so do the capabilities and understanding of potential attackers. Unlike other symmetric 

encryption techniques, Laplace Transform-based encryption is very secure. Algorithm implementations may be modified 

as needed. So, the use of mathematics in cyber security must also develop, just as mathematics itself develops through 

time. There are benefits and drawbacks to each encoding and decoding procedure outlined in the various cryptography 

methods. 
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