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Abstract 

The primary arithmetic surface (3, 5) over Q is the focus of this work, which examines its construction and properties. 

Attaching the two symbols i,j where i2 = 3, j2 = 5, and ij = -ji yields a quaternion algebra over Q. This "example issue" 

involves the creation of a hyperbolic surface by linking the points (3, 5) over Q. If you want to demonstrate how to 

discover a Dirichlet domain, or how to generate a hyperbolic polygon, you may use this issue as an illustration. The list 

of generators that corresponds to the edge gluings is one possible motivation for seeking for a hyperbolic surface. The 

generators in this list have applications beyond only pure mathematics and science. Creating a co-compact Dirichlet 

domain in Hyperbolic 3-space is the focus of this article. Based on the concepts introduced in "Expository Note: An 

Arithmetic Surface," this article was written. We provide a brief summary of the material presented before constructing 

the Dirichlet domain in Hyperbolic 2-space associated with the quadratic form Q(x) = x2 +y2 -7z2. It is then shown that 

the new quadratic, Q(x) = w2 + x2 + y2 -7z2, also has a Dirchlet Domain in Hyperbolic 3-space. 
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Introduction 

Multivariate polynomial equations over R or C are the focus of algebraic geometry. A hyperbola is defined by the equation 

x 2 + xy 5y 2 = 1. It makes use of both commutative algebra and intuitive geometry. In arithmetic geometry, however, 

the solutions in which the coordinates reside are of relevance, and these fields are often not algebraically closed. Q and 

Fp, as well as their finite extensions, are of particular importance. Z-coordinated solutions are also of interest. 

Here we implement such an approach and provide numerical proof for Birch's and Swinnerton-Dyer's hypothesis on the 

Jacobian of the level-13 Cartan modular curve. Our key contribution is a novel method for calculating the local N'eron 

pairings that does not rely on archimedean geometry. Of possible independent relevance, we also provide a novel approach 

for finding the intersection pairing of two divisors without a shared component on a normal arithmetic surface. In brief, 

we utilize a saturation of the defining ideals to bring divisors up from the generic fibre to the arithmetic surface, and we 

use an inclusion-exclusion concept to handle divisors that intersect on several affine patches. Similar to the methods 

described, the archimedean local N'eron pairs D, E are calculated by inverting a translation of the Riemann theta function 

to C(C). New algorithms by Neurohr and Molin-Neurohr are used to compute period matrices and Abel-Jacobi maps on 

Riemann surfaces explicitly. 

Literature Review 

Ono, Ken & Trebat-Leder, Sarah (2016) Ramanujan's work on the mathematics behind the infamous "taxi-cab" figure 

$1729$ is revisited. The $$ theme of Euler's writings is the diophantine equation a3+b3=c3+d3. Important aspects of 

geometry and number theory can be traced back to Ramanujan's work, as well as profound structures and occurrences. 

He found a $K3$ surface with Picard number $18$, which allows for the construction of an endless number of cubic 

twists over $\mathbb{Q}$ of rank $\geq 2$. 

Bergeron, Nicolas. (2016) we reviewed the many methods available for building first-kind Fuchsian groups. From a 

number theoretic perspective, the arithmetic groups are the most important of these groups. Given the technical nature of 

the general description of these groups, we will instead focus on explaining one example family: the arithmetic groups 

arising from a quaternion algebra over Q. First, we prove some general facts about lattice space before discussing them. 

Dória, Cayo. (2017) For each collection of arithmetic surfaces, there should be a consistent pattern in how their images 

of interesting functions are distributed. We look at how frequently the function systole occurs. Some of the findings we 
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provide suggest that the set of arithmetic surfaces cannot have its systoles concentrated. The proofs draw on several areas 

of mathematics, including combinatorics. 

Surfaces  

Classification of Surfaces 

Surfaces are shapes that, at least in close proximity, resemble flat planes. The Earth, as an example, has a surface and is 

locally flat, which is why this misconception persisted for so long. 

Definition 1. If the neighborhood of each point on the topological surface is homeomorphic to an open subset of R2, then 

the topological surface is a Hausdorff topological space with a countable basis. 

Definition 2. We define a compact surface to be S. S is orientable if and only if there is a way to choose which direction 

is "outside" of the surface. 

Definition 3. A group having discrete topology is said to be "discrete." 

Proposition 5. The quotient is the area of the freshly adhered surface, and the result is a covering map made of |Γ|-sheets. 

The study of surface topology is our first step. Topology is the study of the intrinsic properties of surfaces. A surface may 

acquire cone points when it is a cover for another surface. Consider a literal pole, as in Example 1, intersecting with a 

surface; a fundamental domain is then rotated around the pole at some angle, and the resulting surface is the fundamental 

domain. Cone points are created at the locations where the pole and the surface meet. 

Example 1. This is a genus 2 surface we can examine in detail. 

 

Figure 1: Surface-Covered Species 2 cone-shaped points on 1 flat surface. 

When we put this pole in the exact center of this surface, we create two intersections. That's where you go in from the top 

and out the bottom. The surface is flipped 180 degrees around this axis. In this example, two cone points on a genus-2 

surface wrap around a genus-1 surface, each of which has a radius of 180 degrees. The cover is double-sided. 
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Example 2. In this article, we examine the quotient orbifolds that emerge from rotating a genus 3 surface around two 

different axes. 

 

Figure 2: Surface of genus 3 with two possible orientations of the axis of rotation 

The picture centers on the pole, while a 120-degree rotation of the fundamental domain places it at an angle. The degree 

of the two cone points is 3. The signature is the means through which different surfaces may be distinguished. Two 

surfaces of genus one with the signatures (1, 2, 2, 2, 2) are hidden under a genus three surface (1; 3, 3).  

Examples of Compact Arithmetic Surfaces 

Hyperbolic 2-Space  

We'll provide a brief synopsis of Konorovich's explanatory letter, as promised. In order to spice up this part and provide 

the reader with two alternative examples to refer to, we will be working with a different quadratic form, Q(x) = x 2 +y2 -

7z2, than what was in the note. Anisotropic (Q ≠0) and indefinite over Q describe this quadratic form.  

We will begin by building G's spin representation. The goal is to build a pair of matrices mx that completely represent Q 

(x). Possible choices include, 
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Take into account that the determinant of this symmetric matrix is -Q (x). Then, we use 

 

the fact that 

 

whose determinant is -Q(x) and which is symmetric once more. New x’ may be obtained directly from x and our operation 

g in the following way. 

 

The aforementioned 33G matrix acts as a road map.  

 

The properties I2 = 7, J 2 = 7, K 2 = -1, and 
1

7
 IJ = K are what we're after. Hence, the norm of u is found to be a + bi + cj + 

dk. We then see this algebra of division in the following forms: 

 

Therefore 

 

In this case, det(u) =N (u). That's why it's the same as having elements in SL (2, R) if u has norm 1. Applying the map 

symbol to them, we see that: 

 

We have a discrete group if and only if a, b, c, and d are all elements of Z. That's why we're on the lookout for anything 

in the integer ring OK = Z[3] of the number field K = Q[3]. The next thing to do is a thorough search for "little". We then 

employ γ at a given point to create the Dirichlet domain. Keep in mind 
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Hence, we can only have a parabolic component if a = ±1. Because we went with an anisotropic Q, this situation never 

arises. As it lacks parabolic components, it is possible to build a co-compact Dirichlet domain without encountering any 

cusps. 

 

Figure 3: The Dirichlet domain associated with Q(x) = x2 + y2 − 7z2 

Hyperbolic 3-Space  

The identical procedure will now be used to a different quadratic form. Let x = (w, x, y, z) and  

 

As a result, Q(x) is still anisotropic over Q despite being a quaternary quadratic form. The lack of solutions modulo 8 

demonstrates its anisotropy. Once again, we may acquire the (w, x, y, z) values for Q(x) by storing them in a 22 matrix 

with the determinant equal to -Q(x). Keep in mind the following will do the trick: 

 

It is possible to uniquely identify the point (w, x, y, z) from the matrix mx, where the determinant is -Q(x). Let be the 

conjugate transpose of g ∈ SL(2, C), and define g ◦ mx = gmxg*. After that, we get det(g ◦ mx) = |ad − bc| 2det(mx). Just 

as before, we can solve for x 0 = (w', x', y', z') by setting g ◦ mx = mx’. 

 

Where, 
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Define ι(g) = {mi,j}i,j≤4 as the succeeding: 

 

As in the preceding section, we may apply the map ι to these matrices; however, we will not do so here. After that, we 

resort to a simple brute-force search for γ ∈ Γ. Once again, there are no cusps, therefore we have built a co-compact 

Dirichlet domain. 

 

Figure 4: The Dirichlet domain associated with Q(x) = w2+ x2+ y2− 7z2 

Conclusion 

Fibered surfaces over algebraic curves have a mathematical counterpart in arithmetic surfaces over Dedekind domains. 

There is a generic fiber of an arithmetic surface over the ring of integers OK that is isomorphic to a curve over a number 

field S. It's possible to think about arithmetic systems in greater dimensions. The study of numbers is where arithmetic 

surfaces first appear. My Dirichlet domain centers on the coordinates (0, 2), therefore I use this quaternion algebra to 

generate a long series of matrices and apply them using M¨obius transformations. My orbit sampling is this set of locations 

after transformation. After compiling a complete set of perpendicular bisectors, we next plot them. The list of generators 

that corresponds to the edge gluings is one possible motivation for seeking for a hyperbolic surface.  
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