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ABSTRACT 

 

Let 𝐺 be a finite, undirected and simple graph. A proper vertex coloring of a graph of 𝐺 is equitable if the sizes of color 

classes differ by atmost 1. The equitable chromatic number of a graph G, denoted by 𝜒=(𝐺), is the minimum k such that 𝐺 

is equitably 𝑘-colorable. We shall discuss about an equitable coloring for union of two graphs. 

 

 

1. Introduction 

 

All graphs considered in this paper are finite, undirected and without loops and multiple edges. Let 𝐺 = (𝑉, 𝐸) be a simple 

connected graph with vertex set 𝑉(𝐺) and edge set 𝐸(𝐺). All the definitions which are not discussed in this paper one may 

refer [2, 3]. The origin of graph theory can be traced back to Euler’s work on the Konigsberg bridge problems [1]. It has a 

wide range of applications such as finding communities in networks, solving shortest path problems, analyzing the 

chemical structures and so on. Beginning with the origin of the four color problem in 1852, the field of graph coloring has 

developed into one of the most interesting areas of graph theory [7]. In particular, graph coloring plays a central position in 

discrete mathematics and computer science. In past decades, many research articles have been devoted to exploring the 

applications of these coloring problems. A proper 𝑘− coloring of a graph 𝐺 is a function 𝑓 ∶  𝑉 (𝐺)  →  {1, 2, . . . , 𝑘} define 

in such a way that 𝑓(𝑥)  ≠ 𝑓(𝑦) whenever 𝑥𝑦 ∈  𝐸(𝐺). The vertices of the same color form a color class. The chromatic 

number 𝜒(𝐺) of a graph 𝐺, is the smallest integer 𝑘 such that 𝐺 has a proper 𝑘− coloring. An edge coloring assigns a color 

to each so that no two adjacent edges share the same color. In the current paper, we focus on a typical version of graph 

coloring called equitable coloring [5]. The concept of equitable colorability was first introduced by Meyer [4]. His 

motivation came from the application given by Tucker where the vertices represented garbage collection routes and two 

such vertices were joined when the corresponding routes should not be run on the same day. If the set of vertices of a graph 

𝐺 can be partitioned into 𝑘 classes 𝑉1, 𝑉2, . . . , 𝑉𝑘  such that each 𝑉𝑖 is an independent set and the condition ||𝑉𝑖 | − |𝑉𝑗 || ≤ 1 

holds for every pair (𝑖, 𝑗), then 𝐺 is said to be equitably 𝑘 − colorable. The smallest integer 𝑘 for which 𝐺 is equitably 𝑘− 

colorable is known as the equitable chromatic number of [13–16] 𝐺 and is denoted by 𝜒=(𝐺). Since equitable coloring is a 

proper coloring with additional condition, 𝜒(𝐺)  ≤ 𝜒=(𝐺) for any graph 𝐺. It is interesting to note that if a graph 𝐺 is 

equitably 𝑘 − colorable, it does not imply that it is equitably 𝑘 +  1− colorable. A counter example is the complete 

bipartite graph 𝐾3,3 which can be equitably colored with two colors, but not with three. The equitable chromatic threshold 

of 𝐺 is 𝜒∗
=

(𝐺)  = 𝑚𝑖𝑛{𝑡 ∶  𝐺 𝑖𝑠 𝑒𝑞𝑢𝑖𝑡𝑎𝑏𝑙𝑦 𝑘 −  𝑐𝑜𝑙𝑜𝑟𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ≥  𝑡}. In 1964, Erdos [8] conjectured that any graph 

𝐺 with maximum degree ∆(𝐺)  ≤  𝑘 has an equitable (𝑘 +  1) − coloring, or equivalently is 𝜒∗
=(𝐺)  ≤  ∆(𝐺)  +  1 . This 

conjecture was proved in 1970 by Hajnal and Szemeredi [9]. Recently, Kierstead and Kostochka [10] gave a short proof of 
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the theorem, and presented a polynomial algorithm for such a coloring. In 1973, Meyer [4] formulated the following 

conjecture: Equitable Coloring Conjecture [4]. For any connected graph 𝐺, other than a complete graph or an odd cycle, 

𝜒=(𝐺)  ≤  ∆(𝐺). This conjecture has been verified for all graphs on six or fewer vertices. Lih and Wu [16] proved that the 

Equitable Coloring Conjecture is true for all bipartite graphs. Wang and Zhang [19] considered a broader class of graphs, 

namely 𝑟 −partite graphs. They proved that Meyer’s conjecture is true for complete graphs from this class. Also, the 

conjecture was confirmed for outerplanar graphs [17] and planar graphs with maximum degree at least 13 [18]. We also 

have a stronger conjecture: Equitable ∆ − Coloring conjecture [13], If 𝐺 is a connected graph of degree ∆, other than a 

complete graph, an odd cycle or a complete bipartite graph 𝐾2𝑛+1,2𝑛+1 for any n ≥ 1, then G is equitably ∆ − Colorable. 

The Equitable ∆ Coloring Conjecture holds for some classes of graphs, e.g., bipartite graphs [16], outerplanar graphs with 

∆ ≥  3 [17] and planar graphs with ∆ ≥  13 [18]. The detailed survey of this type of coloring is found in Lih [6]. In the 

present paper, we study on equitable coloring for union of graphs. 

 

2.  Preliminaries 

Before we go through the main results, we want some preliminary results related for equitable coloring. 

Definition 2.1. Let 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) be two simple graphs. 𝐺1  ∪  𝐺2 denotes the Union of two graphs 

𝐺1 and  𝐺2 has the vertex set 𝑉1  ∪  𝑉2and edge set 𝐸1  ∪  𝐸2. When  𝐺1 and 𝐺2 are disjoint 𝐺1  ∪  𝐺2 is denoted by 𝐺1 + 𝐺2. 

Lemma 2.2. [20] If two graphs G and 𝐻 with disjoint vertex sets are both equitably 𝑘 − colorable, then 𝐺 +  𝐻 is also 

equitably 𝑘 − colorable. 

Lemma 2.3. [20] 𝑚𝐾𝑛,𝑛 is equitably 𝑘 − colorable for any 𝑚 ≥  2, 𝑛 ≥  2 𝑎𝑛𝑑 𝑘 ≥  2.  

Lemma 2.4. [20] Let 𝐺 be a graph and suppose that |𝑉 (𝐺)| is not divisible by a positive integer 𝑛 ≥  3. If 𝐺 is equitably 

𝑛 − colorable, then 𝐺 +  𝐾𝑛,𝑛 is also equitably 𝑛 − colorable.  

Lemma 2.5. [20] Let 𝐺 be a graph and suppose that |𝑉 (𝐺)| is divisible by a positive integer 𝑛 ≥  3. If there exists a 

proper 𝑛 − coloring of G such that the sizes of color classes in nondecreasing order are 
|𝑉 (𝐺)| 

𝑛
 − 1,

|𝑉 (𝐺)| 

𝑛
 − 2 . . . , 

|𝑉 (𝐺)| 

𝑛
 , 

|𝑉 (𝐺)| 

𝑛
  + 1, then 𝐺 + 𝐾𝑛,𝑛 is equitably 𝑛 −  𝑐𝑜𝑙𝑜𝑟𝑎𝑏𝑙𝑒.  

Lemma 2.6. [20] Let 𝑛 ≥  2 be a positive integer and let 𝐺 be a graph with ∆(𝐺)  ≤  𝑛 −  1. Then 𝐺 + 𝐾𝑛,𝑛is 

equitably 𝑛 − colorable if and only if 𝑛 is even, or 𝐺 is different from m𝐾𝑛 for all 𝑚 ≥  1.  

 

Lemma 2.7. [20] Let G be a graph with ∆(𝐺)  ≥  𝜒(𝐺). If 𝐺 is equtably ∆(G)− colorable, then at least one of the following 

statements holds.  

1. ∆(𝐺) is even.  

2. No components or at least two components of 𝐺 are isomorphic to 𝐾∆(G),∆(G)  .  

3. Only one component of G is isomorphic to 𝐾∆(G),∆(G)  and 𝛼(𝐺 − 𝐾∆(𝐺),∆(𝐺)  )  >
|𝑉 (𝐺−𝐾∆(𝐺),∆(𝐺) )| 

∆
>  0. 

 

2. Equitable coloring for union of two graphs 

 

In this section, we obtained the gentralized formula for equitable chromatic number for union of any two graphs. 

Theorem 3.1. Let 𝐺1 and 𝐺2 be two graphs. Let 𝑘 = 𝑚𝑎𝑥(𝜒∗
=

(𝐺1) , 𝜒∗
=

(𝐺2) ). Then 𝐺1  ∪  𝐺2  is equitably 𝑘 − colorable. 

 

Proof. Let 𝐺1 and 𝐺2 be two graphs with 𝑛1and 𝑛2 vertices respectively. Let max (𝜒∗
=

(𝐺1), 𝜒∗
=

(𝐺2)) =   𝑘. With out loss 

of generality,  let 𝜒∗
=

(𝐺1) = 𝑘. Case 1: Let  𝑛2 ≥ 𝑘. 𝜒∗
=

(𝐺2) ≤ 𝑘 ≤ 𝑛2. Since 𝐺2  is equitably 𝑘 colorable. Let 𝜑1  = 

{𝑉1, 𝑉2, . . . , 𝑉𝑘} be an equitable color partition of 𝐺1such that |𝑉𝑖  |  ≤  |𝑉𝑖+1| and 𝑖 =  1, 2, . . . , 𝑘 −  1. Let 𝜑2 = 

{𝑊1, 𝑊2, . . . , 𝑊𝑘} be an equitable color partition of 𝐺2 such that  |𝑊𝑖  |  ≤  |𝑊𝑖+1 | and 𝑖 =  1, 2, . . . , 𝑘 −  1. Assume that the 

first 𝑡 color classes in 𝜑1 has 𝑙 elements and the remaining 𝑘 −  𝑡 color classes has 𝑙 +  1 elements. Similarly the 
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first 𝑠 color classes in 𝜑2 has 𝑚 elements and the remaining 𝑘 −  𝑠 has color classes has 𝑚 +  1 elements. Here 0 ≤

 𝑠, 𝑡 ≤  𝑘. When either 𝑠 or 𝑡 ∈  {0, 𝑘}, {𝑉1 ∪ 𝑊1, 𝑉2 ∪ 𝑊2, . . . , 𝑉𝑘 ∪ 𝑊𝑘} is an equitable coloring of 𝐺1  ∪  𝐺2. In this case 

𝜒=(𝐺1  ∪  𝐺2) ≤  𝑘. Let  𝑠, 𝑡 ∉  {0, 𝑘}. Subcase 1: Let 𝑠 ≤  𝑘 −  𝑡. Consider the partition 𝜑3 = {𝑉1  ∪  𝑊𝑘 , 𝑉2  ∪

 𝑊𝑘−1, … , 𝑉𝑡  ∪  𝑊𝑘−(𝑡−1), 𝑉𝑡+1  ∪  𝑊𝑘−𝑡 , . . . , 𝑉𝑘  ∪  𝑊1}. In this partition 𝑠 +  𝑡 classes have 𝑙 +  𝑚 +  1 elements and the 

remaining classes contain 𝑙 +  𝑚 +  2 elements. Hence 𝜑3 is an equitable coloring of   𝐺1  ∪  𝐺2. Subcase 2: Let 𝑡 ≥  𝑘 −

 𝑠. Clearly 𝑠 ≥  𝑘 −  𝑡. In this case 𝜑3 becomes an equitable coloring of 𝐺1  ∪  𝐺2 where each color class contains either 

𝑙 +  𝑚 elements or 𝑙 +  𝑚 +  1. Hence 𝜒=(𝐺1  ∪  𝐺2) ≤  𝑘 = 𝑚𝑎𝑥(𝜒∗
=(𝐺1) , 𝜒∗

=(𝐺2) ).  Case 2: Let  𝑛2 ≤  𝑘. Since 𝐺2 is 

𝑛2 equitably colorable, we can always obtain an equitable color partition 𝜑2 for 𝐺2 with 𝑛2 color class when each color 

class contains single vertex. Let 𝜑2 = {{𝑊1}, {𝑊2}, . . . , { 𝑊𝑛2
}}.Clearly {𝑉1  ∪  {𝑊1}, 𝑉2  ∪  {𝑊2}, … , 𝑉𝑛2  ∪

 {𝑊𝑛2 }, 𝑉𝑛2+1, . . . , 𝑉𝑘  } is an equitable class partition for 𝐺1  ∪  𝐺2. Hence 𝜒=(𝐺1  ∪  𝐺2) ≤  𝑘. 

 

Note1: The upper bound for 𝜒=(𝐺1  ∪  𝐺2)  given in the above theorem is attainable. 

For example1: 𝜒=(𝐾1,3  ∪  𝐾2,7)   ≤ 𝑚𝑎𝑥(𝜒∗
=(𝐾1,3) , 𝜒∗

=(𝐾2,7) ). 𝜒=(𝐾1,3  ∪  𝐾2,7) = 3, 𝜒∗
=(𝐾1,3) = 3 , 𝜒∗

=(𝐾2,7) = 4 

Therefore 3 < 4. The equitable chromatic number of  (𝐾1,3  ∪  𝐾2,7) is given in the following figure. 

 

 

                                         
 

                                            Figure 1: 𝜒=(𝐾1,3  ∪  𝐾2,7) = 3.  

 

Note2: The equality condition attains for the above theorem. 

 

Corollary 1.  𝜒=(𝐺1  ∪  𝐺2)  ≤ 𝑚𝑎𝑥(𝜒∗
=

(𝐺1) , 𝜒∗
=

(𝐺2) ).   

 

Proof. In view of the above theorem, if 𝑘 = 𝑚𝑎𝑥(𝜒∗
=

(𝐺1) , 𝜒∗
=

(𝐺2) ), then 𝐺1  ∪  𝐺2 is equitably 𝑘 colorable. Hence 

𝜒=(𝐺1  ∪  𝐺2) ≤ 𝑘 = 𝑚𝑎𝑥(𝜒∗
=

(𝐺1) , 𝜒∗
=

(𝐺2) ).  

 

 

Theorem 3.2. If 𝐺1 , 𝐺2 , … , 𝐺𝑛 are 𝑙 disjoint graphs then 𝜒=(∪ 𝐺𝑖) ≤ 𝑚𝑎𝑥 {𝜒∗
=

(𝐺1), 𝜒∗
=

(𝐺2), . . , 𝜒∗
=

(𝐺𝑙)}.   

 

Proof. We prove the theorem by the method of induction on 𝑛. The theorem is true for 𝑛 =  2 in view of the above 

theorem. Assume that the theorem is true for 𝑛 <  𝑘. We prove the theorem for 𝑛 =  𝑘. 
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𝜒= (⋃ 𝐺𝑖

𝑘

𝑖=1

) = 𝜒= (⋃ 𝐺𝑖 ∪

𝑘−1

𝑖=1

𝐺𝑘) ≤ max (𝜒∗
=

(⋃ 𝐺𝑖

𝑘−1

𝑖=1

) , 𝜒∗
=

(𝐺𝑘))

≤ max (max (𝜒∗
=

(𝐺1), 𝜒∗
=

(𝐺2), … , 𝜒∗
=

(𝐺𝑘−1)), 𝜒∗
=

(𝐺𝑘))

≤ max (𝜒∗
=

(𝐺1), 𝜒∗
=

(𝐺2), … 𝜒∗
=

(𝐺𝑘−1), 𝜒∗
=

(𝐺𝑘)). 

Corollary 2. 𝜒=(Pm ∪ 𝑃𝑛) = 2.  

 

Proof. We know that 𝜒=(𝑃𝑚) = 𝜒=(𝑃𝑛) = 2, 𝜒∗
=

(𝑃𝑚) = 𝜒∗

=
(𝑃𝑛) = 2  for all 𝑚, 𝑛. So 2 = 𝜒= (Pm)≤ 𝜒=(Pm ∪ 𝑃𝑛) ≤

max{2,2}. Hence 𝜒=(Pm ∪ 𝑃𝑛) = 2. 

 

Corollary 3. 𝜒=(Pn ∪ 𝐶𝑚) = {
2, 𝑖𝑓 𝑚 = 𝑒𝑣𝑒𝑛
3, 𝑖𝑓 𝑚 = 𝑜𝑑𝑑

. 

Proof. It is easy to verify that 𝜒= (Pn) =  𝜒∗
=

(𝑃𝑛) = 2, 𝜒=(𝐶𝑚) =  𝜒∗
=

(𝐶𝑚) = {
2, 𝑖𝑓 𝑚 = 𝑒𝑣𝑒𝑛
3, 𝑖𝑓 𝑚 = 𝑜𝑑𝑑

. By the above theorem 

, 𝜒=(Pn ∪ 𝐶𝑚) = {
2, 𝑖𝑓 𝑚 = 𝑒𝑣𝑒𝑛
3, 𝑖𝑓 𝑚 = 𝑜𝑑𝑑

. 

  

Corollary 4. 𝜒=(Cn ∪ 𝐶𝑚) = {
2, 𝑖𝑓 𝑚 = 𝑒𝑣𝑒𝑛
3, 𝑖𝑓 𝑚 = 𝑜𝑑𝑑

. 

Proof. Similarly from the above corollary, 𝜒=(Cn ∪ 𝐶𝑚) = {
2, 𝑖𝑓 𝑚 = 𝑒𝑣𝑒𝑛
3, 𝑖𝑓 𝑚 = 𝑜𝑑𝑑

. 

The equitable chromatic number of (C5 ∪ 𝐶6) is given in the following figure. 

 

                                            
                                                Figure 2: 𝜒=(C5 ∪ 𝐶6) = 3 

 

Corollary 5. 𝜒=(Kn ∪ 𝑃𝑛) = 𝑛.  

 

Proof. It is easy to verify that 𝜒=(𝑃𝑛) =  𝜒∗
=

(𝑃𝑛) = 2 and 𝜒=(𝐾𝑛) =  𝜒∗
=

(𝐾𝑛) = 𝑛. So 𝑛 = 𝜒= (Kn)≤ 𝜒=(Kn ∪ 𝑃𝑛) ≤

max{𝑛, 2}. Hence 𝜒=(Kn ∪ 𝑃𝑛) = 𝑛. 

 

Corollary 6. 𝜒=(Kn ∪ 𝐶𝑚) = 𝑛.  

 

Proof. It is easy to verify that  𝜒= (Kn) = 𝜒∗
=

(𝐾𝑛) = 𝑛, 𝜒=(𝐶𝑚) =  𝜒∗
=

(𝐶𝑚) = {
2, 𝑖𝑓 𝑚 = 𝑒𝑣𝑒𝑛
3, 𝑖𝑓 𝑚 = 𝑜𝑑𝑑

.  By the above theorem,  

𝜒=(Kn ∪ 𝐶𝑚) = 𝑛. 

 

Corollary 7. 𝜒=(Kn ∪ 𝐾𝑛) = 𝑛. 

 

Proof. It is easy to verify that  𝜒= (Kn) = 𝜒∗
=

(𝐾𝑛) = 𝑛. So 𝑛 = 𝜒= (Kn)≤ 𝜒=(Kn ∪ 𝐾𝑛) ≤ max{𝑛, 𝑛}. Hence 𝜒=(Kn ∪
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𝐾𝑛) = 𝑛. 

 

4. Conclusion 

 

In this paper, we have tried to obtain generalized formula for equitable chromatic number of union of any two graphs. Also 

we obtained the equitable chromatic number of path union path, path union cycle, cycle union cycle, complete graph union 

path, complete graph union cycle and complete graph union complete graph. 
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