Total Mean Cordial Labeling in Different Graphs

P. Jayaprakash ${ }^{1}$, B. Kalins ${ }^{2}$ \& K. Nivethitha ${ }^{3}$
${ }^{1}$ Assistant Professor, Department of Mathematics,Sri Ramakrishna Engineering College,Coimbatore, Tamilnadu, India. Email : jayaprakash.pappannan@srec.ac.in
${ }^{2}$ Assistant Professor,Department of Science and Humanities, Sri Krishna College of Engineering and Technology,Coimbatore, Tamilnadu, India. Email : kalins@skcet.ac.in
${ }^{3}$ Assistant Professor,Department of Mathematics, M.Kumarasamy College of Engineering,Karur, Tamilnadu, India.
Email : knivethitha13@gmail.com

Abstract

In a graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is a mapping $f: V \rightarrow\{0,1,2\}$ such that $f(u v)=\left\lceil\frac{f(u)+f(v)}{2}\right\rceil, u, v \in V$ and the mapping satisfies the condition $\left|e^{*}(i)-e^{*}(j)\right| \leq 1$, for $i, j=\{0,1,2\}$ where $e^{*}(i)$ donates the total number of edges labeled with $i \in\{0,1,2\}$. The graph consist total mean cordial labeling it named as a total mean cordial graph. In this paper, we will investigate the total mean cordial labeling in various graphs like brush graph, ladder graph, triangular ladder graph. Further explain the theorem with examples.

1. Introduction

Cordial labeling is one of the well-known research topic in graph theory. There are different cordial labeling in graphs like SD prime cordial, sum divisor cordial, intersection cordial labeling etc. In this paper we will explain the concept of total mean cordial labeling. In a graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is a mapping $f: V \rightarrow\{0,1,2\}$ such that $f(u v)=\left\lceil\frac{f(u)+f(v)}{2}\right\rceil, u, v \in V$ and the mapping satisfies the condition $\left|e^{*}(i)-e^{*}(j)\right| \leq 1$, for $i, j=\{0,1,2\}$ where $e^{*}(i)$ donates the total number of edges labeled with $i \in\{0,1,2\}$. The graph consist total mean cordial labeling it named as a total mean cordial graph. Further we investigated the total mean cordial labeling in various graphs like brush graph, ladder graph, triangular ladder graph. Further explain the theorem with examples.

2. Total mean cordial labeling in various graphs

In this section the idea of total mean cordial labeling in different graphs like brush graph, ladder graph, triangular ladder graph.
Definition 2.1: In a graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is a mapping $f: V \rightarrow\{0,1,2\}$ such that $f(u v)=\left\lceil\frac{f(u)+f(v)}{2}\right\rceil, u, v \in V$ and the mapping satisfies the condition $\left|e^{*}(i)-e^{*}(j)\right| \leq 1$, for $i, j=\{0,1,2\}$ where $e^{*}(i)$ donates the total number of edges

Volume 13, No. 2, 2022, p. 110-115
https://publishoa.com
ISSN: 1309-3452
labeled with $i \in\{0,1,2\}$. The graph consist total mean cordial labeling it named as a total mean cordial graph.
Theorem 2.1: The Brush graph B_{n} is a total mean cordial graph.
Proof: The Brush graph B_{n} constructed by the path P_{n} and P_{1}^{n}. Therefore Brush graph B_{n} having the set of vertices $V=\left\{u_{i}, v_{i}, 1 \leq i \leq n\right\}$. Note that there is a ' n ' different $u_{i} v_{i}, P_{1}$ paths in B_{n} it is denoted by $P_{1}^{n}, 1 \leq i \leq n$ and also it contain P_{n} paths in B_{n}. Therefore edges set $E\left(B_{n}\right)=\left\{u_{i} v_{i+1} \mid 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i} \mid 1 \leq i \leq n\right\}$. This implies order and size of B_{n} are $2 n$ and $2 n-1$. Construct the mapping $\left.f: V\left(B_{n}\right)\right) \rightarrow\{0,1,2\}$ as follows,
Case(i): If $n=0(\bmod 3)$
Let $t=\frac{n}{3}$ now we construct the mapping $\left.f: V\left(B_{n}\right)\right) \rightarrow\{0,1,2\}$ as follows
$f\left(U_{i}\right)=\left\{\begin{array}{l}2, \text { for } 1 \leq i \leq t \\ 1, \text { for }(t+1) \leq i \leq 2 t \\ 0, \text { Otherwise }\end{array} \quad f\left(V_{i}\right)=\left\{\begin{array}{l}2, \text { for } 1 \leq i \leq t \\ 1, \text { for }(t+1) \leq i \leq 2 t \\ 0, \text { Otherwise }\end{array}\right.\right.$
We note that from the above mapping $e_{f^{*}}(0)=\left\lceil\frac{(2 n-1)}{3}\right\rceil-1, e_{f^{*}}(1)=\left\lceil\frac{(2 n-1)}{3}\right\rceil$ and $e_{f^{*}}(2)=\left\lceil\frac{(2 n-1)}{3}\right\rceil$
Case(ii): If $\mathrm{n}=1(\bmod 3)$
Let $t=\left\lfloor\frac{n}{3}\right\rfloor$ now we construct the mapping $\left.f: V\left(B_{n}\right)\right) \rightarrow\{0,1,2\}$ as follows
$f\left(U_{i}\right)=\left\{\begin{array}{l}2, \text { for } 1 \leq i \leq t \\ 1, \text { for }(t+1) \leq i \leq 2 t \\ 0, \text { Otherwise }\end{array} \quad f\left(V_{i}\right)=\left\{\begin{array}{l}2, \text { for } 1 \leq i \leq t \\ 1, \text { for }(t+1) \leq i \leq 2 t \\ 0, \text { Otherwise }\end{array}\right.\right.$
We note that from the above mapping $e_{f^{*}}(0)=\left\lfloor\frac{(2 n-1)}{3}\right\rfloor+1, e_{f^{*}}(1)=\left\lfloor\frac{(2 n-1)}{3}\right\rfloor$ and $e_{f^{*}}(2)=\left\lfloor\frac{(2 n-1)}{3}\right\rfloor$
Case(iii): If $\mathrm{n}=2(\bmod 3)$
Let $t=\left\lceil\frac{n}{3}\right\rceil$ now we construct the mapping $\left.f: V\left(B_{n}\right)\right) \rightarrow\{0,1,2\}$ as follows
$f\left(U_{i}\right)=\left\{\begin{array}{l}2, \text { for } 1 \leq i \leq t \\ 1, \text { for }(t+1) \leq i \leq 2 t \\ 0, \text { Otherwise }\end{array} \quad f\left(V_{i}\right)=\left\{\begin{array}{l}2, \text { for } 1 \leq i \leq(t-1) \\ 1, \text { for } t \leq i \leq 2(t-1) \\ 0, \text { Otherwise }\end{array}\right.\right.$
We note that from the above mapping $e_{f^{*}}(0)=\frac{(2 n-1)}{3}, e_{f^{*}}(1)=\frac{(2 n-1)}{3}$ and $e_{f^{*}}(2)=\frac{(2 n-1)}{3}$. Therefore from the above cases the Brush graph B_{n} under consideration satisfies the conditions $\left|e^{*}(i)-e^{*}(j)\right| \leq 1$, for $i, j=\{0,1,2\}$. Hence Brush graph B_{n} is a total mean cordial graph.
Example 2.1: The total mean cordial labeling of the graph $B_{9}, B_{7} \& B_{8}$

Volume 13, No. 2, 2022, p. 110-115
https://publishoa.com
ISSN: 1309-3452

Figure 2.1: Total mean cordial labeling of the graph $B_{9}, B_{7} \& B_{8}$
In the above graph B_{9}, the number of edges labeled with 0,1 or 2 is $e_{f^{*}}(0)=5, e_{f^{*}}(1)=6$ and $e_{f^{*}}(2)=6$. The graph B_{7}, the number of edges labeled with 0,1 or 2 is $e_{f^{*}}(0)=5, e_{f^{*}}(1)=4$ and $e_{f^{*}}(2)=4$. Finally the graph B_{8}, the number of edges labeled with 0,1 or 2 is $e_{f^{*}}(0)=5, e_{f^{*}}(1)=5$ and $e_{f^{*}}(2)=5$. Therefore $B_{9}, B_{7} \& B_{8}$ satisfies the condition $\left|e^{*}(i)-e^{*}(j)\right| \leq 1$, for $i, j=\{0,1,2\}$. Hence the graph $B_{9}, B_{7} \& B_{8}$ are Total mean cordial graph.

Theorem 2.2: The ladder graph L_{n} is a total mean cordial graph.
Proof: The ladder graph L_{n}, constructed by the graphs $P_{1} \& P_{n}$. Therefore the graph L_{n} having the set of vertices $V=\left\{u_{i} \mid 1 \leq i \leq n\right\} \cup\left\{v_{i} \mid 1 \leq i \leq n\right\}$. Note that there is $(2 n)$ vertices in L_{n}. The contains the graphs P_{2}, P_{n} and P_{2}^{n}. Therefore the edges set of ladder graph L_{n} is $E\left(B_{n}\right)=\left\{u_{i} v_{i+1} \mid 1 \leq i \leq n-1\right\} \cup\left\{v_{i} v_{i+1} \mid 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i} \mid 1 \leq i \leq n\right\}$. This implies size of L_{n} are $3 n-2$. Construct the mapping $\left.f: V\left(B_{n}\right)\right) \rightarrow\{0,1,2\}$ as follows,
Case(i): If $\mathrm{n}=0(\bmod 3)$
Let $t=\frac{n}{3}$ now we construct the mapping $\left.f: V\left(B_{n}\right)\right) \rightarrow\{0,1,2\}$ as follows
$f\left(U_{i}\right)=\left\{\begin{array}{l}2, \text { for } 1 \leq i \leq t \\ 1, \text { for }(t+1) \leq i \leq 2 t \\ 0, \text { Otherwise }\end{array} \quad f\left(V_{i}\right)=\left\{\begin{array}{l}2, \text { for } 1 \leq i \leq t \\ 1, \text { for }(t+1) \leq i \leq(2 t-1) \\ 0, \text { Otherwise }\end{array}\right.\right.$
We note that from the above mapping we get $e_{f^{*}}(0)=n-1, e_{f^{*}}(1)=n-1$ and $e_{f^{*}}(2)=n$.

Case(ii): If $\mathrm{n}=1(\bmod 3)$

Let $t=\left\lfloor\frac{n}{3}\right\rfloor$ now we construct the mapping $\left.f: V\left(B_{n}\right)\right) \rightarrow\{0,1,2\}$ as follows
$f\left(U_{i}\right)=\left\{\begin{array}{l}2, \text { for } 1 \leq i \leq t \\ 1, \text { for }(t+1) \leq i \leq 2 t \\ 0, \text { Otherwise }\end{array} \quad f\left(V_{i}\right)=\left\{\begin{array}{l}2, \text { for } 1 \leq i \leq t \\ 1, \text { for }(t+1) \leq i \leq 2 t \\ 0, \text { Otherwise }\end{array}\right.\right.$
We note that from the above mapping $e_{f^{*}}(0)=n, e_{f^{*}}(1)=n-1$ and $e_{f^{*}}(2)=n-1$
Case(iii): If $\mathrm{n}=2(\bmod 3)$
Let $t=\left\lceil\frac{n}{3}\right\rceil$ now we construct the mapping $\left.f: V\left(B_{n}\right)\right) \rightarrow\{0,1,2\}$ as follows

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 110-115
https://publishoa.com
ISSN: 1309-3452
$f\left(U_{i}\right)=\left\{\begin{array}{l}2, \text { for } 1 \leq i \leq t \\ 1, \text { for }(t+1) \leq i \leq(2 t-1) \\ 0, \text { Otherwise }\end{array} \quad f\left(V_{i}\right)=\left\{\begin{array}{l}2, \text { for } 1 \leq i \leq(t-1) \\ 1, \text { for } t \leq i \leq(2 t-1) \\ 0, \text { Otherwise }\end{array}\right.\right.$
We note that from the above mapping $e_{f^{*}}(0)=n-1, e_{f^{*}}(1)=n-1$ and $e_{f^{*}}(2)=n$.Therefore from the above cases the graph L_{n} under consideration satisfies the conditions $\left|e^{*}(i)-e^{*}(j)\right| \leq 1$, for $i, j=\{0,1,2\}$. Hence ladder graph L_{n} is a total mean cordial graph.
Example 2.2: The total mean cordial labeling of ladder graph $L_{6}, L_{7} \& L_{8}$

Figure 2.2: The total mean cordial labeling of ladder graph $L_{6}, L_{7} \& L_{8}$
In the above graph L_{6}, the number of edges labeled with 0,1 or 2 is $e_{f^{*}}(0)=5, e_{f^{*}}(1)=6$ and $e_{f^{*}}(2)=6$. The graph L_{7}, the number of edges labeled with 0,1 or 2 is $e_{f^{*}}(0)=7, e_{f^{*}}(1)=6$ and $e_{f^{*}}(2)=6$. Finally the graph L_{8}, the number of edges labeled with 0,1 or 2 is $e_{f^{*}}(0)=7, e_{f^{*}}(1)=7$ and $e_{f^{*}}(2)=8$. Therefore $B_{9}, B_{7} \& B_{8}$ satisfies the condition $\left|e^{*}(i)-e^{*}(j)\right| \leq 1$, for $i, j=\{0,1,2\}$. Hence the graph $L_{9}, L_{7} \& L_{8}$ are total mean cordial graph.
Theorem 2.3: The triangular ladder graph $\left(\mathrm{TL}_{n}\right)$, nis divisible by 3 is a total mean cordial graph.
Proof: The triangular ladder graph $\left(\mathrm{T} L_{n}\right)$ constructed by the path P_{n} and $P_{2 n}$. The triangular ladder graph ($\mathrm{T} L_{n}$) contains two P_{n} paths and a $P_{2 n}$ path. Therefore triangular ladder graph ($\mathrm{T} L_{n}$) having the set of vertices $V=\left\{u_{i}, v_{i}, 1 \leq i \leq n\right\}$. The edges set $E\left(T L_{n}\right)=\left\{u_{1} u_{2}, u_{2} u_{3}, u_{n-1} u_{n}\right\} \cup\left\{v_{1} v_{2}, v_{2} v_{3}, v_{n-1} v_{n}\right\} \cup\left\{v_{1} u_{1}, u_{1} v_{2}, . . u_{n-1} v_{n}, v_{n} u_{n}\right\}$. This implies order and size of $\left(T L_{n}\right)$ are $2 n$ and $4 n-3$.Let $t=\frac{n}{3}$ now we construct the mapping $\left.f: V\left(T L_{n}\right)\right) \rightarrow\{0,1,2\}$ as follows
$f\left(U_{i}\right)=\left\{\begin{array}{l}2, \text { for } 1 \leq i \leq t \\ 1, \text { for }(t+1) \leq i \leq 2 t \\ 0, \text { Otherwise }\end{array} \quad f\left(V_{i}\right)=\left\{\begin{array}{l}2, \text { for } 1 \leq i \leq(t-1) \\ 1, \text { for } t \leq i \leq 2(t-1) \\ 0, \text { Otherwise }\end{array}\right.\right.$
We note that from the above mapping

Volume 13, No. 2, 2022, p. 110-115
https://publishoa.com
ISSN: 1309-3452
$e_{f^{*}}(0)=\frac{(4 n-3)}{3}, e_{f^{*}}(1)=\frac{(4 n-3)}{3}$ and $e_{f^{*}}(2)=\frac{(4 n-3)}{3}$. Therefore from the above cases the graph $\left(\mathrm{T} L_{n}\right)$ under consideration satisfies the conditions $\left|e^{*}(i)-e^{*}(j)\right| \leq 1$, for $i, j=\{0,1,2\}$. Hence triangular ladder graph $\left(\mathrm{T} L_{n}\right), n$ is divisibleby 3 is a total mean cordial graph.
Example 2.3: The total mean cordial labeling of the graph $\left(\mathrm{T} L_{9}\right)$

Figure 2.3: The total mean cordial labeling of triangular ladder graph ($\mathrm{T} L_{9}$)
In the above graph $\mathrm{T} L_{9}$, the number of edges labeled 0,1 and 2 is $e_{f^{*}}(2)=11, e_{f^{*}}(1)=11$ and $e_{f^{*}}(0)=11$. Therefore the triangular ladder graph $\mathrm{T} L_{9}$ satisfies the condition $\left|e^{*}(i)-e^{*}(j)\right| \leq 1$, for $i, j=\{0,1,2\}$. Hence the graph $\mathrm{T} L_{9}$ is a total mean cordial graph.
Theorem 2.4: The sunlet graph S_{n} is a total mean cordial graph.
Proof: The sunlet graph S_{n} constructed by the cycle C_{n} and P_{1}^{n}. Therefore sunlet graph S_{n} having the set of vertices $V=\left\{u_{i}, v_{i}, 1 \leq i \leq n\right\}$. Note that there is a ' n ' different $u_{i} v_{i}, P_{1}$ paths in S_{n} and also it contain C_{n} paths in S_{n}. Therefore edge set $E\left(S_{n}\right)=\left\{\left(v_{1} v_{2}\right),\left(v_{2} v_{3}\right), \ldots\left(v_{(n-1)} v_{n}\right),\left(v_{n} v_{1}\right)\right\} \cup\left\{\left(u_{1} v_{1}\right),\left(u_{2} v_{2}\right), \ldots\left(u_{(n-1)} v_{(n-1)}\right),\left(u_{n} v_{n}\right)\right\}$.This implies order and size of S_{n} is $2 n$.Construct the mapping $\left.f: V\left(S_{n}\right)\right) \rightarrow\{0,1,2\}$ as follows,
Case(i): If $\mathrm{n}=0(\bmod 3)$
Let $t=\frac{n}{3}$ now we construct the mapping $\left.f: V\left(B_{n}\right)\right) \rightarrow\{0,1,2\}$ as follows
$f\left(U_{i}\right)=\left\{\begin{array}{l}2, \text { for } 1 \leq i \leq t \\ 1, \text { for }(t+1) \leq i \leq 2 t \\ 0, \text { Otherwise }\end{array} \quad f\left(V_{i}\right)=\left\{\begin{array}{l}2, \text { for } 1 \leq i \leq t \\ 1, \text { for }(t+1) \leq i \leq(2 t-1) \\ 0, \text { Otherwise }\end{array}\right.\right.$
We note that from the above mapping, we get $e_{f^{*}}(0)=\frac{2 n}{3}, e_{f^{*}}(1)=\frac{2 n}{3}$ and $e_{f^{*}}(2)=\frac{2 n}{3}$
Case(ii): If $\mathrm{n}=1(\bmod 3)$
Let $t=\left\lfloor\frac{n}{3}\right\rfloor$ now we construct the mapping $\left.f: V\left(B_{n}\right)\right) \rightarrow\{0,1,2\}$ as follows
$f\left(U_{i}\right)=\left\{\begin{array}{l}2, \text { for } 1 \leq i \leq t \\ 1, \text { for }(t+1) \leq i \leq 2 t \\ 0, \text { Otherwise }\end{array} \quad f\left(V_{i}\right)=\left\{\begin{array}{l}2, \text { for } 1 \leq i \leq t \\ 1, \text { for }(t+1) \leq i \leq 2 t \\ 0, \text { Otherwise }\end{array}\right.\right.$
We note that from the above mapping $e_{f^{*}}(0)=\left\lceil\frac{2 n}{3}\right\rceil, e_{f^{*}}(1)=\left\lceil\frac{2 n}{3}\right\rceil$ and $e_{f^{*}}(2)=\left\lceil\frac{2 n}{3}\right\rceil-1$.
Case(iii): If $\mathrm{n}=2(\bmod 3)$
Let $t=\left\lceil\frac{n}{3}\right\rceil$ now we construct the mapping $\left.f: V\left(B_{n}\right)\right) \rightarrow\{0,1,2\}$ as follows

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 110-115
https://publishoa.com
ISSN: 1309-3452
$f\left(U_{i}\right)=\left\{\begin{array}{l}2, \text { for } 1 \leq i \leq t \\ 1, \text { for }(t+1) \leq i \leq(2 t-1) \\ 0, \text { Otherwise }\end{array} \quad f\left(V_{i}\right)=\left\{\begin{array}{l}2, \text { for } 1 \leq i \leq(t-1) \\ 1, \text { for } t \leq i \leq 2(t-1) \\ 0, \text { Otherwise }\end{array}\right.\right.$
We note that from the above mapping $e_{f^{*}}(0)=\left\lfloor\frac{2 n}{3}\right\rfloor, e_{f^{*}}(1)=\left\lfloor\frac{2 n}{3}\right\rfloor+1$ and $e_{f^{*}}(2)=\left\lfloor\frac{2 n}{3}\right\rfloor$
Therefore from the above cases the sunlet graph S_{n} under consideration satisfies the conditions $\left|e^{*}(i)-e^{*}(j)\right| \leq 1$, for $i, j=\{0,1,2\}$. Hence sunlet graph S_{n} is a total mean cordial graph.

Example 2.4: The total mean cordial labeling of the sunlet graph S_{6}

Figure 2.4: Total mean cordial labeling of the sunlet graph S_{6}
In the above graph S_{6}, the number of edges labeled with 0,1 or 2 is $e_{f^{*}}(0)=4, e_{f^{*}}(1)=4$ and $e_{f^{*}}(2)=4$. Therefore S_{6} satisfies the condition $\left|e^{*}(i)-e^{*}(j)\right| \leq 1$, for $i, j=\{0,1,2\}$. Hence the graph S_{6} are Total mean cordial graph.

3. Conclusion

In this paper we will explain the concept of total mean cordial labeling. The graph consist total mean cordial labeling it named as a total mean cordial graph. Further we investigated the total mean cordial labeling in various graphs like brush graph, ladder graph, triangular ladder graph. Further explain the theorem with examples. In future

REFERENCES

1. Harary. F. Graph Theory, Narosa Publishing Home, New Delhi . (1969).
2. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan Press, London, 1976.
3. G. Chartrand, L. Lesniak, Graph and Digraphs, 3rd edition, Chapman \& Hall, London, 1996.
4. R.Ponraj, M.Sivakumar and M.Sundaram, Mean Cordial labeling of graphs, Open Journal of Discrete Mathematics, 2(2012), 145-148.
5. Rosa, On certain valuation of graph, Theory of Graphs (Rome, July 1966), Goden and Breach, N. Y. and Paris, 1967, 349-355.
