
JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 5343-5350

https://publishoa.com

ISSN: 1309-3452

5343

UVM based Verification of Watchdog Timer with APB

Sharath S G, Dr. Venkateshappa

REVA UNIVERSITY

Received: 2022 March 15; Revised: 2022 April 20; Accepted: 2022 May 10

Abstract

Background: The Number of transistors in recent computer chip has crossed billion mark. The

VLSI design is becoming complex day by day. The Verification of such designs is a tedious process

as majority of time of development is consumed in verification. Most the blocks in these chips are

duplicated or replicated with some change in configuration. Verilog and System Verilog

Verification Methodology doesn’t have seamless support for reusability of the verification

components.

Objectives:The verification of Watchdog Timer with APB interface using UVM.

Methods: UVM Verification Methodology uses System Verilog framework to build the

testbench.UVM methodology defines various verification components. The tests of sequences are

kept apart from the original testbench hierarchy which helps in reusability.

Results: Watchdog timer with APB interface is designed and verification is done using UVM

verification methodology. APB Write / Read and Watchdog Timer functionalities verified. Random

stimulus is generated.

Conclusions: Successfully designed the Watchdog Timer with APB interface by using Verilog and

simulated with the UVM based Testbench.The main advantages of this method of verification are

using the virtual random coverage driven, for which the verification engineer takes minimal time

for verification in the complex design system. The tests and Verification components can be reused

in a different design which uses APB Interface.

Keywords: Verification IP, System Verilog, UVM, SOC, APB protocol, Watchdog Timer.

1. Introduction

The fast development in Computer-Aided

Design (CAD) and CMOS technology has

helped in designing complex VLSI CHIPs.

With this developed many usages in

Intellectual Property Cores (IP). System on

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 5343-5350

https://publishoa.com

ISSN: 1309-3452

5344

CHIP – SOC design become more popular

with the help of IP core combination. SOC

Designs use BUS Protocols for

synchronization and data transfer. Hence, the

Design Functional Verification process is so

important due to the reusability of IP cores in

complex design (as the design requires 30 %

of the Complete Development time and 70%

for verification). To reduce the time in

verification, Verification engineers have been

developing verification methodologies for

checking the functionality of the module by

using an integrated verification environment

and it is referred to as IP Verification.

Generally, Advanced Peripheral Bus,

Advanced high-performance Bus, and

Advanced Extensible Interface or also called

APB, AHB, and AXI respectively bus

protocols are used in the modern SoC

development by the current industry.

Compare with protocols APB protocol

consumes limited power and low chip area. In

this environment, the proper test cases are

implemented in this project for the operation

of DUV (Design under verification).

Watchdog timer is used in the SOC to detect

the unresponsive system. In this case

watchdog timer resets the system which

brings the system to normal operating

condition.

This paper presents the development of

Watchdog timer with APB interface using

Verilog and the Verification of the same using

the UVM. Further in this chapter APB

Overview, Watchdog Timer Overview and

UVM overview is provided to understand

more about the Design and verification

methodology.

APB Overview: APB is one of the Bus

protocols of Advanced Microcontroller Bus

Architecture (AMBA) Protocols. APB Bus

protocol has low complexity, consumes less

power and it’s a low-cost interface. APB

Protocol is a non-pipelined. APB protocol is

used to Connect low – bandwidth peripherals

whose functionality is not depending on the

speed of operation. APB is mostly used to

connect SOC with peripherals for configuring

the functionality of the peripheral. APB

Peripherals can be interfaced with AHB and

AXI protocols using the AHB-APB or AXI-

APB Bridges respectively.

Fig 1. APB Interface Signals

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 5343-5350

https://publishoa.com

ISSN: 1309-3452

5345

Here is a diagram of a System or SOC

System. In this diagram AHB is the High-

Speed Bus and APB is relatively low speed

Bus. At High level, the high-performance

components are connected with the core using

AHB bus. The Low Bandwidth peripherals

are connected to the Core using APB through

Bridge. The ARM processor is the Core of the

system provided in the block diagram. The

low bandwidth peripherals like UART and

Timer are connected to the system bus

through the AHB – APB Bridge using the

APB (Peripheral bus). Here, the Bridge is a

AHB Slave to the Core AHB Master. The

other components like High-bandwidth on-

chip RAM, and High-bandwidth Memory

Interface are connected to the Core by AHB

(System Bus). And it also acts as the APB

Master corresponding to remaining low-

bandwidth external peripherals.

Fig 2. Block Diagram of a Typical System

or SOC System

In the above diagram there are no components

which generates the APB transfers. AHB –

APB Bridge converts the AHB access to APB

access and acts as the APB Master in the

above system.

Watchdog Timer: A Watchdog Timer is a

Hardware component implemented in System

to automatically without human intervention

detect the software failures and reset the

processor if there are any failures. A

Watchdog Timer in based on a counter with a

pre-defined optimum initial value and is count

down to zero value. The processor needs to

reset the counter periodically indicating

Processor is working fine. If the processor is

not able to reset, it and the counter reaches to

value zero then the software is presumed to be

malfunctioning and processor is reset.

Typical Watchdog Timer Setup is Provided

Below

Fig 3. Typical Watchdog Timer Setup

Applications of Watchdog Timers

are:Watchdog Timer are commonly

implemented in Embedded System or SOCs

controlled equipment where humans cannot

easily control the equipment or unable to react

to the faults in a timely manner. In Such

Systems Watchdog Timers are implemented

to invoke reset of the system as the computer

cannot depend on the human to take reactive

step.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 5343-5350

https://publishoa.com

ISSN: 1309-3452

5346

The Safety Compliant System needs to

implement Watchdog timer to detect the

System Faults.

UVM:A Universal Verification Methodology

is a standardized methodology released by

Accellera with the support from multiple

vendors like Aldec (Riviera-PRO), Cadence

(NCSim), Mentor Graphics (which is now

Siemens EDA- Questa), Synopsys (VCS),

Xilinx Simulator (XSIM) to create an

automated verification environment. It

consists of an open-source SV-based class

library from which a functional testbench is

built for any design file written in C, VHDL,

Verilog, or SystemVerilog.

This methodology specifies a set of

verification guidelines to be followed when a

testbench is created. By following its

approach, any verification engineer can

develop verification components that are

uniform and can be portable from project to

project. This will reduce the effort of

developing an unfamiliar environment and

can easily modify any components as per

requirement.

Advantages of UVM:

• It separates the test environment from the

testbench. This way the environment is much

more reusable.

• It follows a standard approach to developing

a testbench which makes the verification flow

stable.

• Supports transaction-level communications

using TLM connections.

• It uses a set of uvm_root library classes

which can customize any objects and

components according to a particular

requirement. They are Report messaging,

Factory methods, End of test methods, RAL,

etc.

• All advantages mentioned above will result

in reduced coding work.

Fig 4. UVM Environment

UVM testbench consists of the following

components and objects:

• Test: The class derived from uvm_test will

represent a test case that would check the

various features of DUT (design-under-test).

• Environment: The uvm_env would act as a

model and should control the test

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 5343-5350

https://publishoa.com

ISSN: 1309-3452

5347

environment. It consists of all verification

components and objects created in the test. It

is connected to DUT through a virtual

interface.

• Agent: An uvm_agent will encapsulate

everything which is needed to generate the

stimulus and monitor any logical connection

with DUT. It is the wrapper intended for the

driver, monitor, and sequencer. They have

their functionality meaning they can be

configured to be active or passive.

• Driver: The uvm_driver will pull the

transactions from the sequencer and drive

them to the DUT via a physical interface.

• Sequence Item: It represents the basic user-

defined transactions within a sequence. When

sequences are executed, they generate one or

more sequence items that the sequencer

passes to the driver’s boundary. Typically,

uvm_sequence is derived from

uvm_sequence_item which generates

transactions that are required to drive to the

DUT.

• Sequencer: The uvm_sequencer will

randomize sequence items and send them to

the driver via TLM exports. They can be used

for both sequencers and virtual sequencers.

• Monitor: Uvm_monitor is used to detect

transactions on a physical interface and to

make those transactions available to other

parts of the testbench through an analysis

port.

• Interface: The interface would help the

testbench to communicate with the DUT.

• Scoreboard: The uvm_scoreboard will

compare the expected values and the actual

values of various inputs of the DUT signals. It

would check if any transactions appeared or

not from the DUT outputs.

• Coverage: The coverage information is

collected from the monitor via the analysis

port. This component ensures that all tested

and untested scenarios of the design are

covered based on the design specification.

2. Objectives

Design the Watchdog Timer with APB

Interface using the Verilog Hardware

Description Language and Verify the design

using the Hardware Verification Language -

System Verilog based UVM. The Verification

components developed can be reused similar

IP having APB Interfaces. Generate Stimulus

to cover all the functionality of the design.

3. Methods

The DUT – Watchdog Timer with APB

Interface is designed with one top Module

which encapsulates Watchdog Timer Module

and APB Interface Module. The Timer Value

for the Watchdog timer is configurable via the

APB Interface.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 5343-5350

https://publishoa.com

ISSN: 1309-3452

5348

Fig 5. DUT – Watchdog timer with APB

Interface

Watchdog timer takes the input of

timer_value and activity_in and gives

interrupt and reset outputs. The watchdog

timer runs on the pclk, and the timer in the

watchdog timer block is reset with every

activity_in. If there is no activity_in before

the timer times out (timer_value) the interrupt

and reset are set which signals the system is

not working as expected as there is no

activity_in.

Testbench

Fig 6. Block Diagram of UVM Testbench

with DUT

The testbench is developed using UVM

methodology.

The UVM Components – UVM Environment,

UVM Agent, UVM Driver, UVM Sequencer,

UVM Test, UVM Sequence, UVM Monitor

and UVM Scoreboard which can be reused

for similar APB Interface Module are

developed to verify the Design.

Sequences are developed to generate 1.

Random Stimulus, 2. APB Read and 3. Write

Functionalities and 4. Watchdog Timer

Functionalities. The Design under Test and

Testbench are simulated using Synopsys VCS

Simulator provided by EDA Playground.

4. Results

In this verification process, UVM is used to

verify the environmental test components of

the system. Watchdog timer with APB

interface is designed and verification is done

using UVM verification methodology. The

components contain UVM ENVironment,

UVM Agent, UVM Driver, UVM Sequencer,

UVM test, and the main test cases. By

internet sources, the EDA tool is used to

design and verify the protocol. During

verification, we must verify all APB READ

and WRITE architectures and the Watchdog

Timer Functionality.

a. Random Verification

All the signal inputs are randomized using the

System Verilog Random constructs. The write

happens only when the PSEL, PENABLE,

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 5343-5350

https://publishoa.com

ISSN: 1309-3452

5349

and PWRITE are High and the Read happens

when the PSEL, and PENABLE are High and

PWRITE is Low

Fig 7. Random Simulation

b. APB Write and Read Verification

The test is written to generate only the write

accesses and only the Address and Data are

randomized. The register is written only when

its address is provided in the address lines.

Fig 8. APB Write Simulation

The test is written to generate only the read

accesses and only the Address and Data are

randomized. The register is Read only when

its address is provided in the address lines.

Fig 9. APB Read Simulation

c. Watchdog Timer Functionality Verification

The test is written where activity_in is

delayed for the verification of the Watchdog

timer functionality. Due to delayed

activity_in, the timer expires, and Interrupt

and Reset is asserted.

Fig 10. Watchdog Timer Functional

Simulation.

5. Discussion

In this paper, successfully designed the

Watchdog Timer with APB interface by using

Verilog and generated the simulation. Design

is verified by creating a test bench verification

environment using UVM Verification

Methodology and its components like

interface, environment, driver, agent,

sequencer, sequence, sequence item, etc., and

DUV were implemented with help of Classes.

Finally, the Synopsys VCS simulator is used

to simulate the Design and Testbench. The

main advantages of this method of

verification are using the virtual random

coverage driven, for which the verification

engineer takes minimal time for verification

in the complex design system. The tests and

Verification components can be reused in a

different design which uses APB Interface.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 5343-5350

https://publishoa.com

ISSN: 1309-3452

5350

Refrences

[1]. ARM, “AMBA Specification

Overview”, http://www.arm.com/. .

[2]. APB Example-AMBA system,

Technical reference manual, ARM

Inc.,1999.

[3]. Akhilesh Kumar, Richa Sinha,

“Design and Verification analysis of

APB3 Protocol with Coverage,”

IJAET, Nov 2011.

[4]. SanthiPriyaSarekokku, K. Rajasekhar,

“Design and Implementation of APB

Bridge based on AMBA AXI 4.0,”

IJERT, Vol.1, Issue 9, Nov 2012.

[5]. VERILOG Reference Manual,

http://www.accellera.com

[6]. Samir Palnitkar, “Verilog HDL: A

Guide to Digital Design and Synthesis

(2nd Edition), Pearson, 2008.

[7]. C. Spear, SystemVerilog for

Verification, Second Edition: A Guide

to Learning the Testbench Language

Features, 2nd ed. Springer Publishing

Company, Incorporated, 2008.

[8]. Accellera, UVM 1.1 Class Reference,

2011.

[9]. J. Bromley " If SystemVerilog Is So

Good, Why Do We Need the UVM?

Sharing Responsibilities between

Libraries and the Core Language"

FDL, 2013.

[10]. Murphy, Niall. “Watchdog Timers,”

Embedded Systems Programming,

November 2000, p. 112.

[11]. Santic, John S. “Watchdog Timer

Techniques,” Embedded Systems

Programming, April 1995, p. 58.

[12]. UVM Verification Testbench Example

https://www.chipverify.com/uvm/uvm

-verification-testbench-example

