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Abstract 

In this paper, we study the industrial iot applications for AI edge computing technology. We 

discuss about the edge AI technology that is considered the combination of AI with edge 

computing and provide an overview of edge AI applications for IIoT networks, where the following 

three challenges are important to address: a) personalization, b) responsiveness and c) privacy 

preserving. To this end, we propose a federated active transfer learning (FATL) model, which 

through training and testing is able to address those open challenges. Details about the training and 

testing of the proposed FATL global model are given including the corresponding simulation setup. 

Here it concludes with a discussion and comparison of the simulation results with existing AI edge 

training solutions, where it provides useful insights about the proposed FALT model. 

Keywords: Edge Artificial Intelligence, Industrial Internet of Things, Federated Active Transfer 

Learning, Edge Computing. 

 

I. INTRODUCTION 

Industry 4.0 will change the way that manufacturing facilities will operate in the future. The 

Industry 4.0 concept aims to the deployment of a large amount of sensor and actuator devices 

forming an Industrial Internet of Things (IIoT) network. Such an IIoT application will be able to 

collect data from all over the shop floor that can be aggregated to the edge of the network. 

Computing to the edge is required given the huge amount of data produced by the IIoT devices. In 

this sense, edge computing will play an important role, where the edge should provide computing 

resources for edge intelligence with security and privacy, data management and aggregation 

provision. Edge computing can be realized through fog computing that is closer to the end devices 

comparing to the cloud computing. Edge intelligence, i.e. artificial intelligence (AI) 
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application with edge computing (edge AI) for training/testing or inference, is an important 

element for IIoT applications in order to build a model that can learn from the high amount of 

aggregated data. 

This work aims to provide an edge AI training/testing solution for IIoT applications. More 

specifically, we assume fog computing to the edge that is able to collect and aggregate the data 

from the IIoT network, which are used to deploy different edge AI solutions. Edge AI solutions 

rely on deep neural networks (DNNs) with particular strategies so that mitigating the problems 

coming from the large amount of devices. However, the main focus of our solution is to address 

the main open challenges of edge AI for IIoT applications such as a) personalization, i.e. 

customized AI models at the edge tailored to individual device requirements, b) responsiveness, 

i.e. adaptive computing services to the new situations and c) privacy preserving for the data 

transmission to the remote cloud for privacy issues. Towards this end, we propose a federated 

active transfer (FATL) model for training/testing, which provides the following advantages. In 

particular, the transfer learning (TL) can provide customized AI models developed at the edge 

servers, which are tailored to the new industrial system behaviors and requirements to deliver 

accurate results. The active learning (AL) can deal with the time-varying and unpredictable 

changes on the industrial data over the time, where the computing provided the necessary adaption 

in terms of training to the new collected data, i.e. situation. Finally, the federated learning (FL) 

provides the necessary privacy at the edge server for the processing information, which may not 

be willing to transmit to the remote cloud for privacy issues. This paper below provides details 

about training/testing of the proposed FATL global model including simulation results and some 

potential deployment considerations taking into account a new type of automation standard [5]. 

Simulation results highlight the strength of such edge intelligence for training global model in case 

of IIoT applications. 

To the best of our knowledge, there is no such a training/testing solution that has focused on the 

edge AI for IIoT applications addressing all major open challenges mentioned above. For example, 

in authors deals with deployment of the AI into the IIoT networks in terms of latency, power 

consumption and reliability. However, they have not studied any edge AI solutionfor the specific 

industrial application. In the authors provide a cloud-assisted framework to deploy AI to smart 

factories; however, they have not also deployed any edge AI solution. In, the authors proposed the 

use of TL at the edge. However, they don’t address all three challenges of edge AI for IIoT 

applications. In, the authors provide a comprehensive survey in the industrial edge computing and 

the embedded intelligence provided by new IEEE standards. However, they don’t provide any 

deployment example of edge AI as embedded industrial intelligence solution.the authors provide a 

low latency edge AI framework using DNNs, which is for edge intelligence inference and not 

training/testing. Another framework for edge AI is provided in without providing a detailed 

solution though. Therefore, an edge intelligence training solution that deals with the three major 

challenges for IIoT applications such as unlabeled data, pre-trained models and privacy have not 

been found in the literature yet and this is the focus of this work. 

The rest of this paper is organized as follows. Sec.II provides an overview of the edge AI for 
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IIoT and the open challenges of such an application. Sec.III provides the proposed edge AI 

solution through FATL deployment. Sec.IV provides the simulation setup and results with a 

discusion to compare the proposed solution with similar approaches. Sec.V concludes this work. 

 

II. EDGE AI FOR INDUSTRIAL INTERNET OF THINGS 

A. AI with edge computing technology 

’Last Mile’ of AI with edge computing is considered the automated deployment of intelligent  

services and applications on edge nodes and devices. A massive number of edge devices (small, 

decentralized and low-power devices) have the capability to perform AI locally or in collaboration 

with other devices in a wide range of applications such as groups of IoT devices. The intelligence 

to such applications will be provided to the edge in order to deal with ultra reliable and low latency 

requirements of data transmission through networks (wireless or wired). Additionally, 

computational requirements are necessary in case of low power edge devices. Therefore, there 

is an increasing opportunity to deploy AI at the edge known as ’Edge AI’ (or edge intelligence). 

Edge AI is divided into edge intelligence model training and inference. Different types of enabling 

techniques have been proposed for training and inference in order to tackle with the design 

requirements in the IoT domain. 

In the literature, we can identify different types of edge AI solutions that can be found either 

to the ”cloud-to-edge” or ”edge-to-end-devices” and address different types of challenges. 

In authors propose an edge-to-end-devices AI solution to address the requirements of different 

applications by choosing a matched algorithm for a specific edge configuration. In, the authors 

propose an energy-delay optimization framework for running AI on the cloud-edge while in 

authors provide a edge-to-device task scheduling solution to reduce data size and operation 

count at the edge. In, the authors propose a deep learning application fordata reduction in the edge-

cloud of the IoT network infrastructure. In, the authors proposean edge- to- end-device solution 

which relies on a network embedding technique for effective resource discovery in edge 

environments. As mentioned above, we focus on the edge AI that takes place at the edge-to-end-

devices. Thus, our focus is on how to leverage AI to the edge and IoT devices without the 

involvement of cloud in order to address major challenges of edge AI application to IIoT. 

 
B. Edge AI for Industrial IoT 

It is obvious from the above that edge AI aims to combine the potential advantages of edge 

computing (shorter latency times, reduced bandwidth, improved trustworthiness) with all the 

common benefits of AI. Security and privacy can also be enabled   by deploying edge AI. 

Trustworthy user-centric AI which offers not only protection (security, privacy) but also 

transparency and verifiability to the user can be also provided, offering privacy and security by 

design, with a smaller attack surface. More specifically, the need for edge AI for IIoT is already 

pointed out with the following main design requirements: a) personalization i.e. customized AI 

models at the edge tailored to individual device requirements, b) responsiveness, i.e. adaptive 
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computing services to the new situations and c) privacy preserving for the data transmission to 

the remote cloud for privacy issues. Existing solutions do not address all these three major 

challenges for ”edge AI for IIoT applications” for model training as explained thoroughly below 

For example, the authors in focus on the personalization challenge by deploying a TL based 

solution. The authors in deal with the privacy preserving by focusing on crypto graphic methods. 

The work in which already mentioned above, provide an active federated learning framework. 

However, the authors do not address the challenge of personalization. On the other hand, we can 

find a few interesting works on edge AI in the literature, which consider model inference rather 

than model training or a non industrial application. 

Towards this end, we propose a federated active transfer (FATL) model for training/testing, 

which provides the following advantages. More specific, we consider active learning (AL) as an 

inexpensive labeling data technique that achieves higher performance with the same number of 

data samples. AL is a useful tool in case of unlabeled data that cannot be transmitted for labeling 

to centralized cloud repositories due to frequent time-varying and unpredictable changes, where 

the computing provide the necessary adaption in terms of training to the new collected data, 

i.e.situation. Moreover, federated learning (FL) technique allows the training and testing in a 

distributed fashion without the need for data transmission to the cloud for training purpose and 

thus, supporting the required privacy. The combination of AL with FL has highlighted in, where 

edge computing is combined with the AI efficiently for industrial applications. Another model 

training solution is considered the transfer learning (TL), which is a useful technique for exploiting 

pre trained models in order to avoid training models from scratch. TL has been proved useful for 

IIoT applications, where the pre trained model from the cloud is downloaded to the edge. The edge 

is then responsible to train the model using customized AI models, which are tailored to the new 

industrial system behaviors and requirements. Obviously, AL, TL and FL can be deployed in a 

”cloud-to-edge-device” methodology in order to address challenges such as pre trained models, 

unlabeled data and privacy. Such a distributed edge AI model training is important for industrial 

applications as pointed out in the overview above. It is evident from the above that there is no any 

recent work that deals with all main three challenges of edge AI for model training. To this 

direction, we propose a model training that combines the FL, TL and AL features addressing 

personalization through AL, i.e. customized AI models at the edge, b) responsivenes through TL, 

i.e. adaptive computing services to the new situations and c) privacy preserving through FL, 

i.e. without data transmission to the remote edge. 

 

III. EDGE AI THROUGH FEDERATED ACTIVE TRANSFER LEARNING 

A. Federated Active Transfer Learning (FATL) 

Active Learning (AL) can achieve greater accuracy with fewer training labels since it chooses 

the data from which it learns. There are cases in which unlabeled data is estimative and precise 

results are hard to calculate by manually. In such a scenario, learning algorithms can actively query 

the user/teacher for labels. Since the learner chooses the examples, the number of examples to 

learn a concept can often be much lower than the number required in normal supervised learning. 
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AL attempts to overcome the labeling bottleneck by asking queries in the form of unlabeled 

instances to be labeled by an human annotator. 

Transfer learning (TL) is employed to provide pre-trained models that have been used 

already. TL is a sort of meta learning growing models to become more commoditized, integrated 

and automated. The ability to use existing frameworks and models can be extended to new 

challenges and questions and in many cases these agents and models will train themselves and 

create efficiencies not even imagined in the recent past. Edge nodes can load pre trained network 

from the cloud, and then customize its predictive model by replacing the last layers and train with 

the target domain data. IIoT devices offload to the fog node after assessing the service 

accuracy following maximization offloading with latency constraint. 

Federated learning (FL) is able to provide local training to IIoT devices so that not sending the 

data to the cloud in time critical situations. Instead of uploading data to cloud for centralized 

training, the edge devices process their data locally and share model updates with the cloud server. 

The federated averaging algorithm is used on the server to combine client updates and produce a 

new global model. Federated cloud server learns from the data locally and the parameters of the 

model are sent back to the decentralized center. The server will get multi realization of this model, 

which have been trained to multi data sets and create a consensus out of it. This consensus is sent 

back to the local data sets, i.e. clients, where the clients senda feedback to the server again too. 

It is obvious from the above that all three AI techniques can address the challenges of edge AI 

for IIoT applications. More specifically, AL can address the personalization challenge by 

deploying customized AI models at the edge given the individual device requirements. TL can 

address the responsiveness challenge by applying adaptive computing to the new environment. 

Finally, FL can address the privacy challenge for the data transmission. To this end, we propose 

the federated, active, transfer learning (FATL) model in Fig.1. Starting from the left side (i.e. 

end-devices), Fig.1 depicts the local AL carried out on the IIoT devices in order to increase the 

learning speed and reduce the labeled data during initial iterations of learning. On the right side 

of this figure, a pre trained artificial neural network (ANN) is deployed through TL technique, 

which is able to transfer knowledge learned in one dataset and applies it to another dataset. In the 

middle, the secure aggregation and model plan are provided through FL, which can improve the 

learning process. Both TL and FL are deployed on the edge part of the architecture, which helps 

to obtain the learning meta-information applicable for sharing in case of multiple scheduling IIoT 

devices running in parallel while AL is deployed on the IIoT end-devices. Further, the proposed 

FATL model can accommodate several industrial use cases such as: a) big data analysis for device 

preventive maintenance of a smart factory, b) autonomous manufacturing process such as quality 

control and optimization for process control, c) automatic fault detection for device predictive 

maintenance, d) production reconfiguration processes such as product quality tracing and 

optimization and e) virtualized factory environments. 

 

B. FATL throught Edge AI 

We would like now to implement the FATL model’s training process in order to provide edge 
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AI for IIoT applications as depicted in Fig.2. The proposed implementation assumes a number of 

ECN devices, where each of them is using its own dataset to train the model locally.In order 

to commence the FATL model training process we initially formulate the required datasets 

described below: 

• Pool set A contains unlabeled data for the learning task A. 

• Pool set B contains unlabeled data for the learning task B. 

• Train set A contains training data for the learning task A. 

• Train set B contains training data for the learning task B. 

These datasets are created by normalizing the initial dataset and splitting it accordingly into the 

four groups described above. The training process begins with the FL, where the global learning 

model is dispatched to the participating ECN devices. The local training process occurs 

simultaneously on all ECN devices without using device-to-device communication or sharing any 

model hyper parameters. Each ECN device uses the pool-based sampling AL approach, where 

samples are selected from a pool of unlabeled data (pool set) and combined with the existing 

labeled data in order to create the train set. To this end, the model is trained for the learning task 

A by employing the margin selection method to select k-samples with the lowest difference 

between the two highest class probabilities from the pool set A. Such samples are incorporated 

to the train set A and thus, expanding it by k-samples. We find the optimal k value by running 

multiple simulations of the AL technique and selecting the k value, which results in the best 

accuracy. 

The next step of the training process requires  the model   to be tuned  in order to enable the 

transferring knowledge of parameters according to the TL paradigm. For transferring 

knowledge of parameters to work, the related tasks should share some parameters or distribution 

of hyper parameters. In this case, input weights of  the  first   DNN  layers  are  tuned  in order 

to enable certain features from the source domain to be utilized to improve the performance 

on the target domain while the remaining hyper pameters of the DNN remain unchanged and 

thus, transferred to the new model. After the model tuning completes, the training continues 

with the train set that belongs to the second domain ,i.e. the train set  B. For this purpose the 

margin selection technique is invoked; this time targeting the train set B similarly to the 

process described above. TL methodologies are divided into three categories according to the 

domain and task characteristics of each case as discussed. Despite the existing similarities 

with multi-task learning, our model does learn the target andsource task simultaneously; 

instead it transfers acquired knowledge from the source task to the target task sequentially. 

After the local training completes the local models are dispatchedfrom the ECN devices to the 

Fog where the FL aggregation takes place. The aggregation process fine-tunes the DNN by 

changing its hyper parameters according to the validation data acquired by the clients. Then, the 

fog re- distributes the model back to the ECN devices which proceed to the next federated 

round of training. We define a federated learning round as the minimum amount of time that 

is required for the clients to locally train their models and to dispatch the results to the fog as 

stated in. This process is repeated until the global model converges to a predefined threshold. 
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We also assume that the FATL model could be deployed using industrial edge computing 

standards. For example, the IEEE P2805 could be considered, which specify the self-management 

protocols, data acquisition, filtering and buffering protocols as well as cloud-edge collaboration 

protocols. The main entity of the IEEE P2805 is the edge computing node (ECN) that is distributed 

among the end-devices, edge and the cloud. Assuming ECN entities, the IEEE P2805.1 specifies the 

self-management protocols, the IEEE P2805.2 specifies the data acquisition, filtering and buffering 

protocols and the IEEE P2805.3 specifies the cloud-edge collaboration protocols. Thus, Fig. 2 

depicts also the FATL model by considering those ECN entities, which are available computing 

resources that contribute to the deployed edge AI model. Specifically, the FATL model is extended 

and deployed from the”ECN fog” to the”ECN end-devices”, where each of those entities 

implements the distributed FATL model. More specific, the IEEE P2805.1 includes identification 

and data sharing functionalities, which are employed by the ECN devices, and the ECN fog before 

the model transmission procedure takes place. The IEEE P2805.2 includes data acquisition, 

filtering and buffering protocols, which are used by the ECN fog to receive the local models from 

the ECN devices. Our future work could be a detailed design, development and performance 

evaluation of the FATL model using the IEEE P2805 protocols. 
 

IV. SIMULATION SETUP AND RESULTS 

A. Simulation Setup 
 

To benchmark the proposed FATL model, we utilize the MNIST dataset and Googles Inception 

V3 DNN. We use the MNIST dataset since it is useful in order to evaluate the performance of 

computational intelligence solutions like the FATL edge intelligence model as also considered in 

MNIST dataset contains a train set of 60K images of handwritten digits of 10 classes labeled 0 to 

9 correspondingly and a test set of 10K images. We set a batch size of 50 samples and thus, each 

training epoch requires 1200 training steps. We run the training process for 50 epochs and present 

the training accuracy over the training epochs we obtain below. Training accuracy is the amount 

of correct image classification versus the amount of classifications conducted on the training set 

during the training steps of the model. In order to avoid over fitting we also freeze the last-layers 

of the Inception V3 neural network, where specific features are extracted as discussed in. 

For the FATL model’s simulation we adopt the following procedure. For the AL part, we mark 

some of the training images as unlabeled and thus, we group them into the pool sets A and B. 

We run our simulations with different amounts of unlabeled samples in order to obtain detailed 

information on the accuracy of our technique. For the TL part we define two similar 

domains, one containing the numerical digits from 0 to 4 (set A) and another containing the 

numerical digits from 5 to 9 (set B) while we specify the corresponding tasks as the classification 

of each image to the class it belongs. Regarding the FL, we adopt a horizontal FL model as 

discussed in as devices share the same feature space but, they differ in sample space. We also 

use random selection to split the initial train set into a number of smaller train sets equal to 

the amount of participating devices. Finally, we use the PyTorch and Tensor flow frameworks, 

where we instantiate a number of devices and one server capable of aggregating the user data 
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into a global model. Notably, for the FL, AL and TL model simulation, we adopt a similar 

procedure with FATL as we isolate the corresponding learning technique from the FATL 

simulation methodology. Under this premise, we use unlabeled and labeled image samples for the 

AL simulation, we change the target classification task for the TL and we deploy a number of 

devices to train the model in a distributed way for the FL simulation. 

 

B. Simulation Results and Discussion 

Fig. 3 depicts the results of FATL model compared with the AL, TL, FL individually. We use 

dash lines to depict the AL,TL and FL accuracy and continuous line to highlight the FATL 

accuracy. We observe that TL achieves better training accuracy through the training process when 

compared to AL, but AL marginally outperforms TL after 50 training epochs. Specifically, AL 

achieves 92% while TL at 89% training accuracy. On the other hand, FL converges faster than AL 

and TL while also achieving higher accuracy (almost 95%) over epochs when compared to AL or 

TL. It is also evident that the number of end devices in FL plays a major role in the models accuracy, 

i.e. results obtained for 20 end devices demonstrate higher accuracy compared with the results 

obtained with 10 end devices. The proposed FATL reveals the slowest convergence speed when 

compared to the other three AI techniques. However, it tends to achieve the highest accuracy 

after undergoing training for some epochs. Therefore, FATL manages to achieve an accuracy rate 

of 96.8%. 

In order to compare the convergence rate of FL and FATL models in conjunction with the 

amount of participating IoT devices, we also run the experiments with 10 and 20 end devices 

separately. Fig.4 depicts the obtained results over 50 training epochs. Further analysis of the results 

indicates that both FL and FATL models converge faster when a large amount of devices are 

involved in the training process. Thus, training with 20 end devices display better convergence 

rates when compared to training with 10 end devices. The achievable training accuracy is also 

correlated with the amount of devices. Results demonstrate a small (1%) but clear accuracy 

improvement with 20 devices in contrast with the accuracy obtained with 10 devices. 

The observations made above are verified when testing our models on the test datasets. Table 

I depicts the accuracy of each model on MNIST test dataset. We measure the test accuracy by 

using the corresponding trained model weights to classify the images from the MNIST test set. 

The test accuracy value reflects on the amount of correct classification outcomes as percentage of 

the total size of the test set. The results we obtain depict that the FATL model performs better 

compared to the other AI paradigms achieving 96.8% while TL achieves the lowest performance 

with 91% accuracy. 

Moreover, we would like to compare our FATL model with previous related works in order to 

provide a clear discussion about the achievable performance of the FATL model. Notably, all the 

existing works considered below for comparison purposes use dataset similar to MNIST in terms 

of computational intelligence requirements. We cannot find existing works in the literature, which 

use industrial datasets, except the one in, which does not focus on computational intelligence. As 

mentioned above, MNIST is a well known and approved dataset to evaluate the performance of 
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computational intelligence solutions. To this end, Fig. 5 provides results of the FATL compared 

with the solution proposed. In, authors utilize the MNIST dataset to obtain their results but they 

use a different sample selection k value. To this end, we adapt the k hyper parameter of our 

model to match the one selected by the aforementioned work. The new k value is set to 20 and 

determines the amount of unlabeled samples that are selected on each iteration to be integrated 

into the labeled data set as the AL training methodology dictates. We train the FATL model using 

4 IoT devices and we illustrate the results we obtain in fig. 

5. Each device utilizes the aggregated global model in order to test its accuracy. As such the same 

global model is used for all 4 devices but with each device using different test set. Results indicate 

that FATL solution achieves higher accuracy on every IoT device when compared to the 

technique proposed in this behavior highlights the efficiency of the margin selection methodology 

employed for AL technique. 

Fig.6 provides the comparison of FATL model with previous work in within the context of input 

data reduction. In authors employ an encoding methodology that reduces the amount of labeled 

data of the training set and thus, reducing the number of features. As a result the training set is 

reduced in size and the model may achieve high accuracy with lower amount of input data. 

Similarly, our AL technique utilizes labeled and unlabeled samples in order to build the training 

set. We configure the AL to utilize different portions of labeled and unlabeled data and we train 

our model with the resulting training sets. In this sense, we also reduce the amount of labeled data 

of the model input and we present the accuracy per data reduction we obtain in fig.6. We observe 

that with 56% and 79% data reduction FATL achieves better accuracy. This result is depicted due 

to the FL part that makes up for the lost accuracy of the AL method and thus, the FATL model 

achieves an overall higher accuracy even with large rates of data set reduction. On the other hand, 

when the training set is reduced by 86%, the AL achieves low accuracy too and the FL cannot 

compensate for such an accuracy loss resulting in lower overall model accuracy when compared 

with previous work in. 

Fig. 7 provides the comparison of FATL model with the solution proposed in terms of the 

amount of time required for the training process to complete. In order to provide this comparison, 

we tuned the size of our dataset by either removing images or by adding additional rotated and 

scaled images in order to increase the training set size up to 1TB. We depict the processing time of 

system tasks, i.e. the training process for different input data sizes in Fig.7. Results indicate that 

FATL requires lower training time as the knowledge transferring procedure of the TL saves the 

model from the re-training process of the newly acquired knowledge on each training iteration. 

Notably, the required FATL training time is higher than the TL, FL and AL training time 

separately, where among those three techniques; the TL requires the highest and the AL the 

lowest training time as confirmed from individual simulations. 

Fig. 8 provides the comparison of FATL with the solution proposed in within the context of 

accuracy over training set size. We evaluate the performance of the FATL model using the 

ILSVRC dataset as considered. We also set the hyper parameters of our FATL modelto match 

those used by the model to compare. We observe that training our model with low data sizes results 
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in lower testing accuracy compared to (Fig.7). This is due to the fact thatthe FL technique requires 

a relatively high amount of samples to efficiently train the model asthe dataset is divided among 

the participating IoT devices and thus, small size datasets result in significantly lower amounts of 

training samples per device. On the contrary, when the dataset size grows up to a 5.800 images 

the IoT devices use adequate samples to train the model. As a result the FATL distributed training 

process achieves better testing accuracy values with bigger data sets. 

 

V. CONCLUSION 

In this work, we propose an edge AI model for IIoT applications namely federated active transfer 

learning (FATL). We first provide an overview of the edge AI (intelligence) that is the 

combination of AI with edge computing, where focus is given on the model training for IIoT 

applications. Next, the proposed FATL model is presented, which addresses the following three 

edge AI challenges: a) personalization, b) responsiveness and c) privacy preserving by employing 

active learning (AL), transfer learning (TL) and federated learning (FL) respectively. In particular, 

AL personalizes the AI model by changing the amount of labeled samples in respect to the task 

requirements, TL increases responsiveness due to the ability to quickly adapt the model to new 

learning tasks and FL provides privacy due to the distributed training process in which the devices 

do not share any data. Finally, implementation of the FATL model is provided in detail including 

simulation setup and results. Simulation results are discussed with regards to the performance 

evaluation compared with the single FL, AL and TL solutions. FATL shows the highest accuracy 

with a slower convergence though, where the number of devices increase the accuracy as well. 

Further, we compare our model with recent related works in order to highlight the performance 

increase while using the FATL model for training/testing at the edge of the network. Simulation 

results indicate that FATL achieves higher accuracy with a low amount of federated devices and 

the accuracy remains at highest levels even when the amount of training samples are significantly 

reduced. The training process of the FATL model also requires significantly less time while 

compared with other state of the art solutions. 
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FIGURES 

 

 

Fig. 1: Federated Active Transfer Learning (FATL) mode 

 
 

 

 

Fig. 3: Training accuracy over epochs per learning technique and the proposed FATL 

solution. 
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Fig. 4: Training accuracy over epochs for different amount of devices. 
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Fig. 5: Test accuracy in case of 4 IoT devices. 
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Fig. 6: Test accuracy per data reduction. 

 

 
40 

 

35 

 

30 

 

25 

 

20 

 

15 

 

10 

 

5 
 

0 

0 200 400 600 800 1000 

Input data size (MB) 

 

Fig. 7: The processing time of system tasks with different data input sizes. 
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Fig. 8: Test accuracy over training size. 
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