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ABSTRACT 

Among several classes of numbers that occur in combinatorial problems, Eulerian Numbers play an significant role with its 

abundance occurrence. In this Paper, I will introduce Eulerian Numbers, Eulerian Polynomials and prove some of the 

interesting properties concerning them. I will finally relate these interesting classes of numbers with Ramanujan Summation, 

one of very interesting summation methods proposed by Srinivasa Ramanujan.  
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1. Introduction 

Leonhard Euler, the great Swiss mathematician was considered to be the greatest contributor in mathematics of all times. 

Among hundreds of mathematical concepts named after him, one of the interesting class of polynomials called Eulerian 

polynomials play significant role in several combinatorial problems. In this paper, I will discuss Eulerian Polynomials whose 

coefficients are Eulerian Numbers and connect these concepts with one of the beautiful ideas proposed by great Indian 

mathematician Srinivasa Ramanujan namely Ramanujan Summation.  

2. Definitions and Examples 

2.1 Let Sn denote the permutation group of n elements say {1,2,3,…,n}. Then we know that Sn represents the total number of 

bijections that can exist between {1,2,3,…,n}to itself. Also, !nS n= . We define each element of Sn as permutation of n 

quantities.  

2.2 Let nS  be a permutation. We say that a permutation nS  has descent at the position i if ( ) ( 1)i i  + . The set 

of all descents of a permutation nS  is defined by  des( ) / ( ) ( 1) (2.1)i i i  =  +  

2.3 Eulerian Numbers denoted by 
n

k
 is defined as the number of permutations in Sn with exactly k descents. That is, 

 / des( ) (2.2)n

n
S k

k
 =  =  

2.4 From the definition 2.3, we see that for the identity permutation 123... nn S there is no descent since at any position i 

we have ( ) ( 1) 1i i i i =  + = +  for all 1,2,3,..., 1i n= − .  

Similarly for the permutation ...321 nn S , there are n – 1 descents since, we have ( ) 1 ( 1)i n i i n i = − +  + = − for 

all 1,2,3,..., 1i n= − . Hence, for any permutation in Sn, the minimum possible descent is 0 and maximum possible descent 

is n – 1.  
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Thus the Eulerian numbers 
n

k
are defined for 0,1,2,..., 1k n= − . Moreover, since 

n

k
accounts for all permutations in 

Sn, we have 

1

0

! (2.3)
n

n

k

n
S n

k

−

=

= =  

2.5 In S3 we have 3! possible permutations given by  123,132,213,231,312,321 . For these permutations we find that 

des(123) = 0, des(132) = 1 since (2) 3 (3) 2 =  = . Similarly, des(213) = 1, des(231) = 1, des(312) = 1, des(321) = 2. 

Thus, there is only one permutation in S3 with 0 descent, four permutations with 1 descent and one permutation with 2 

descents. According to (2.2), we can record this information as 
3 3 3

1, 4, 1
0 1 2

= = =  and we notice that 

2

3

0

3 3 3 3
1 4 1 6 3!

0 1 2k

S
k=

= + + = + + = = = verifying (2.3) . Similarly, in 1234 is the only permutation with 

0 descent and there will be 11 permutations: 1243, 1324, 1342, 1423, 2134, 2314, 2341, 2413, 3124, 3412, 4123 with 1 

descent, there will be 11 permutations: 3421, 4231, 2431, 3241, 4312, 4132, 1432, 3142, 4213, 2143, 3214 with 2 descents 

and there is only one permutation 4321 with 3 descents. Thus we have 
4 4 4 4

1, 11, 11, 1
0 1 2 3

= = = =  and we 

observe that 

3

4

0

4 4 4 4 4
1 11 11 1 24 4!

0 1 2 3k

S
k=

= + + + = + + + = = = verifying (2.3).  

2.6 Let nS  be a permutation. We say that a permutation nS  has ascent at the position i  if ( ) ( 1)i i  + . The set 

of all ascents of a permutation nS  is defined by  asc( ) / ( ) ( 1) (2.4)i i i  =  +  

Since there are maximum n – 1 descents that can occur for permutations in Sn, the number of ascents of a permutation can be 

expressed in terms of number of its descents by the equation   ( )/ ( ) ( 1) 1 (2.5)asc i i i n des   =  + = − − . 

That is, the number of ascents of a permutation in Sn is equal to (n – 1) minus number of its descents. See Figure 1 for values 

of Eulerian Numbers provided for the first ten rows.  

 

Figure 1: Eulerian Numbers ,0 1
n

k n
k

  −  
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We can actually compute the Eulerian Numbers by using the following well known recurrence relation (for proof, see [3])  

1 1
( ) ( 1) (2.6)

1

n n n
n k k

k k k

− −
= − + +

−
  

3. Theorem 1 

The Eulerian Numbers are symmetric with respect to number of its descents. That is,  

, 0 1 (3.1)
1

n n
k n

k n k
=   −

− −
 

Proof: First we notice that if nS  is a permutation with k descents then reversal of entries of   swaps k descents of   

with k ascents of reversal of  . For example, if we consider the permutation 513524 S =  then  is a permutation with 

1 descent and 3 ascents. Now reversing  we get 42531, a permutation in S5 with 3 descents and 1 ascent.  

Thus reversing the permutation operation provides a bijection between the set of permutations with k descents and k ascents. 

But by (2.5), we know that the number of k ascents will be equal to (n – 1) – k descents. Thus in Sn through reversal 

operation, there exists a bijection between the set of all permutations with k descents and n – k – 1 descents.  

Hence by the definition of Eulerian Numbers, we get 
1

n n

k n k
=

− −
 proving (3.1)  

4. Eulerian Polynomials  

4.1 Definition 

The polynomials ( )nE x  for all x R  defined by

1

0

( ) (4.1)
n

k

n

k

n
E x x

k

−

=

= are called as Eulerian Polynomials. 

Through entries of Figure and (4.1) we can list the first seven Eulerian Polynomials 

0

1

1
( ) 1 (4.2)

0
E x x= =  

1
0 1

2

0

2 2 2
( ) 1 (4.3)

0 1

k

k

E x x x x x
k=

= = + = +  

2
0 1 2 2

3

0

3 3 3 3
( ) 1 4 (4.4)

0 1 2

k

k

E x x x x x x x
k=

= = + + = + +  

3
0 1 2 3 2 3

4

0

4 4 4 4 4
( ) 1 11 11 (4.5)

0 1 2 3

k

k

E x x x x x x x x x
k=

= = + + + = + + +  
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4
0 1 2 3 4 2 3 4

5

0

5 5 5 5 5 5
( ) 1 26 66 26 (4.6)

0 1 2 3 4

k

k

E x x x x x x x x x x x
k=

= = + + + + = + + + +  

5
0 1 2 3 4 5

6

0

2 3 4 5

6 6 6 6 6 6 6
( )

0 1 2 3 4 5

1 57 302 302 57 (4.7)

k

k

E x x x x x x x x
k

x x x x x

=

= = + + + + +

= + + + + +


 

6
0 1 2 3 4 5 6

7

0

2 3 4 5 6

7 7 7 7 7 7 7 7
( )

0 1 2 3 4 5 6

1 120 1191 2416 1191 120 (4.8)

k

k

E x x x x x x x x x
k

x x x x x x

=

= = + + + + + +

= + + + + + +


 

In view of above equations we notice that the Eulerian Polynomial ( )nE x for any natural number n is a polynomial is a 

polynomial of degree n – 1 containing n terms. Moreover by symmetry of Eulerian Numbers we see that the Eulerian 

Polynomials ( )nE x exhibit mirror symmetry with respect to their coefficients.  

4.2 Theorem 2 

If n is an even positive integer, then ( 1) 0 (4.9)nE − =  

Proof: By definition (4.1), we have 

1

0

( 1) ( 1)
0 1 2 3 4 3 2 1

n
k

n

k

n n n n n n n n n
E

k n n n n

−

=

− = − = − + − ++ − + −
− − − −

  

By (3.1), we notice that , , , ,
0 1 1 2 2 3 3 4

n n n n n n n n

n n n n
= = = = 

− − − −
 

Thus all the terms in ( 1)nE − cancel each other if n is even. Hence, if n is even then ( 1) 0nE − = .  

This completes the proof.  

5. Eulerian Polynomials and Summation 

Let
2 3( ) 1 2 3 4 (5.1)n n n n

nS x x x x= + + + +  denote an expression whose coefficients are nth powers of natural 

numbers. I will now try to compute ( )nS x for each whole number n and connect it with Eulerian Polynomial of 

corresponding index.  

Using Binomial expansions and equations (4.2) to (4.8) we get  

2 3 1
1 2 2

( )1
( ) 1 2 3 4 (5.2)

(1 ) (1 )

E x
S x x x x

x x
= + + + + = =

− −
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Since, 
3 2 3 4 2 4(1 )(1 ) (1 )(1 3 6 10 15 ) 1 4 9 16x x x x x x x x x x−+ − = + + + + + + = + + + + we have 

2 2 2 2 2 3 2
2 3 3

( )1
( ) 1 2 3 4 (5.3)

(1 ) (1 )

E xx
S x x x x

x x

+
= + + + + = =

− −
 

Similarly, 
2 4 2 2 3 2 3(1 4 )(1 ) (1 4 )(1 4 10 20 ) 1 8 27 64x x x x x x x x x x x−+ + − = + + + + + +  = + + + +

2
3 3 3 2 3 3 3

3 4 4

( )1 4
( ) 1 2 3 4 (5.4)

(1 ) (1 )

E xx x
S x x x x

x x

+ +
= + + + + = =

− −
 

Proceeding in same fashion, we get  

2 3
4 4 4 2 4 3 4

4 5 5

( )1 11 11
( ) 1 2 3 4 (5.5)

(1 ) (1 )

E xx x x
S x x x x

x x

+ + +
= + + + + = =

− −
 

2 3 4
5 5 5 2 5 3 5

5 6 6

( )1 26 66 26
( ) 1 2 3 4 (5.6)

(1 ) (1 )

E xx x x x
S x x x x

x x

+ + + +
= + + + + = =

− −
 

2 3 4 5
6 6 6 2 6 3 6

6 7 7

( )1 57 302 302 57
( ) 1 2 3 4 (5.7)

(1 ) (1 )

E xx x x x x
S x x x x

x x

+ + + + +
= + + + + = =

− −
 

2 3 4 5 6
7 7 7 2 7 3

7 8

7

8

1 120 1191 2416 1191 120
( ) 1 2 3 4

(1 )

( )
(5.8)

(1 )

x x x x x x
S x x x x

x

E x

x

+ + + + + +
= + + + + =

−

=
−

 

In general, for any natural number n, we find that  1

( )
( ) , 1 (5.9)

(1 )

n
n n

E x
S x x R

x +
=   −

−
 

6. Riemann Zeta Function  

The Riemann Zeta Function is defined as 
1 1 1 1

( ) (6.1)
1 2 3 4n n n n

n = + + + +  where n is any complex number. From 

(6.1), we have ( ) 1 2 3 4 (6.2)n n n nn − = + + + + .  

From (5.1) we have ( 1) 1 2 3 4 5 6 (6.3)n n n n n n

nS − = − + − + − +  

Now from (6.2) and (6.3) we have  

( ) ( )1(1 2 ) ( ) 1 2 3 4 5 6 2 2 4 6 8

1 2 3 4 5 6 ( 1)

n n n n n n n n n n n

n n n n n n

n

n

S

+− − = + + + + + + − + + + +

= − + − + − += −
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Thus, 
1

( 1)
( ) (6.4)

1 2

n

n

S
n

+

−
− =

−
 

7. Ramanujan Summation and Eulerian Polynomials  

7.1 Theorem 3  

If  is the Riemann zeta function, then 1 1

( 1)
( ) (7.1)

2 (1 2 )

n

n n

E
n

+ +

−
− =

−
 

Proof: From (5.9), we have 
1

( 1)
( 1) (7.2)

2

n
n n

E
S

+

−
− = . Substituting (7.2) in (6.4), we have 

1 1 1

( 1) ( 1)
( )

1 2 2 (1 2 )

n n

n n n

S E
n

+ + +

− −
− = =

− −
 . This completes the proof.  

7.2 Theorem 4 

If  is the Riemann zeta function then  

(a) 
2 2 2 21 2 3 4 0 (7.2)m m m m+ + + +=    (b) 

2 1 2 1 2 1 2 1 21 2 3 4 (7.3)
2

m m m m mB

m

− − − −+ + + +=−  

where mB is the mth Bernoulli number.  

Proof:  

(a) If n is an even positive integer then by (4.9) of theorem 2, we know that ( 1) 0nE − = . Hence, if n is an even integer of the 

form say 2n m= then from (7.1), we get 2

2 1 2 1

( 1)
( 2 ) 0

2 (1 2 )

m

m m

E
m

+ +

−
− = =

−
. But from (6.2) we have 

2 2 2 2( 2 ) 1 2 3 4m m m mm − = + + + +  

Therefore 
2 2 2 21 2 3 4 0m m m m+ + + +=  proving (7.2) 

(b) To prove (7.3), first let us list first few Bernoulli numbers (see [5])  

0 1 2 3 4 5 6

7 8 9 10

1 1 1 1
1, , , 0, , 0, ,

2 6 30 42

1 5
0, , 0, ,... (7.4)

30 66

B B B B B B B

B B B B

= = − = = = − = =

= = − = =
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Now from (4.2) and (7.1), we have 1

2 2

( 1) 1
( 1)

2 (1 2 ) 12

E


−
− = = −

−
. Thus from (6.2) and (7.4), we have 

21
( 1) 1 2 3 (7.5)

12 2

B
 − = + + + = − = −  

From (4.4) and (7.1) 3

4 4

( 1) 2 1
( 3)

2 (1 2 ) 16 15 120

E


− −
− = = =

− −
. Hence from (6.2) and (7.4), we have 

3 3 3 41
( 3) 1 2 3 (7.6)

120 4

B
 − = + + + = = −  

Similarly, we have the following equations  

5 5 5 5 6

6 6

( 1) 16 1
( 5) 1 2 3 (7.7)

2 (1 2 ) 64 63 252 6

E B


−
− = + + + = = = − = −

− −
 

7 7 7 7 8

8 8

( 1) 272 1
( 7) 1 2 3 (7.8)

2 (1 2 ) 256 255 240 8

E B


− −
− = + + + = = = = −

− −
 

9 9 9 9 10

10 10

( 1) 7936 1
( 9) 1 2 3 (7.9)

2 (1 2 ) 1024 1023 132 10

E B


−
− = + + + = = = − = −

− −
 

Proceeding in same fashion and observing equations (7.5) to (7.9) we get (7.3).  

This completes the proof.  

7.3 Verifying Geometrically 

Using the Eulerian Polynomials we can Geometrically verify (7.2) of part (a) in Theorem 4. For that we first try to plot the 

graphs of 2 4 6( ), ( ), ( )E x E x E x obtained in (4.3), (4.5), (4.7) respectively. We can verify using (7.1) of Theorem 3.  

 

Figure 2: Graph of 2 ( ) 1E x x= +  
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Since the graph of 2 ( ) 1E x x= +  pass through ( 1,0)− we find that 
2 2 2( 2) 1 2 3 0 − = + + + =  

                                                                                                                                      

Figure 3: Graph of 
2 3

4( ) 1 11 11E x x x x= + + +  

Since the graph of 
2 3

4( ) 1 11 11E x x x x= + + +  pass through ( 1,0)−  we find that 
4 4 4( 4) 1 2 3 0 − = + + + = .  

                                                   

  Figure 4: Graph of 
2 3 4 5

6( ) 1 57 302 302 57E x x x x x x= + + + + +  



JOURNAL OF ALGEBRAIC STATISTICS  

Volume 13, No. 2, 2022, p. 31-40 

https://publishoa.com  

ISSN: 1309-3452  

39 
 

Since the graph of 
2 3 4 5

6( ) 1 57 302 302 57E x x x x x x= + + + + +  pass through ( 1,0)−  we find that 

6 6 6( 6) 1 2 3 0 − = + + + = .  

In view of symmetry of Eulerian Numbers we find that, in general, the graph of 2 ( )mE x always pass through ( 1,0)− . 

Hence, from (4.9) and (7.1) we get 
2 2 2 2( 2 ) 1 2 3 4 0m m m mm − = + + + + = for all natural numbers m. These 

observations verify (7.2) geometrically.  

8. Conclusion 

In this paper, the Eulerian numbers are introduced through the concept of descents of permutations in permutation group. 

Using this idea, I had proved the symmetry property of Eulerian numbers through which we observe the palindromic pattern 

in each row of Figure 1 exhibiting Eulerian numbers. After introducing Eulerian Polynomials whose coefficients are Eulerian 

numbers, I connected these polynomials with the Riemann zeta function evaluated at negative integer values.  

The well known fact that the Riemann zeta function has trivial zeros at negative integers was established in this paper using 

(4.9) of theorem 2 and (7.1) of theorem 3. These facts were also verified geometrically using Eulerian polynomials of even 

index through Figures 2,3,4 for better understanding.  

Equation (7.1) of theorem was original and key result of this paper connecting Riemann zeta function at negative values with 

Eulerian polynomials evaluated at 1x = − . Eventually using this equation, I could prove the two equations (7.2) and (7.3) of 

theorem 4 which are exactly Ramanujan Summation formulas provided by Srinivasa Ramanujan. Thus using Eulerian 

polynomials, I had proved Ramanujan Summation formulas through theorem 4.  

By analyzing various other values of Eulerian polynomials we can try to explore few more properties in connection with 

Riemann zeta function and establish interesting combinatorial identities. Connecting completely unrelated concepts is one of 

the key aspects of mathematical research and this paper has exhibited this property thereby connecting the concepts provided 

by two great minds in mathematics history.  
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