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Abstract 

In this paper, triangular and symmetric splitting method is applied for determining the steady state probability vector   

of regularized linear system .Ax b=  The homogeneous system 0,  =  where   is block stochastic rate matrix, is 

transformed into  regularized non-homogeneous linear system Ax b=  by using preconditioned matrix with the small 

perturbation .0  It is proved that the  regularized matrix 
TA I=  +  is positive definite. In this  convergence 

analysis of the (triangular and symmetric) TS iteration method, both  relative error and absolute error are considered. 

From the numerical results, it is concluded that TS iteration method converge rapidly when compared with other 

existing methods. 

Keywords: Block circulant matrix, Steady state probability vector, Stochastic rate matrix, TS Method, Preconditioned 
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1. Introduction 

Many problems in Engineering & Science give rise to homogeneous system of linear equations in the following form 

[1-5]: 

                                                      0 =   and ,1=e                                                                                            … (1)          

where   
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= for 11 0, 0 ,ijr r   and 1 ,i n  then 
1

0.
m

i

i

R
=

= Therefore, the matrix  is doubly block circulant 

stochastic rate matrix, and 
i  is circulant matrix but not stochastic rate matrix. 

Taking transpose on both sides of homogeneous Eq. (1),    

0,  =
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( ) 0,
T

  =  

0,T T =  

                                                                                    
0 ,A x =                                                                                … (3) 

where 
TA=  and ,Tx =  the row and column sum of the coefficient matrix A  are zero, diagonal elements are 

positive, and off-diagonal elements are non-positive.  

The homogeneous system (3) gives a unique one dimensional null solution (or) infinitely many solutions. If the system 

(3) possesses infinite number of solutions, then the real time physical system pertains to the Eq.(3) is not stable. If the 

system (3) possesses unique non-zero solution, then the real time system (3) is stable. For the unique non- zero solution, 

the preconditioned matrix with small perturbation 0   is constant and the homogeneous system (3) is transformed to 

non-homogeneous system [6-7], 

                                                                          
2( )T

n
Ax Q I x e b= + = =                                                                      … (4) 

where 2n
e b=

 
is a unit vector given by 2 [0, 0, , 0,1]T

n
e = . The steady-state probability distribution vector     is then 

obtained by normalizing the vector x .  

The steady state vector   is computed by many researchers with direct and iterative methods [19].  The significant 

improvement in convergence rates can be achieved through Krylov subspace methods [8], preconditioning techniques 

[9-11], and two splitting and multi splitting iterative methods [12-15]. In the paper [17], the steady state probability 

vector of positive definite linear systems of block circulant stochastic probability matrix is obtained by triangular and 

skew-symmetric (TSS) iteration method. In this paper, Triangular and Symmetric splitting iteration method is employed 

for class of block circulant stochastic rate matrix. In which, the matrix  is doubly block circulant stochastic rate 

matrix and the block sub matrices are circulant matrices but not stochastic rate matrices. Hence, in this paper, an 

improved convergence solution is developed for the regularized positive definite linear system of block circulant 

stochastic rate matrix. Moreover, the contraction factor   and convergence criteria of the regularized linear system 

using inexact triangular symmetric (ITS) splitting method are obtained.  The organization of  the paper is as follows. 

In section 2, Basic definitions and conditions for the convergence analysis of solution of regularized linear system are 

discussed. In section 3, TS iteration procedure and its convergence is discussed. In section 4, the choice of contraction 

factor    is discussed. Numerical results are preserved in section 5. Finally conclusions are given in section 6. 

2. Conditions for convergence analysis 

In this section, some basic definitions are given, which are useful to prove regularized matrix is positive definite and 

then, we prove some theorems for the unique convergence solution of the regularized linear system. 

Definition 1: Any matrix 
2 2n nA R   of the form , 0, 0A sI P s P= −    is called an M-matrix if ( )s P . If 

( )s P  then A  is non-singular M-matrix otherwise, A  is singular M-matrix. 

Definition 2: A non symmetric matrix A is positive definite, if its symmetric part i.e., 






 +

2

TAA
 is positive definite.  
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Theorem 1: If 
2 2n xnR  is a circulant stochastic rate matrix with block circulant matrices, then there exist  0   such 

that, 2

T

n
A I=  + is positive definite. 

Proof: For proving, A  is positive definite, it is enough to prove that its symmetric part i.e. 
2

TA A+
 is positive definite.   

We have
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If P is non-negative symmetric matrix, then we have to find the spectral radius of the matrix P.  From the papers [14, 

17], one can have 

                        
12 13 1 21 22 2 1 2( ) n n n n nnP r r r r r r r r r = + + + + + + + + + + + +  

                                
11 ,r=   

                 
  11 11 ,r r +       for 0,                          

                   ( )11 11 ,r r P  +  =  

                   A  is a positive definite matrix. 

In next section, the TS iteration method applied for finding the unique non-zero solution of the  non-homogeneous 

regularized positive-definite linear system bAx =  as given in (4). It is clear that, solving the linear system (4) may tend 

to a small perturbation    error of O(ϵ), but Ching et al. have proved that the 2-norm of the error introduced by the 

regularization tends to zero and error analysis depicts in the numerical results. The proof for this regularization 

technique and convergence analysis can be found in the [6, 12-15]. 

3. Triangular and Symmetric Splitting Iterative Method 

In this section, first  TS splitting method on regularized linear system (4) of block circulant transition rate matrix for 

finding the steady state probability vector π is applied,and then analyzed for its convergence criteria. Consider the 

coefficient matrix A of the regularized linear system (4) that can splitted into the following form, 

                                      ( ) ( )T TA L D U U U T S= + − + + = +
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and  
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Here, ( )M   is called iteration matrix of TS iteration method (5). The solution of TS iteration method converges if 
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Theorem 3: If 
nxnRA  is a block circulant matrix for a regularized linear system (4), and ( )M  is a block matrix of 

TS iteration method, then ( )( ) 1M   . 
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From Eqs. (7) & Lemma 3, ( )( ) ( )( ) ( ) ( )2 2

1

2
2
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−
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... (8)      

Let   ( ) ( ) ( )2 2

1

.
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−

= − +  Since T  is a triangular matrix and which is positive definite [15],                                              

then  ( )
2

1, 0                                                                                                                                           … (9) 

From Eqs. (8) & (9),  

                                                          ( )( ) ( ) ( ) ( )
2

1M M    =     

                                                              ( )( ) 1, 0.M       

Therefore, the iterative solution of the regularized linear system converges to a unique solution.  

4. Estimation of the contraction factor   and Inner Iteration Method 

In this section, the choice of contraction factor is discussed and convergence criteria for the iterative solution of the 

regularized linear system. The following investigation describes formulae in approximating the contraction factor   by 

using circulant transition rate matrix with block circulant sub matrices. Contraction factor   plays an important role in 

finding the convergence solution for the given linear system. The parameter   is minimizes the upper bound of 

( )( ) M . The block coefficient matrix A of the regularized linear system Eq. (4) can be splitted by block triangular 

matrix and block skew symmetric matrix [5], 

i.e.,                             ( ) ( )T TA L D U U U= + − + +
 

                                      1 1T S= +
 

                                      
( ) ( )T TU D L L L= + − + +

 

                                       2 2T S= +  

 where D is a block diagonal matrix, L and U are strictly block lower and upper triangular matrices of block coefficient 

matrix A of a regularized linear system (4) . 

Let 1

TH U L= −   and  2

TH L U= −  be strictly lower and upper block triangular matrices. 

                    Now,  ( ) ( ) ( )2 2 2

1 1 1
T T

in n n
I T I D L U I D L U  

− − −

+ = + + − = + + −  for i=1, 2 

                              
( ) ( ) ( )2 2 2

1 1 1

( ( )T T

in n n
I T I D U L I D U L  

− − −

+ = + − − = + − −  

                                                  
( )( )2

1

,in
I D H

−

= + −  for i=1, 2    

                                                  
( ) ( )( )2 2 2

11 1

in n n
I D I I D H 

−− −

= + − +    

                                                  ( ) ( )( )2 2 2

11 1

in n n
I D I I D H 

−− −

= + − +
    

                                    .... (10) 

Since ( )2

1

n
I D

−

+ is a diagonal matrix and 
iH  is a triangular matrix then ( )( )2

1

1n
I D H

−

+ is a triangular matrix. If  

( )( )2

1

1in
I D H 

−

+   then the infinite series ( )( )2 2

11

in n
I I D H

−−

− + is convergent. 
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                    ( ) ( ) ( ) ( )( )2 2 2 2 2

21 1 1 1
2

i i in n n n n
I T I D I I D H I D H   

− − − − 
 + = + + + + + + 

 
           

                                                                                        (neglect the higher order approximations) 

                                 ( ) ( ) ( )( )2 2 2 2

1 1 1

i in n n n
I T I D I H I D  

− − −

+ = + + +  

    ( ) ( ) ( ) ( ) ( )( )2 2 2 2 2 2

1 1 1

i i i in n n n n n
I T I T I D H I D I H I D    

− − −

 − + = − + + + +  

     
( ) ( ) ( ) ( )2 2 2 2

1 1

2 2
i in n n n

I T I T I D I D   
− −

 − +  − +  

                                                   ( ) ( )
1

2
n j n jI D I D 

−

 − +    where jD  are the diagonal entries of the sub matrix  

.j  The contraction factor  is obtained directly from the papers [12-17 ]   as follows: 

( ) ( ) ( ) ( )2 2

1 1

2 2
i i j jn n n n

I T I T I D I D   
− −

− +  − +                               

                                                 min

0
max

arg min max
d

d










−


−
    

  

           

                                 min maxd d  =                                                                           

where 
mind and 

maxd  are minimum and maximum diagonal entries of the matrix .jD  Therefore the contraction factor 

11

2 3

r 
  = = +  is minimizes the upper bound of the ( )( ) M . Computing the optimal parameter α is a hard task that 

needs in-depth study. The two half steps at each step of the TS iteration method requires finding the coefficient 

matrices ( )2 in
I T +  and ( )2 in

I S +  for 2,1=i . To improve computing efficiency of the TS iteration, we apply 

ITS iteration, i.e. to solve the two sub problems iteratively. The first subsystems coefficient matrix ( )2 in
I T +  and the 

second sub systems coefficient matrix ( )2 in
I S +  is solved by Krylov subspace methods [8-9]. The first subsystems 

can be obtained [8-9], and the second subsystems, and coefficient matrix is obtained by CGS method [18].  

5. Numerical Results 

In this section, the error analysis of TSS, Jacobi, and TS methods by using block transition probability matrix with 

block circulant matrices are depicted for illustration purpose. Consider block circulant transition probability matrix as    

             

0.825 0.15 0.0125 0.2375 0.025 0.15 0.175 0.075

0.15 0.825 0.2375 0.0125 0.15 0.025 0.075 0.175

0.175 0.075 0.825 0.15 0.0125 0.2375

0.075 0.175 0.15 0.825 0.2375 0.
Q

− − − − − − −       
       
− − − − − − −       

− − − − −   
   
− − − − −   

=

0.025 0.15

0125 0.15 0.025

0.025 0.15 0.175 0.075 0.825 0.15 0.0125 0.2375

0.15 0.025 0.075 0.175 0.15 0.825 0.2375 0.0125

0.0125 0.2375 0.025 0.1

0.2375 0.0125

− −   
   

− −   

− − − − − − −       
       
− − − − − − −       

− − − − 
 
− − 

5 0.175 0.075 0.825 0.15

0.15 0.025 0.075 0.175 0.15 0.825

 
 
 
 
 
 
 
 
 
 

− − −      
      

− − − − −      
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Consider the initial vector as ( )  0
0 0 0 0 0 0 01 ,

T
x = and then compute steady state vector of regularized linear system 

and corresponding relative error based on the values of .  , contraction factor  . The stopping criteria is set as the 

relative error 1610− . The results are depicted in Figs.1-3.  Fig.1, depicts the convergence rate of iterative solution of 

regularized linear system with relative error for the particular value of contraction factor is 0.825 , =  and which 

numerically equivalent to the diagonal value of the matrix , for different values of .  From this figure, it can be 

concluded that the relative error of iterative solution TS method converge rapidly as .   decreases. Fig.2, depicts the 

convergence rate of iterative solution of regularized linear system with relative error of Jacobi’s, TSS, and TS methods 

for the particular value of contraction factor is 0.825 , 0.1 2. = =  From this figure, it can be concluded that, TS 

method converge rapidly than the Jacobi’s and TSS  iterative methods.  Figs.3 illustrates the result for relative error and 

absolute error of Jacobi’s, TSS, and TS methods in the case of contraction factor
 

0.825 , 0.1 2. = =  From this 

figure, it can be conclude the relative error converge faster than absolute error with accepting relative error in fig.2.  

Table 1, lists the optimal iteration parameters of the tested methods. For Jacobi, TSS and TS methods, the optimal 

parameters chosen based on Theorem 3. It is inferred observe that the changes in relative error and absolute errors are 

based on the different values of .  . Therefore it is concluded that TS method converge rapidly when compared to the 

other existing Jacobi and TSS methods. 

 

Fig. 1 Relative error of TS method for the contraction factor 0.825, =  and different values of  .  
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Fig.2 Relative error of  TS, Jacobi method and  TSS methods for the contraction factor 0.825, =  . 0.12 = .  

              

Fig.3 Relative error and Absolute error of TS, Jacobi method and TSS methods for the contraction factor 0.825, =  

0.12 = .  
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0.1 =
 

 TS Method TSS Method Jacobi Method 

   n Relative Error Absolute Error Relative Error Absolute Error Relative Error Absolute Error 

1 0.034282 0.547489 0.099966 0.227905 0.123844 0.249319 

5 0.000352 0.013944 0.025412 0.374468 0.042932 0.567281 

10 8.971967e-06 0.000141 0.005451 0.084870 0.014245 0.211464 

15 9.128678e-08 1.443562e-06 0.001220 0.0192353 0.005101 0.078827 

20 9.288151e-10 1.468780e-08 0.000275 0.004359 0.001874 0.029384 

25 9.450410e-12 1.494439e-10 6.249362e-05 0.000988 0.000694 0.010953 

30 9.623018e-14 1.521734e-12 1.416177e-05 0.000223 0.000258 0.004083 

35 1.015655e-15 1.606105e-14 3.209567e-06 5.075397e-05 9.629405e-05 0.001522 

40 5.61658e-17 8.881784e-16 7.274211e-07 1.150303e-05 3.588547e-05 0.000567 

0.12 =
 

1 0.120514 1.794552 0.091589 1.060650 0.117571 1.129206 

5 0.010599 0.151735 0.020820 0.282078 0.038503 0.473877 

10 0.000485 0.006918 0.003814 0.053877 0.011768 0.160072 

15 2.211685e-05 0.000315 0.000722 0.010290 0.003851 0.054071 

20 1.008415e-06 1.438214e-05 0.000137 0.001965 0.001287 0.018264 

25 4.597817e-08 6.557470e-07 2.632413e-05 0.000375 0.000433 0.006169 

30 2.096352e-09 2.989846e-08 5.027658e-06 7.170423e-05 0.000146 0.002084 

35 9.558211e-11 1.363205e-09 9.602765e-07 1.369556e-05 4.937109e-05 0.000703 

40 4.358038e-12 6.215493e-11 1.834131e-07 2.615862e-06 1.667495e-05 0.000237 

0.14 =
 

1 0.296761 4.381385 0.083690 0.915752 0.111610 1.022579 

5 0.068530 0.915983 0.016933 0.212009 0.034519 0.397209 

10 0.010003 0.129489 0.002635 0.034050 0.009714 0.121816 

15 0.001407 0.018305 0.000421 0.005468 0.002905 0.037359 

20 0.000199 0.002587 6.759178e-05 0.000878 0.000884 0.011457 

25 2.814736e-05 0.000365 1.085438e-05 0.000141 0.000270 0.003513 

30 3.979134e-06 5.171469e-05 1.743261e-06 2.265618e-05 8.294116e-05 0.001077 

35 5.625137e-07 7.310703e-06 2.799804e-07 3.638759e-06 2.543107e-05 0.000330 

40 7.952038e-08 1.033485e-06 4.496699e-08 5.844128e-07 7.798738e-06 0.000101 

Table 1. The choice of parameters for the Jacobi, TSS and TS iteration methods. 

 

6. Conclusions 

In this paper, the steady state vector of regularized linear system of block circulant matrices is estimated using TS 

method. It is also  proved that the coefficient matrix of regularized linear system (4) is positive definite. Theoretical 

analysis shows that the iterative solution of TS method converges to the unique solution of the system for a wide range 

of the parameter . A bound for the spectral radius of the iteration matrix is derived and the numerical example 

involving  the contraction factor  

 
which minimizes the upper bound. From the numerical results, is is demonstrated 

that how well the iterative solution of present splitting method is superiored when compared with the existing methods. 
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