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Abstract  

The objective of this paper is to study the refraction and reflection of longitudinal (LD) waves at plane interface 

between micropolar elastic solid (MES) and electro-microelastic solid (EMS) half-spaces. A LD wave is taken to be 

impinge obliquely at the plane interface between MES and EMS half spaces. The ratios of amplitude of different type of 

refracted and reflected waves have been obtained numerically and results have been depicted graphically with the help 

of MATLAB Graphical routines. This has been observed that the mentioned amplitude ratios depend on the material 

properties and angle of incidence of incident waves. Also few particular cases have been discussed and then obtained 

result is compared with the exist ones. This study is very useful for the researchers pursing the research in the field of 

wave propagation and solid mechanics.  

Keywords: Micropolar elastic solid, electro-microelastic solid, longitudinal waves, reflection, refraction, amplitude 

ratios, angle of incidence. 

1.Introduction 

The molecular and atomic structure of the materials is ignored in classical theory of elasticity. When experiments were 

performed on the construction materials like steel, aluminium, concrete etc., results obtained using classical theory of 

elasticity were matched with experimental results. But various discrepancies were observed near holes, and cracks, 

where stress gradients were considerable. Thus, it was observed that microstructure plays a significant role in refraction 

and reflection of waves. When elastic waves propagate from one medium to another they exhibit different behaviour. In 

this research article, behaviour of longitudinal wave is observed when it propagates from micropolar elastic solid to 

electro-microelastic solid.   

Voigt[1] proposed the description of the discrepancies of classical theory of elasticity by introducing moment vector 

along with force vector in translation of motion. Then Cosserat and Cosserat [2] presented a theory according to which 

the material particles are capable of rotation and linear displacement during the deformation of material. The micropolar 

elasticity theory was given by Cosserat. Eringen and his colleagues [3]–[6] developed the micropolar theory of elasticity 

that is being used on these type of materials, also for the problems where the classical theory of elasticity fails due to 

material microstructure. Micropolar elastic materials may be imagined as the materials with dumbbell type molecules or 

the materials whose molecules are rigid short cylinders. Micropolar theory of elasticity has its importance due to its 

application in many physical substances like concrete with muddy fluids and sand, chopped fibre composites, foams, 

the blood rigid cells of animal, porous materials etc. Tomar and Gogna[7] studied the coefficient of refraction and 

reflection at the interface of two micropolar solid half-spaces that at the time when coupled wave incidence on interface 

don’t have the same elastic properties. Some relevant literature work in the same field has been done by many other 

researchers like Poonia et. al [8] , Kumari et. al [9] , Singh [10], and Bijarnia et. al[11] . 
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In the present paper the propagation of waves in MES and EMS half-spaces is discussed. Also, the ratio of amplitudes 

of different types of refracted and reflected waves is calculated for specific models, and graphical results are 

represented corresponding to the incident wave’s angle of incidence. 

2.Fundamental equations and constitutive relations 

For MES half-space (Medium 𝑀1) 

Eringen’s [4], in micropolar elastic medium equation of motion are as follow: 

(c1
2 + c3

2)∇2ϕ =
∂2ϕ

∂t2 ,          (1) 

(c2
2 + c3

2)∇2U + c3
2∇ × Φ =

∂2U

∂t2 ,         (2) 

(c4
2∇2 − 2ω0

2)Φ + ω0
2∇ × U =

∂2Φ

∂t2 ,        (3) 

and 

c1
2 =

λ+2µ

ρ
 , c2

2 =
µ

ρ
 , c3

2 =
κ

ρ
 , c4

2 =
γ

ρj
 , ω0

2 =
κ

ρj
  ,       (4) 

Equation (1) corresponding to LD wave moving with velocity V1 and defined as V1
2 = c1

2 + c3
2 given by Parfitt and 

Eringen  [12] and the equations in (2) and (3) represents coupled equations in the vector potentials U & Φ. The waves 

named as coupled transverse and micro-rotations corresponds to these equations. If 
ω2

ω0
2 > 20, there exists 2 set of 

coupled-wave that propagates with velocities 
1

λ1
  and 

1

λ2
 such that: 

λ1
2 =

1

2
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2 =
1

2
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B =
q(p−2)

ω2 +
1

(c2
2+c3

2)
+

1

c4
2 , C = (

1

c4
2 −

2q

ω2)
1

(c2
2+c3

2)
 , p =

κ

μ+κ
 , q =

κ

γ
 .    (6) 

Taking the components of micro- rotation and displacement as below to consider the 2D problem 

Φ = (0, Φ2, 0),       U = (u, 0, w),         (7) 

u1 =
∂ϕ

∂x
−

∂ψ

∂z
,      u3 =

∂ϕ

∂z
+

∂ψ

∂x
,         (8) 

and stresses components are represented as 

tzz = (λ + 2μ + κ)
∂2ϕ

∂z2 + λ
∂2ϕ

∂x2 + (2μ + κ)
∂2ψ

∂x ∂z
,       (9) 

tzx = (2μ + κ)
∂2ϕ

∂x ∂z
− (μ + κ)

∂2ψ

∂z2 + μ
∂2ψ

∂x2 − κΦ2,       (10) 

mzy = γ
∂Φ2

∂z
,           (11) 

For EMS half-space (Medium 𝑀2) 

In continuous theory of microstretch elasticity the electromagnetic fields are described first by Eringen [3], and due to 

absence of thermal effect, microstretch continuum and magnetic flux vector will be exposed exclusively to electric 

field. As a result, these types of continuous materials are referred to as EMS medium given by 

t̅kl = (λ̅0ψ̅ + λ̅ur,r)δ̅kl + μ̅(u̅k,l + u̅l,k) + κ̅(u̅l,k − ϵ̅klrΦ̅r),      (12) 
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m̅kl = αΦ̅r,rδ̅kl + βΦ̅k,l + γΦ̅l,k + b0ϵ̅lkmΦ̅,r ,       (13) 

m̅k = α0ψ̅,k + λ2Ek − b0ϵ̅klmΦ̅l,m,         (14) 

D̅k = (1 + χE̅)Ek + λ3ϵ̅lmkΦ̅l,m + λ2ψ̅,k,        (15) 

where t̅kl , m̅kl , m̅k , D̅k ; 𝜆̅, μ̅ ; κ̅ , α , β , γ ; b0 , λ0 , α0 ; χE̅ , λ2 , λ3 ;  u̅k , Φ̅k , ψ̅ and Ek are force stress tensor, couple 

stress, microstretch vector, dielectric displacement vector; Lame’s constants; micropolar constants; microstretch 

constants; dielectric susceptibility, coupling constants; displacements, micropolar rotation vector, scalar microstretch 

and electric field vector respectively. For homogeneous electro-microelastic and isotropic solid medium, the field 

equations in section (7) of Eringen  [3] are as follows:  

(c̅1
2 + c̅3

2)∇ ∇. �̅� − (c̅2
2 + c̅3

2)∇ ×  ∇ × �̅� + c̅3
2 ∇ × Φ̅ + λ̅0 ∇ψ̅ = �̈̅�,     (16) 

(c̅4
2 + c̅5
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2Φ̅ = Φ̈̅,      (17) 

c̅6
2∇2ψ̅ − c̅7

2ψ̅ − c̅8
2 ∇. �̅� + c̅9

2 ∇. E̅ = ψ̈̅,        (18) 

∇. D̅ = 0,           (19) 

∇ × E̅ = 0,           (20) 

where 
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2 =
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ρ̅
 , c̅2

2 =
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ρ̅
  , c̅3

2 =
κ̅

ρ̅
  , c̅4

2 =
γ̅

ρ̅j̅
  , c̅5

2 =
α̅ + β̅

ρ̅j ̅
  , c̅6

2 =
2α̅0

ρ̅j ̅
  , 

c̅7
2 =

2λ̅1

3 ρ̅j̅
  ,   c̅8

2 =
2λ0

3 ρ̅j0̅
  ,   c̅9

2 =
2λ̅2

ρ̅j̅
  , ω̅0

2 =
c̅3

2

j̅
=

κ̅

ρ̅j̅
  ,      λ̅0 =

λ0

ρ̅
 .     (21) 

Now, let’s introduce the scalar potentials  ξ,  q̅  and ϵ; and the vector potentials U̅, П̅ as: 

U̅ = ∇q̅ + ∇ × U̅ , Φ̅ = ∇ξ + ∇ × П̅ , E̅ = −∇ϵ , ∇. U̅ = ∇. П̅ = 0,     (22) 

Now, by using these into equations (16) -(20), we obtain following equations    

(c̅1
2 + c̅3

2)∇2q̅ + λ̅0ψ̅ = q̈̅          (23) 

(c̅6
2 − c̅10

2 )∇2ψ̅ − c̅7
2ψ̅ − c̅8

2∇2q̅ = ψ̈̅        (24) 

(c̅2
2 + c̅3

2)∇2U̅ + c̅3
2 ∇ × П̅ = Ü̅         (25) 

c̅4
2∇2П̅ − 2ω̅0

2П̅ + ω̅0
2 ∇ × U̅ = П̈̅         (26) 

(c̅4
2 + c̅5

2)∇2ξ − 2ω̅0
2ξ = ξ̈          (27) 

∇2ϵ =
λ̅2

1+χE̅ ∇2ψ̅           (28) 

where c̅10
2 =

2λ̅2
2

ρ̅j0̅(1+χE̅)
 . 

Here, in scalar potentials q̅ and ψ̅ the equations (23) & (24) are coupled, and in the scalar potentials ϵ and ψ̅ the 

equation (28) is also coupled. In vector potentials U̅ & П̅ equations (25) & (26) are coupled. Further in scalar potential ξ 

the equation (27) is uncoupled. 
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3.Formulation of the Problem 

Assume the positive direction of unit vector �̅� to be the form of plane wave propagation that is given by: 

{q̅ , ψ̅ , U̅, П̅} = {a1 , b1 , A0 , B0}𝑒𝑥𝑝{ik(�̅�. �̅� − V̅t)}       (29) 

Here a1and b1are using for complex constant; A0 and B0 are stand for complex constant vectors; V̅, �̅�, k and ω having 

their usual meaning. Using the terms of  q̅ and ψ̅ from (29) in equations (23) and (24), after that removing a1 and b1, 

consequently getting the equation 

A̅V̅4 − B̅V̅2 + C̅ = 0          (30) 

Where A̅ = 1 −
λ̅1Ω

3 κ̅
(

j

j0̅
) , B̅ =  (c̅1

2 + c̅3
2 −

λ0λ̅0

λ̅1
) A̅ + c̅6

2 − c̅10
2 +

λ0λ̅0

λ̅1
  , C̅ = (c̅1

2 + c̅3
2)(c̅6

2 − c̅10
2 ) and Ω =

2 ω̅0
2

ω
. Equation 

(30) is quadratic in V̅2 and the roots of above equation are represented by: 

V̅1,2
2 =

1

2A̅
[B̅  ± √(B̅2 − 4A̅C̅)]         (31) 

where ‘+’sign for the velocity V̅1
2and ‘-’ sign for the velocity V̅2

2. 

It can be seen that from equations (23) and (29) the constants a1and b1 both are related to one-another by the relation  

b1 = ζ a1           (32) 

Where ζ =
ω2

λ̅0
[

c̅1
2+c̅3

2

V̅2 − 1] is coupling parameter between q̅ & ψ̅. 

With the help of the expression of q̅ & ψ̅ form the (23) into (16), the vector of displacement �̅� is found as  

�̅� = ika1�̅� exp{ik(�̅�. �̅� − V̅t)}.         (33) 

Above result represents that both vectors �̅�, and �̅� are parallel. 

The equation (25) and (26) represent the two sets of coupled transverse waves that propagates and the corresponding 

velocities V̅3
2 and V̅4

2 produced by Parfitt and Eringen [12] 

V̅3,4
2 =

1

2(1−Ω)
{ε ± √ε2 − 4c4

2(1 − Ω)(c̅2
2 + c̅3

2)}       (34) 

where ε = c̅4
2 + c̅2

2(1 − Ω) + c̅3
2(1 − Ω/2), they have also produced the equation (27) that is representation of a LD 

microrotational wave that propagates with the velocity  

V̅5
2 = c̅4

2 + c̅5
2 +

2 ω̅0
2

κ̅2 . 

Here, the refraction and reflection phenomena of LD wave at(Z = 0) plane interface between MES and EMS half-

spaces is discussed. The problem here is 2D xz-planes. Thus, x-axis & z-axis are considered along the interface and 

along the directional vertically downward respectively. Here, medium M1(Z > 0) represents the lower half-space for 

the MES half-space, and the upper half-space is represented by by medium M2(Z < 0)for electro-microelastic solid 

half-space. 
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Figure 1: Geometry of the problem 

In medium 𝑀1 

ϕ = B0 exp{ik0 (xsinθ0 – zcosθ0 ) + iω1 t} + B1 exp{ik0 (xsinθ1 + zcosθ1 ) + iω1 t},    (35) 

ψ = B2 exp{iδ1(xsinθ2 + zcosθ2 ) + iω2 t} + B3 exp{iδ2(xsinθ3 + zcosθ3 ) + iω3 t},   (36) 

Φ2 = EB2 exp{iδ1(xsinθ2 + zcosθ2 ) + iω2 t} + FB3 exp{iδ2(xsinθ3 + zcosθ3 ) + iω3 t},  (37) 

where 

E =
δ1

2(δ1
2−

ω2

(c2
2+c3

2)
+pq)

deno.
,           (38) 

F =
δ2

2(δ2
2−

ω2

(c2
2+c3

2)
+pq)

deno.
,          (39) 

and 

deno. = p (2q −
ω2

c4
2),    δ1

2 = λ1
2ω2,   δ2

2 = λ2
2ω2 .       (40) 

where B0 represents incident longitudinal wave’s amplitudes, B1  represents reflected LD wave, B2 and B3  represents 

reflected coupled transverse and micro-rotation waves respectively, and B̅1 , B̅2 , B̅3 ,B̅4  are respectively the amplitudes 

of refracted two coupled longitudinal waves, two sets of coupled transverse waves. 

In medium 𝑀2 

For the two dimensional plane using 

�̅� = (u̅1, 0, u̅3), �̅� = (0, Φ̅2, 0),
𝜕

∂y
≡ 0.        (41) 

Putting these into (22), obtained following expressions 

u̅1 =
∂q̅

∂x
−

∂U̅2

∂z
 , u̅3 =

∂q̅

∂z
+

∂U̅2

∂x
 , Φ̅2 =

∂П̅3

∂x
−

∂П̅1

∂z
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U̅2 Stands for y-component of U̅ , П̅1 & П̅3 are correspondingly the x & z-components of П̅ . Now, the potentials of 

many reflected and refracted waves in medium M1and medium M2 respectively are represented as 

q̅ = ∑ B̅p 𝑒𝑥𝑝{ik̅p(sinθ̅px − cosθ̅pz) − ω̅pt} ,p=1,2        (42) 

ψ̅ = ∑ ζpB̅p 𝑒𝑥𝑝{ik̅p(sinθ̅px − cosθ̅pz) − ω̅pt} ,p=1,2        (43) 

U̅2 = ∑ B̅p 𝑒𝑥𝑝{ik̅p(sinθ̅px − cosθ̅pz) − ω̅pt} ,p=3,4        (44) 

Φ̅2 = ∑ ηpB̅p 𝑒𝑥𝑝{ik̅p(sinθ̅px − cosθ̅pz) − ω̅pt} ,p=3,4       (45) 

Where the coupling parameters between q̅ &   ψ̅ are i = √−1 and ω̅p = k̅pV̅p , ζ1,2, and the coupling parameters 

between U̅2 & Φ̅2 are η3,4. The expressions for ζi computed above by using equation (32) can be represented as  

ζ1,2 =
ω2

λ̅0

[
c̅1

2 + c̅3
2

V̅1,2
2 − 1] 

And with the use of curl operator in equation (26) and after that using the equations (44) and (45) the expressions of ηi 

can be computed. These expressions are defined as  

η3,4 = ω̅0
2 [V̅3,4

2 −
2 ω̅0

2

k̅3,4
2

− c̅4
2]

−1

 

using the equations from (22) into equations (12)-(15), the required components of stress, microrotation, microstretch 

and displacements are represented as 

t̅zz = (λ̅ + 2μ̅ + κ̅)q̅,zz + (2μ̅ + κ̅)U̅2,xz + λ̅q̅,xx + λ̅0ψ̅ , 

t̅zx = (2μ̅ + κ̅)q̅,xz + (μ̅ + κ̅)U̅2,zz + μ̅U̅2,xx + κ̅Φ̅2, 

m̅zy = γ̅Φ̅2,z , m̅z = (α0 −
λ̅2

2

1 + χE̅
) ψ̅,z 

u̅1 = q̅,x − U̅2,z , u̅3 = q̅,z + U̅2,x         (46) 

4.Boundary Conditions  

The suitable boundary conditions for the considered model at the interface z=0 are described below 

tzx = t̅zx , tzz = t̅zz ,   mzy = m̅zy , mz = m̅z , Φ2 = Φ̅2 , u1 = u̅1 , u3 = u̅3 , ψ = ψ̅  .   (47) 

Using the equations (9) – (11) and (42) – (45), the boundary conditions represented in equation (47) are identically 

satisfied iffki𝑠𝑖𝑛𝜃𝑖 = k̅i𝑠𝑖𝑛�̅�𝑖 andω𝑖 = ω̅𝑖 , obtained the required result: 

a11 = −{λ + (2μ + κ)cos2θ1} ,    a12 = −(2μ + κ)sinθ2 cosθ2

δ1
2

k0
2  , 

a13 = −(2μ + κ)sinθ3 cosθ3

δ2
2

k0
2   , a14 = {λ̅ + (2μ̅ + κ̅)cos2θ̅1 −

λ̅0ξ̅1

k̅1
2

}
k̅1

2

k0
2  , 

a15 = {λ̅ + (2μ̅ + κ̅)cos2θ̅2 −
λ̅0ξ̅2

k̅1
2

}
k̅1

2

k0
2   , a16 = −(2μ̅ + κ̅)sinθ̅3cosθ̅3

k̅3
2

k0
2  ,  

a17 = −(2μ̅ + κ̅)sinθ̅4cosθ̅4

k̅4
2

k0
2   ,   Y1 = −a11 . 
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a21 = sinθ1 cosθ1 , a22 = − {μ(1 − 2sin2θ2) + κ cos2θ2 −
κ E

δ1
2 }

δ1
2

k0
2  , 

a23 = − {μ(1 − 2sin2θ3) + κ cos2θ3 −
κ F

δ2
2 }

δ2
2

k0
2   , a24 = (2μ̅ + κ̅)sinθ̅1cosθ̅1

k̅1
2

k0
2  , 

a25 = (2μ̅ + κ̅)sinθ̅2cosθ̅2

k̅2
2

k0
2   , a26 =  {

μ̅

κ̅
(cos2θ̅3 − sin2θ̅3) − cos2θ̅3 −

η3

k̅3
2

}
κ ̅k̅3

2

k0
2  , 

a27 =   {
μ̅

κ̅
(cos2θ̅4 − sin2θ̅4) − cos2θ̅4 −

η4

k̅4
2

}
κ ̅k̅4

2

k0
2   , Y2 = a21 . 

a31 = a34 = a35 = 0 , a32 = γδ1E cosθ2 ,   a33 = γδ2F cosθ3 , a36 = γ̅η3k̅3 cosθ̅3 , 

a37 = γ̅η4k̅4 cosθ̅4 , Y3 = a31 . 

a41 = sinθ1 , a42 = −cosθ2

δ1

k0

  , a43 = −cosθ3

δ2

k0

  , a44 = −sinθ̅1

k̅1

k0

  , 

a45 = −sinθ̅2

k̅2

k0

  , a46 = −cosθ̅3

k̅3

k0

  , a47 = −cosθ̅4

k̅4

k0

  , Y4 = −a41 . 

a51 = cosθ1 , a52 = sinθ2

δ1

k0

 , a53 = sinθ3

δ2

k0

 , a54 = cosθ̅1

k̅1

k0

 , 

a55 = cosθ̅2

k̅2

k0

 , a46 = −sinθ̅3

k̅3

k0

  , a47 = −sinθ̅4

k̅4

k0

  , Y5 = a51 . 

a61 = a64 = a65 = 0 , a62 = E , a63 = F , a66 = −η3 , a67 = −η4 ,   Y6 = a61 . 

a71 = a72 = a73 = a76 = a77 = 0 , a74 = ξ̅1cosθ̅1k̅1 ,   a75 = ξ̅2cosθ̅2k̅2 , Y7 = a71 .   (48) 

5.Discussion and numerical results 

To solve the equations of stresses, Microstretch, displacements and microrotation with the help of equations of 

displacements, potentials of various refracted and reflected waves, Snell’s Lawand boundary conditions. After that, 

write these equations in the matrix form such that[a𝑖𝑗][Z𝑖] = [Y𝑖], where[a𝑖𝑗]
7×7

,[Z𝑖]7×1and[Y𝑖]7×1 are matrices of 

respective order. Making a program using the coefficients[a𝑖𝑗] in the computer software MATLAB and execute.    

Consequently, obtain the various graphs with respects to amplitude ratiosZi(i = 1,2,3,4,5,6,7 ). Following Gauthier 

[13], the constants for MES half-space’s physical values are given as 

λ = 7.85 × 1011dyne/cm2, μ = 6.46 × 1011dyne/cm2, κ = 0.0139 × 1011dyne/cm2, 

ρ = 1.9gm/cm3,          γ = 0.0365 × 1011 dyne , j = 0.0212 cm2,
ω2

ω0
2 = 20.   (49) 

the physical constants for EMS half-space are given as 

λ̅ = 7.59 × 1011dyne/cm2, μ̅ = 1.89 × 1011dyne/cm2,   κ̅ = 0.0149 × 1011dyne/cm2, 

ρ̅ = 2.2gm/cm3, α0 = 0.095 × 1011dyne , λ̅0 = 0.032 × 1011dyne/cm2, 

λ̅1 = 0.030 × 1011dyne/cm2, λ̅2 = 0.3364 × 1011dyne,   j0̅ = 0.0196cm2, 

γ̅ = 0.0345 × 1011 dyne , χE̅ = 298, ω̅/ω̅0 = 10.      (50) 
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Below in figures from (2) to (7), the respectively changes in the ratios of amplitudes of reflected & refracted waves is 

represented by the solid lines, when the incident wave is LD wave. 

New figures 

 

Figure 2: Variation in amplitude ratio |Z1| w.r.t. angle of incidence of incident wave 

Fig. (2), represents that the amplitude ratio’s minimum values 𝑍1 at angles 0o and 90o, maximum value attains 

approximately at angles 2o and 88o. The values of  𝑍1 are speedily increasing from the beginning at angles 0o and 2o 

and after that decreasing from the angles 2o to 24o and similarly increasing and decreasing from the angles 

66o to 88oand minor changes in its values likes up and down from the angles 25o to 65o. 

 

Figure 3: Variation in amplitude ratio |Z2| w.r.t. angle of incidence of incident wave 

Minimum values of amplitude ratio 𝑍2 in the figure (3) are behaving alike the figures (2) and maximum value attains 

approximately at angle 2o. After that the values of  𝑍2 are decreasing from the angles 2oto14oand stop at an angle 

14ofor a moment and again decreases very slowly from the angles14oto 89o, speedily decreasing from the angles 

89o to 90o, which are shown in the figure (3). 
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Figure 4: Variation in amplitude ratio |Z3| w.r.t. angle of incidence of incident wave 

In the figure (4), the minimum values 𝑍3 of amplitude ratios are behaving alike the fig. (2) and (3). Now the values of 

𝑍3 suddenly increasing from the angles 0o to1o, decreasing slowly from the angles 1o to 14oand again increasing from 

the angles 14o and 89o, and after that speedily decreasing from the angles 89o to 90o.  

 

Figure 5: Variation in amplitude ratio |Z4| w.r.t. angle of incidence of incident wave 

In the figure (5), minimum values of amplitude ratio 𝑍4 lies approximately at the angles 39o and 90o. Now, the values 

are decreasing from the angles 0o and 39o and after that values are increasing from the angles 39o and 89o. The values 

from the angles 89o to 90oare behaving alike the figure (4). 

 

Figure 6: Variation in amplitude ratio |Z5| w.r.t. angle of incidence of incident wave 
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The amplitude ratio’s values 𝑍5 in the figure (6) are approximately same. 

 

Figure 7: Variation in amplitude ratio |Z6| w.r.t. angle of incidence of incident wave 

In the figure (7), the minimum values of amplitude ratio 𝑍6 are lies at the angles 0o and 90o. Now, the values are 

increasing from the angles 0o and 1o and after that values are having negligible difference from the angles 1o and 89o. 

The values from the angles 89o to 90oare behaving alike the figure (4). 

The figure for the amplitude ratio 𝑍7 is not shown here because the values are same for the values of the amplitude ratio 

𝑍6. 

6.Conclusion 

In this paper, a mathematical discussion of refraction & reflection coefficients at interfaces separating electro-

microelastic solids (EMS) and micropolar elastic solids (MES) half-spaces has been given when a longitudinal wave is 

in incident nature. From the graphical and numerical results, it is observed that 

1. The modulus of amplitude ratios of the different types of refracted and reflected waves depends on the material 

properties of half spaces and the angle of incidence of the incident wave.  

2. The values of amplitudes ratios 𝑍𝑖(i=1, 2, 3) various reflected values are different at corresponding angles. 

3. The amplitude ratio’s values 𝑍𝑖 (i=4, 6) various refracted values are different at corresponding angles. But the 

values of 𝑍𝑖 (i=5, 7) are approximately same to the values of 𝑍𝑖 (i=4, 6).  
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