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Abstract  

This paper proposes a near-Newton approach, using uni-dimensional Rossby-Obukhov and 

Korteweg-deVries (KdV) equations as models for the solution of the partial differential 

equations (PDE) -controlled problem. One extremely important aspect of the process is that the 

notation of differential equations does not restrict the stability of the step size. The traditional 

approach to solve regional models, the boundary conditions are obtained by interpolating the 

solution provided by the global model on the coarse mesh. Essentially, the global points within 

the regional domain are discarded. With the use of optimization tools we can reformulate the 

problem in order to take advantage of all available data. The intention of this work is to 

formulate an optimization problem that seeks to solve the model in such a way that the solution 

is as close as possible to the data contained in the domain, which can be interpreted as the 

interpolation of the data by solving the model equations. Currently, there is no theory to explain 

the stable behavior of the non-evolutionary problem. However, we can observe that the global 

data interpolated in the problem (weather forecast) act as a regularization, demanding that the 

solution does not deviate too far from the global data and does not present oscillatory behavior. 

In this paper it was present two comparative experiments using the experimental model to 

validate the above condition. The first experiment was done with the Rossby-Obukhov 

equation, and the second with the KdV equation. Just as each experiment comprises several 

numerical tests, we show only the most expressive results and comment on the behavior of 

others. It was illustrated that, the phenomenon in different linear problems (the heat equation 

and the Rossby-Obukhov equation) and nonlinear ones (the KdV equation), possible to obtain 

the solution of the problem with the speed compatible with a single direct evolution using usual 

PDE methods, without losing precision in the solution. 

Keywords: PDF, KdV equation, Rossby-Obukhov equation, near-Newton approach, weather 

forecast, traditional approach versus optimization 

 

1.0 Introduction 

A differential equation is an equation that relates a function of one or more variables with their 

derivatives [1-2]. The optimization technique used in the spatial model domain for Apkarian et 

al., (2020) [3] restores boundary conditions by means of data. The problem of regional weather 

forecasting means that the solution to the Cauchy-Dirichlet problem is particularly relevant in 
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weather. A distinction must be made between two types of predictive atmospheric models. 

There are global models that estimate the whole world and regional models that provide a 

prediction for a small area. The grid resolution is one of the fundamental variations between 

these models [4]. Low resolution space grids are used for global models and denser mesh 

regional models run. This is primarily a computational explanation for the presence of these 

two versions. Cauchy dirichlet problems also have to be solved by researching and modelling 

various physical processes. Numerical methods are typically used in geophysical studies to 

solve the Cauchy-Dirichlet problem [5]. Traditionally, these approaches use discrete types of 

equations and initial and limit values at grid points. Generally, the problem is solved with a 

valid numerical method. In the original and limits of measurements or other model outputs, 

though, all contain errors that can exceed 30 percent of the true values. The KKT (Karush Kuhn 

Tucker) non-linear mechanism [12] is well constructed in various optimization problems, and 

Newton and Quasi-Newton methods are very useful for its solution [6]. Our recommendation, 

implemented as part of meteorological data assimilation, enables the optimum solution of the 

model to be found with regard to the observed data at pace that is consistent with one single 

direct model growth [7]. This paper attempts to explain the actions of the experimental model 

using the equations Rossby-Obukhov and KDV. We implemented different schemes and 

studied their numerical behaviour for both equations. Then with the experimental model, we 

present some experiments. In this paper, the first trials of the Rossby Obukhov equation and 

the second of the KdV equations were conducted. Just when we present only the most 

expressive findings and comment on the behaviour of other approaches each experiment 

contains a variety of numerical experiments. 

 

2.0 Numerical formulation of the regional problem: traditional approach 

In the specific case of the Cauchy-Dirichlet (C-D) problem for parabolic equations, the 

question about the existence and uniqueness of the solution is directly related to the structure 

of the boundary of its domain in the vicinity Lines of those points with horizontal tangent [11].  

The C-D issue as described in the Regional Weather Forecasts is formulated here. We need the 

lateral boundary for the whole time interval needed to achieve a specific solution for regional 

model equations. These data are typically collected from a global model solution. We may not 

know the exact solution to the external model (if not our problem would have been solved), but 

we can find it in a discrete form. 

 

2.1 Traditional approach 

In order to solve the regional model, it is necessary to define, in addition to the initial condition, 

the boundary condition at the boundary of specific domain for the entire period of time for 

which the forecast will be performed. The data for the contour are obtained from the global 

model, whose exact solution we do not know. We can, however, obtain the approximate 

solution of its discrete formulation: 

∆𝑡 {Ψ̅) = ℱ̅𝑑 

Ψ̅ (x, 0) = 𝕐𝑔𝑙𝑜𝑏(�̅�)..(Eq-1.1) 
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When the evolutionary vector of world models is’t’ 'ℱ̅𝑑 is a discrete vector, and the initial state 

is 𝕐𝑔𝑙𝑜𝑏 'ℱ̅𝑑 is a discrete external power. The numerical solution of (1.1), provided by the sun 

is believed to be adequate for the optimum hypothesis model, which represents the true main 

atmospheric processes exactly. It is believed that "Ψ̅𝑆𝑜𝑙" numerical (1.1) solution is fairly close 

to the optimal hypothesis model solution that precisely represents the actual large-scale 

atmospheric systems. The discrete representation of the regional model, defined in a closed 

area with a 𝑆 border, can be written with, 

Δ𝑡 = ℱ̅𝑟𝑑; 

𝔾 (𝑥, 0) = 𝕐𝑙𝑜𝑐(�̅�) 

𝔾 (�̅�, 𝑡)│𝑥𝜖𝑠 = 𝔾𝑠(�̅�, 𝑡)..(Eq-1.2) 

' 𝔾 ' is the vect or prognostic feature ℱ̅𝑟𝑑 while 'Δ𝑡 is the differential operator for the regional 

model's evolution; where the exterior characteristics are discrete, the original condition is 

'𝕐𝑙𝑜𝑐. The traditional approach to solve (1.2) is to obtain the boundary condition 𝔾𝑠 by 

interpolating the necessary data from the global solution sol in the regional grid and then apply 

a numerical method to solve PDEs. 

 

2.1.1 Experimental model 

Real weather and climate forecasting models are complex PDE systems in relation to three-

dimensional space. The spatial mesh for a regional model can contain on the order of 400 × 

400 × 100 =  16 ∗  106  points and the number of steps in time, for a 4-day forecast, is on 

the order of 4 ∗ 103. Obviously, these values vary from one model to another, as they depend 

on many factors (numerical method for solving PDEs, type of mesh, type of discretization 

scheme, etc.). We present the values here only as a reference to illustrate the size of a real 

problem. The intention of this work is to approach the discrete problem of weather forecasting 

(1.2) or any other problem with these characteristics, as an inverse problem and to use the 

optimization tools to solve it. Our goal is to develop an efficient algorithm and study its 

behavior. For this purpose, we will use an experimental model that simulates the characteristics 

of real regional models, but with a simple physical description and a small numerical 

dimension. Below we characterize the model in detail: 

Physics: the model is described only by a one-dimensional equation whose analytical solution 

is known. 

Discretization: we adopt the finite difference method, which is often used in current models. 

Domain: we take the model domain as a limited and closed area contained in the domain of 

the analytical solution. 

Global data: we build global data using the analytical solution in a coarse mesh in space-time. 

Initial condition: for our experimental model, we take the analytical solution as the initial 

condition in the initial instant of time.  

We observed that the global data are obtained from the solution of the same equation that is 

used in the experimental model, while the real models, global and regional, and are described 

by different PDE systems. However, the fact of using only one equation to describe the model 

does not allow to simulate the same situation. In the case of the initial condition, obviously, it 

is not exact in reality, but it is obtained through a process, known as data assimilation, which 
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produces a good approximation of the state of atmosphere of the instant from which the model 

is executed. Therefore, the error related to the initial condition is significantly less than the 

error related to the global data. Just as our attention in this work is focused on the use of global 

data, we take the initial condition as being exact. 

Next, we introduce the equations that will be used in our numerical tests with the experimental 

model. 

 

2.2 One-dimensional Rossby-Obukhov equation 

The Rossby-Obukhov equation was deduced by Obukhov in 1949 [8]. Its domain is a periodic 

𝛽-plain, frequently used in theoretical studies of meteorology. A periodic 𝛽 -plain is basically 

a cylinder, that is, a rectangle in which all solutions are periodic in 𝑥, with dimensions 𝐿 = 

3 × 107 m in the 𝑥 direction and 𝐵 =  4 ×  106 𝑚 in the 𝑦 direction. The Rossby-Obukhov 

equation is a potential vortices equation, which describes the evolution of the Rossby waves, 

responsible for the change in time. Its expression is given by 

𝜕

𝜕𝑡
[∇2𝜑 −

𝜑

𝑙0
2] + 𝑗(𝜑, ∇2𝜑) + 𝛽

𝜕𝜑

𝜕𝑥
= 0. . (Eq − 1.3)  

where 𝜑 is the current function, 𝑓𝑜 =  10−4𝑠−1  is the Coriolis parameter, 𝐶𝑜 speed of sound, 

𝛽 =  𝑑𝑓𝑜 / 𝑑𝑡 =  1.6 × 10−11𝑠−1𝑠−1 𝑚−1 𝑎𝑛𝑑 𝑙𝑜  =  𝐶𝑜 / 𝑓𝑜  =  3 ×  106 𝑚 is to climb 

from Obukhov. 

As with most non-linear PDEs, we do not know the general analytical solution to the Rossby-

Obukhov equation. However, for the linearized one-dimensional case, given by 

𝜕

𝜕𝑡
 (

𝜕2

𝜕𝑥2
−

1

𝑙0
2) 𝜑 + 𝛽

𝜕𝜑

𝜕𝑥
+ 𝑈

𝜕3𝜑

𝜕𝑥3
= 0. . (Eq − 1.4)  

the analytical solution is known. 

 

2.3 Korteweg-de Vries equation 

A dispersive nonlinear partial difference equation is the Korteweg-de Vries Equation. The 

mathematical model of the wave on the shallow surface of the water is given with equation 1.5: 

𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0 

𝑥 ∈ ℝ, 𝑡 > 0. . (Eq − 1.5)  

Equation (1.5) has an analytical solution, as shown by Korteweg and de Vries [9], given by 

𝑢 = 𝑏 + 𝑎 𝑐𝑛2(𝛾(𝑥 − 𝑉𝑡)│𝑚). . (Eq − 1.6)  

where 𝑐𝑛2(𝛾(𝑥 − 𝑉𝑡)│𝑚) is the Jacobian elliptic task, 𝑚 ∈  (0, 1) is the unit of the elliptical 

function, 𝛾 is the wave number, 𝑎 =  2𝑚𝛾2 and 𝑉 =  6𝑏 +  4 (2𝑚 −  1) 𝛾2. This solution is 

called a cnoidal wave. 

In the case where 𝑚 →  1 we have 𝑐𝑛 (𝑥 | 𝑚)  →  𝑠𝑒𝑐ℎ (𝑥) and the solution (1.6) takes the 

form of a one-dimensional solid: 

𝑢 = 𝑏 + 𝑎 𝑠𝑒𝑐ℎ2(𝛾(𝑥 − 𝑉𝑡)). . (Eq − 1.7)  

with 𝑉 =  6𝑏 +  2𝑎 𝑎𝑛𝑑 𝑎 =  2𝛾. Figure 1 shows the solution of the 𝐾𝑑𝑉 equation at time t 

= 0. 
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Figure 1: Graph of the solution of the 

KdV equation for t = 0: soliton with γ = 

2 and b = a (left); conical wave with γ = 

2, m = 0.995 and b = a (on the right). 

Figure 2: Solution of 𝑦′′= 0: contour 

problem (A) and interpolation by least 

squares (B). 

 

 

As we described in the previous sections, in the traditional approach to solving regional models, 

the boundary conditions are obtained by interpolating the solution provided by the global model 

on the coarse mesh. Essentially, the global points within the regional domain are discarded. 

With the use of optimization tools we can reformulate the problem in order to take advantage 

of all available data. 

Next, we'll look at a trivial example. 𝐿𝑒𝑡 𝑦 ′ ′ =  0, the “regional model”, defined in [𝑎, 𝑏] and 

{(𝑥1 =  𝑎, 𝑦1), . . . , (𝑥𝑚 =  𝑏, 𝑦𝑚)}, the “global data” of the model. The classic approach is 

simply to take the solution as the line that joins(𝑥1, 𝑦1) 𝑎𝑛𝑑 (𝑥𝑚, 𝑦𝑚). However, instead, we 

can take as a solution a straight line that interpolates the points in the sense of minimum 

squares. If there are no errors in the data, all outcomes are the same. Although the variations 

may be important in the case of mistakes. In Figure 2 we demonstration the illustration with 

the data (𝑥𝑖, 𝑦𝑖 +  𝑒𝑖), 𝑖 =  1, . . . , 𝑚, extracted from the exact solution𝑦 =  2𝑥 +  1, where ei 

corresponds to a random disturbance of yi by up to 30%. It is easy to see that in this case the 

reasonable solution is the solution that interpolates the points. 

The intention of this work is to formulate an optimization problem that seeks to solve the model 

in such a way that the solution is as close as possible to the data contained in the domain, which 

can be interpreted as the interpolation of the data by solving the model equations. 

 

 3.1 Formulation of the optimization problem 

To formulate the optimization problem, let us consider a simple but very illustrative example, 

the supersensitive contour problem given by 

∈ 𝑥′′ = −𝑥𝑥′ 

𝑥(0) = −1, 

 𝑥(1) = 1 … . (Eq − 1.8) 
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Where ∈ = 0.05 

 

The problem is called supersensitive, because small variations in the contour produce very 

different solutions, as we can see in Figure 3, where the value of 𝑥 𝑖𝑛 1 is between 0.998 and 

1.002. 

To obtain the analytical solution, we integrate the equation of the two sides 

∈  
𝑥′

𝑥2 + 𝑐
= −1/2 … . (Eq − 1.9) 

 

And integrating again, we have 

𝑥 =

√−𝑐 (1 + 𝑒𝑥𝑝
(𝑡 + 𝑘)√−𝑐

∈ )

1 − 𝑒𝑥𝑝
(𝑡 + 𝑘)√−𝑐

∈

√𝑐 tan (
(𝑡 + 𝑘)√−𝑐

∈
) , 𝑖𝑓 𝑐 > 0

 𝑖𝑓 𝑐 ≤ 0 

Where constants 𝑐 and 𝐾 are defined by boundary conditions. 

Suppose now that we want to solve equation (1.8) with the solution disturbed, at most 5%, at 

some points in the domain (Figure 4). 

 

 
Figure 3: Analytical solution of ∈x ′ ′ = −xx 

′, ∈ = 0.05 with x (0) = −1 and x (1) varying 

close to 1. 

Figure 4: Solution of ∈x ′ ′ = −xx ′, ∈ = 0.05 

with x (0) = −1 and x (1) = 1 and disturbed 

data. 

 

Obviously, when trying to solve the problem numerically with an efficient method, using only 

the points on the contour, we obtain a solution far from the desired one, because the analytical 

solution for this disturbed contour is quite different. Figure 4 shows the numerical solution 

using the shooting method with 4-order Runge-Kutta discretization. So let's formulate the idea of 

looking for the solution that is as close as possible to the data. Let {x0 = 0, x1. . . , xN = 1} the mesh 

over the domain and suppose that is the vector of the discretization of equation (4.1) at the point of the 

mesh xi, i = 1,. . . , N - 1. With a simple example we saw that the use of data within the domain with an 

optimization formulation makes it possible to find the desired solution, while the contour problem 

(disturbed) provides a completely different solution. Therefore, we will apply the optimization to 

models that have these same characteristics, such as regional models in meteorology. 
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3.2 Regional modelling and optimization problem 

Suppose we have a solution of (1.1) in a coarse (glob) mesh, Ψ𝑆𝑜𝑙. The objective is to find 𝔾𝑠𝑜𝑙.
 

in the fine (regional) mesh that satisfies the regional model (1.2) and is as close as possible to 

the global sol Ψ𝑆𝑜𝑙 |S solution. In terms of formulation (1.10), 

Minimize 𝑑(𝑥, 𝕍); 𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜  ℎ(𝑥) = 0..(Eq-1.10) 

where d (.,.) is the distance. 

The regional problem can be rewritten as 

Minimize
1

2
‖𝔾 − ℱ(Ψ𝑆𝑜𝑙│𝑠)‖

2

2
 

∆𝑡{𝔾} − ℱ𝑟𝑑 = 0 

𝔾(0) − 𝕐𝑙𝑜𝑐(𝑥) = 0. . (Eq − 1.11) 

Basically, there are two ways to use the problem (1.11) to solve the regional model. The first is to apply 

it evolutionarily for each time level, that is, to do the procedure equivalent to that used in finite 

difference methods: given the initial condition at t0, obtain the solution at t1 and then, considering the 

initial condition it is now given at t1, obtaining the solution at t2 and so on. 

The second way is to consider as the domain of the problem the mesh with all levels of time (until the 

end time). With that, all the information made available by the global model in the desired period will 

be used. In addition, as we will see below, for this “non-evolutionary” way of interpreting the problem, 

the space-time mesh can be considerably larger, preserving the same quality of solution and, most 

importantly, the stability criterion for the chosen scheme does not need to be satisfied. 

Obviously, the disadvantage of considering the problem in the whole space-time domain is the size of 

the numerical problem when we want to obtain the solution for a long period of time. The way to limit 

the dimension of the problem is to divide the time domain into several blocks and solve the problem 

(1.12) for each block, considering the solution at the last time level of the previous block as the initial 

condition. The choice of the size of each block can depend on several factors: the size of the regional 

grid, the amount of global data, the type of discretization chosen, computational resources, among 

others. 

 

3.2.1 Algorithm 

Note that the initial condition in the problem (1.4) can also be interpreted as a data, together with the 

global data, but of “better” quality.  We rewrote the problem (1.4) in a generalized way as 

Minimize
1

2
‖𝑢 − 𝑉‖𝑃

2  

Subjected to ℎ(𝑢) = 0 

𝑢 ∈ ℝ𝑛(Eq − 1.12) 

where 𝑃 is a diagonal penalty matrix, which penalizes the “best” quality data, 𝑎𝑛𝑑 ℎ (𝑢)  =

 [ℎ1 (𝑢), ℎ2 (𝑢), . . . , ℎ𝑚 (𝑢)] 𝑇 is the discretization vector regional equations at each point in the grid. 

 

The n and m dimensions are, respectively, the number of stitches in the mesh and the number of 

discretizations. Note that n and m are related, because for each point of the mesh that is not in the 

contour or in the initial condition, there is a discretization. Writing the KKT conditions of the problem 

(1.13), we obtain a nonlinear system given by 

𝑃(𝑢 − 𝑉) + ℎ′(𝑢)𝑇𝜆 = 0 

ℎ(𝑢) = 0 … (Eq − 1.13) 

where λ is the vector of the Lagrange multipliers and ℎ ′ (𝑢) is the Jacobian matrix of the constraints 
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Considering the 𝑛 +  𝑚 dimension of the system (1.12), the methods that are efficient for their 

resolution are Newton and Quasi-Newton. With these observations, we will introduce the following 

Quasi-Newton algorithm to solve the problem (1.13). 

 

3.2.1.1 Quasi-Newton algorithm 

Given the penalty matrix P, the stopping criterion and the maximum number of iterations: 

Step 1. Initialization 

𝑘 = 0 

(
𝑢0

𝜆0
) = (

𝑉
0

)   

Step 2. Solve the subproblem 

𝐽(𝑢𝑘, 0) (
Δ𝑢0

Δ𝜆0
) = − (

𝑃(𝑢𝑘 − 𝑉) + ℎ′(𝑢𝑘)𝑇𝜆
ℎ(𝑢𝑘)

)  

Step 3. Update the point 

(
𝑢𝑘+1

𝜆𝑘+1
) = (

𝑢𝑘

𝜆𝑘
) + (

Δ𝑢𝑘

Δ𝜆𝑘
)  

Step 4. Check the stopping criterion 

If the stopping criterion is not met, assign k = k + 1 and return to step 2. 

 

3.3 Optimization and the stability criterion 

We will now analyze the most interesting phenomenon that arises when the differential equation is 

solved using the optimization approach. The evolutionary result corresponds to the solution obtained in 

a traditional way, showing instability after a short period of time. On the other hand, in the non-

evolutionary case, the solution always has a stable behavior. In addition, we can take a much longer 

step without losing the quality of the solution, where we purposely take 𝑎
Δ𝑡

Δ𝑥2 = 400 to show the robust 

behavior of the optimization method. The same phenomenon occurs with the time-centered and space-

centered scheme, which is unconditionally unstable. Using the evolutionary form, the solution quickly 

becomes unstable, while the use of all levels of time allows to obtain the stable and accurate solution 

with much larger steps compared to the steps with traditional finite difference approach.  

Currently, there is no theory to explain the stable behavior of the non-evolutionary problem. However, 

we can observe that the global data interpolated in the problem mesh act as a regularization, demanding 

that the solution does not deviate too far from the global data and does not show oscillatory behavior. 

 

3.4 Discretization of the Rossby-Obukhov and KdV equations 

The purpose of this section is to show the behavior of the experimental model using the Rossby-

Obukhov and KdV equations. For that, we introduced schemes for the two equations and analyzed their 

numerical behavior. Then, we present tests with the experimental model. 

 

4.1 Discretization of the one-dimensional Rossby-Obukhov equation 

Before proceeding with discretization, we note that for the numerical implementation of the one-

dimensional Rossby-Obukhov equation (1.4) it is convenient to use the additional representation in 

order to avoid rounding problems. Taking scaling parameters as 𝑆 =  6 × 106 𝑚, 𝑇 =  𝑆 / 𝑉 =

 6 × 105 𝑠, 𝑉 =  10 𝑚 / 𝑠, the dimensionless variables take the following form: 

�̃� =
𝑥

𝑠
; �̃� =

𝑡

𝑇
;  �̃� =

𝑇

𝑠2 𝜑;  Eq ..(2.1) 

the dimensionless equation is given by 
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𝜕

𝜕𝑡
(

𝜕2

𝜕�̃�2 −
1

𝑏2) �̃� + 𝛽0
𝜕�̃�

𝜕�̃�
+ 𝑈0

𝜕3�̃�

𝜕�̃�3 = 0 Eq ..(2.2) 

Where 

1

𝑏
=

𝑆

𝑙0
= 2, 𝛽0 =

𝛽𝑆2

𝑉
= 57.6 𝑎𝑛𝑑 𝑈0 =

𝑈

𝑉
𝜖[0,3] 

In the theoretical deductions and numerical results for the Rossby-Obukhov equation shown in this 

work, we will always use dimensional measures for greater convenience. However, it is important to 

note that the numerical implementation used the dimensionless form (2.1). 

For notation abuse, we use the same letter to denote the PDE dependent variable and its discrete 

approximation, that is, we refer to 𝜑𝑘 as the 𝜑(xn, tk) approximation. For numerical tests we consider 

the entire periodic spatial domain [0, L], discretizing it with N + 1 points, {x0 = 0, x1,. . . , xN − 1, xN = 

L}. Therefore, the boundary condition is given by 

𝜑0±1
𝑘 = 𝜑𝑁±1

𝑘 , 𝑘 > 0, 𝑖 = 0, … . , 𝑁 − 1Eq ..(2.3) 

As an initial condition, we take the analytical solution (1.6) at time 𝑡 =  0, that is, 

𝜑𝑛
0 = ∑ 𝐴𝑖 𝑆𝑒𝑛 [𝑘𝑖𝑥𝑛

85
𝑖−1 + 𝜙𝑖] 𝑛𝜖{0, … . 𝑁 − 1} 

with the coefficients Ai and φi generated randomly between [0, 10] and [0, 2π], respectively. 

 

4.2 Discretization of the KdV equation 

Next, we introduce three finite difference schemes for the Korteweg-de Vries equation. We will not do 

the theoretical analysis of stability, since, being the non-linear equation, it is a complex procedure and 

is not the objective of this work (there are many publications that present a detailed analysis of stability 

for various KdV schemes. 

For the numerical tests, we consider the interval [−5, 35] as the spatial domain, discretizing it with 

𝑁 +  1 points, {𝑥0 =  −5, 𝑥1, . . . , 𝑥𝑁 −  1, 𝑥𝑁 =  35}. For the initial and boundary conditions we use 

the two analytical solutions shown in Figure 1 - cnoidal solution, with 𝑚 =  0.995, and soliton solution. 

The coefficients are 𝛾 =  2 and 𝑏 =  𝑎. 

 

4.2.1 Explicit linear scheme 

We set up the first scheme using the same idea as the time-centered and space-centered scheme of the 

Rossby-Obukhov equation. 

𝑢𝑛
𝑘+1−𝑢𝑛

𝑘−1

2∆𝑡
+ 6𝑢𝑛

𝑘 𝑢𝑛+1
𝑘 −𝑢𝑛−1

𝑘

2∆𝑥
+

𝑢𝑛+2
𝑘 −2𝑢𝑛+1

𝑘 +2𝑢𝑛−1
𝑘 −𝑢𝑛−2

𝑘

2∆𝑥3  Eq ..(2.4) 

In Figure 5 we can see the solution for the soliton and cnoidal wave at time t = 0.5, with steps in space 

∆x = 0.05 and ∆x = 0.02 (the step in time is the maximum allowed). 

 
Figure 5: Numerical solutions of the KdV equation at time t = 0.5 with ∆x = 0.05, ∆t = 5 × 10−5 

(above) and ∆x = 0.02, ∆t = 3.1 × 10−6 (below). Explicit linear scheme. 
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4.2.2 Implicit linear scheme 

The second scheme is basically the Crank-Nicolson scheme. The difference is that, to preserve the 

linearity of the scheme in relation to uk + 1 in the nonlinear term 6uux, u is discretized at the time level 

k. The resulting scheme, which we call the implicit linear scheme, is given by 

𝑢𝑛
𝑘+1−𝑢𝑛

𝑘−1

∆𝑡
+ 6𝑢𝑛

𝑘 1

2
 (

𝑢𝑛+1
𝑘+1−𝑢𝑛−1

𝑘+1

2∆𝑥
+

𝑢𝑛+1
𝑘 −𝑢𝑛−1

𝑘

2∆𝑥
) +

1

2
(

𝑢𝑛+2
𝑘 −2𝑢𝑛+1

𝑘+1+2𝑢𝑛−1
𝑘+1−𝑢𝑛−2

𝑘+1

2∆𝑥3 +

𝑢𝑛+2
𝑘 −2𝑢𝑛+1

𝑘 +2𝑢𝑛−1
𝑘 −𝑢𝑛−2

𝑘

2∆𝑥3 ) = 0 Eq ..(2.5) 

 

4.2.3 Implicit nonlinear scheme 

As a last scheme, which we call the implicit non-linear scheme, we will take the scheme deduced by 

Furihata in [10] and which satisfies the mass and energy conservation properties: 

𝑢𝑛
𝑘+1 − 𝑢𝑛

𝑘

∆𝑡
+

1

2∆𝑥
((𝑢𝑛+1

𝑘+1)2 + (𝑢𝑛−1
𝑘+1)2 + 𝑢𝑛+1

𝑘+1𝑢𝑛+1
𝑘 − 𝑢𝑛−1

𝑘+1𝑢𝑛−1
𝑘 + (𝑢𝑛+1

𝑘 )2 − (𝑢𝑛−1
𝑘 )2)

+
1

2∆𝑥3  (
𝑢𝑛+2

𝑘+1 + 𝑢𝑛+2
𝑘

2
− (𝑢𝑛+1

𝑘+1 + 𝑢𝑛+1
𝑘 ) + (𝑢𝑛−1

𝑘+1 + 𝑢𝑛−1
𝑘 ) −

𝑢𝑛−2
𝑘+1 + 𝑢𝑛−2

𝑘

2
)

= 0 Eq. . (2.6) 

Figure 6 shows the numerical results obtained with the time step ∆t = 2 ×  10−2. With the 10−10 stop 

criterion, Newton's method converged in 4 steps at each time level. We conclude this section by 

observing that for the KdV equation to be solved with reasonable precision, a very fine spatial grid is 

required, in addition to a very small relationship between the steps in time and space (the best 

relationship shown in the graphs is the nonlinear scheme, being 10−2 for the period of evolution in the 

time of 0.5). 

 
Figure 6: Numerical solutions of the KdV equation at time t = 0.5 with ∆t = 2 × 10−4 and ∆x = 0.05 

(above), ∆x = 0.02 (below). Implicit nonlinear scheme. 

 

In this chapter we present three comparative experiments using the experimental model to validate the 

proposal presented in the previous sections 
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5.0 Rossby-Obukhov equation 

First, we analyze the behavior of the experimental model with the Rossby-Obukhov equation. 

We consider as the regional domain the interval {𝟏. 𝟖 × 𝟏𝟎𝟕, 𝟐. 𝟒 × 𝟏𝟎𝟕}m 

(𝟔𝟎𝟎𝟎 𝒌𝒎 𝒊𝒏 𝒍𝒆𝒏𝒈𝒕𝒉) within the periodic domain [𝟎, 𝑳]. 

To form the initial condition we use the analytical solution given by 𝝋(𝒙, 𝒕) =

∑ 𝐀𝐢 𝐒𝐞𝐧 [𝐤𝐢𝐱𝐧
𝐊=𝟖𝟓
𝐢−𝟏 + 𝛟𝐢] 𝛜{𝟏. 𝟖 × 𝟏𝟎𝟕, 𝟐. 𝟒 × 𝟏𝟎𝟕}  (Eq. 3.1) 

The 85 harmonics, defined by the Ai and Aii coefficients, correspond to the solution shown in Figure 2 

and are the same as those used in tests with the Rossby-Obukhov equation in previous section We will 

take the speed as U = 30 m / s. 

5.1. Experiment 1 

Global data: We will generate the global data as follows: 

∆𝑥𝑔𝑙𝑜𝑏𝑎𝑙   ∆𝑡𝑔𝑙𝑜𝑏𝑎𝑙

300 𝑘𝑚    2 ℎ𝑜𝑢𝑟𝑠
  

• we chose the global grid as: ∆𝑥𝑔𝑙𝑜𝑏𝑎𝑙  ∆𝑡𝑔𝑙𝑜𝑏𝑎𝑙 300 km 2 hours for the spatial domain [0, L] and temporal 

domain [0, 96] hours. 

• on the mesh we generate the analytical solution with 85 harmonics; 

• we consider the generated solution as the global data (shown in 7). 

 

 
Figure 7: EXPERIMENT 1. Global data for the Rossby-Obukhov equation at t = 0. 

 

5.1.1 Boundary condition: We generate the boundary condition simply by linearly interpolating the 

global data in the mesh of the experimental model. 

First, we solve the experimental model using the traditional approach. We chose only two schemes - 

time-centered and space-centered, and Crank-Nicolson, - which showed the best behavior when 

resolved with an exact outline (presented in the previous chapter). The steps in time and space for each 

scheme were chosen as large as possible, but in such a way that the reduction in steps does not show 

significant variation in the solution of the problem. In Figures 8 and 9 we can see the graphs of the 

solution at time t = 24, 48 and 96 hours, for the present schemes. 



JOURNAL OF ALGEBRAIC STATISTICS 
Volume 13, No. 3, 2022, p. 4010-4024 
https://publishoa.com 
ISSN: 1309-3452 

4021 

 
Figure 8: Experiment 1. Traditional Approach. 

Scheme centered in time and centered in space. 

Mesh: ∆x = 10 km, ∆t = 333 s. Solution at time t 

= 24 hours (first graph), t = 48 hours (second) and 

t = 96 hours (third). CPU time = 0.13 s. 

Figure 9: Experiment 1. traditional approach. 

Crank-Nicolson scheme. Mesh: ∆x = 10 km, ∆t = 

200 s. Solution at time t = 24 hours (first graph), 

t = 48 hours (second) and t = 96 hours (third). 

CPU time = 0.44 s. 

 
Figure 10: EXPERIMENT 1. OPTIMIZATION 

APPROACH. Scheme centered in time and 

centered in space. Mesh: ∆x = 100 km, ∆t = 3600 

s. Solution at time t = 24 hours (first graph), t = 

48 hours (second) and t = 96 hours (third). CPU 

time = 0.63 s. 

 

Figure 11: EXPERIMENT 1. OPTIMIZATION 

APPROACH. Crank-Nicolson scheme. Mesh: 

∆x = 50 km, ∆t = 1800 s. Solution at time t = 24 

hours (first graph), t = 48 hours (second) and t = 

96 hours (third). CPU time = 2.9 s. 

We can see that due to the errors in the contour caused by the linear interpolation of the global data, the 

solution of the experimental model diverges in a short time from the analytical solution, that is, when 

there is no more influence from the initial condition. And the greater the errors in the contour, the worse 

the solution of the model will be. 

Now we are going to solve the experimental model using the optimization approach, with the same 

schemes. The steps in space and time were chosen to be the largest possible. The penalty for the initial 

condition is 104, that is, we take the penalty matrix I is the identity matrix. 

We observed that the solution obtained by the optimization problem using the time-centered and space-

centered scheme shown in Figure 10 &, despite the steps violating the stability condition (5.12), presents 

a very good behavior. And we can also note that in order to reach the acceptable precision in the solution 

by optimization, the steps in time and space are significantly greater than those necessary for the 

traditional solution with exact contour. In this first experiment we show that small errors in the boundary 
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condition can lead to strong distortions in the solution. However, the use of the optimization method 

with the data inside the domain provides a way to avoid the sensitivity of the solution to errors in the 

contour, allowing to obtain a good solution. We want to generate more realistic global data, that is, 

without containing information on small scales. For that, we take the analytical solution with only 25 

harmonics and, from this solution, we generate the global data in the same mesh as the previous test, as 

shown in Figure 11. Thus, the smallest wave size present in the global data is 1200 km. 

 

5.2 Korteweg-de Vries: We have already seen that in the case of the Rossby-Obukhov equation, which 

is a linear equation, errors in the contour propagate quickly into the domain, significantly distorting the 

solution. In this section we show the behavior of the non-linear KdV equation. We carried out the tests 

with the two solutions presented in the previous section: cnoidal wave and only liton. Since the soliton 

is a single wave, while the cnoidal solution describes infinite waves, we take different domains for the 

two solutions. In the case of soliton, we obviously want to visualize the solution in the domain where 

the wave is present, so we chose the large spatial domain and as a temporal domain we took enough 

time for the wave to travel through the spatial domain. In the case of a cnoidal solution, unlike soliton, 

we analyze the behavior over a long period of time, but in the small spatial domain. 

To generate the initial conditions and global data we use the analytical solutions (3.10) (cnoidal wave), 

with m = 0.995, and (3.11) (soliton), using the coefficients a = b and γ = 2. 

 

5.2.1 Experiment 2 

We present the first tests with the cnoidal solution of the KdV equation. As a domain we will take the 

interval [0, 10] in space and [0, 5] in time. 

 Global data: Using the same idea as in experiment 1, we generate the data from the analytical solution 

in a mesh given by 

∆𝑥𝑔𝑙𝑜𝑏𝑎𝑙    ∆𝑡𝑔𝑙𝑜𝑏𝑎𝑙

0.5        0.005
 

and disturb the result by up to 10%,. 

In the numerical resolution of the experimental model by the traditional approach, using only the 

contour, the disturbances from the global data make it impossible to obtain an acceptable solution of 

the equation even for a very short period of time, regardless of the chosen scheme. For the implicit 

nonlinear scheme, which showed the best behavior in the solution with exact contour, we can see in 

Figure 6.14, that the oscillations at time t = 0.1 are already significant, and at t = 5 the numerical solution 

is completely chaotic. It is important to note that in the same mesh, ∆x = 0.02 and ∆t = 0.0002, the exact 

contoured solution is very close to the analytical solution.  Applying the optimization approach and 

using the penalty matrix (6.2) of experiment 1, the best result is obtained by the implicit non-linear 

scheme in the mesh with ∆x = 0.2 and ∆t = 0.005. Note that the mesh is much thicker than in the case 

of the solution by the traditional approach, but it was still necessary to divide the problem domain into 

blocks, each with a time size equal to 1, which makes it possible to control the size of the numerical 

problem and, hence, computer memory. The advantage of the optimization method is evident. In 

addition to obtaining the solution, the time spent by the CPU to solve the optimization problem is 

significantly less. This is due to the dimension of the problem, which in the case of optimization is at 

least 250 times smaller, in addition to the use of a block solution. Finally, we performed the tests with 

soliton. We chose the [−5, 35] interval as the spatial domain and, consequently, the time interval in 

which the soliton traverses the spatial domain is [0, 0.5]. The global data at time t = 0. Applying the 

traditional approach with implicit nonlinear scheme, using the same steps in space and time as in the 

previous test with the cnoidal wave, that the results show the increasing oscillations introduced by the 

errors in the boundary, while optimization solution is regularized by global data and does not present 
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significant errors. Experiment 2 clearly shows that the optimization approach makes it possible to obtain 

the solution that is not affected by random errors present in the data. Using the block solution it is 

possible to evolve the model for any period of time, as shown by the tests with the cnoidal wave. The 

choice of block size depends on the computational potential, for a powerful computer with a large 

amount of memory, it is possible to increase the time interval of each block, making more use of the 

information provided by the global model or by the measurements. The block size also determines the 

speed of convergence of the optimization problem. And its optimal size depends on several factors, 

such as computer configuration, quality of implementation, programming language used, among others. 

 

6.0 Conclusion 

In this study we construct the combined task of getting the solution to the global prototype and data 

assimilation as a partial differential equations. The results of the numerical tests presented here 

demonstrate that the optimization method will considerably increase the accuracy of the data solution 

pursued by the regional model if there are errors in the boundary values, but there are details about the 

efficiency of the requested solution in many internal points. Even where the problem of Cauchy-

Dirichlet is vulnerable to border problems, the optimization approach helps you to create a solution that 

is similar to the analytical solution. In other situations, the solution is more sensitive. We have 

performed experiments with nonlinear Rossby-Oboukhov two-dimentional equations. The preliminary 

findings also show the substantial progress of the digital solution of the boundary problem with border 

value errors using the optimization technique. The problem of minimizing ǁ𝑢 −

 𝑢𝑑𝑎𝑡𝑎ǁ2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑢 = 𝑏 is only poorly conditioned if all the square submatrices are poorly 

conditioned. This explains why, in our case, we never encounter mal-conditioning and we can always 

work with schemes that, from the point of view of Cauchy's classic problem, are unstable. In the thesis 

we illustrated this phenomenon in different linear problems (the heat equation and the Rossby-Obukhov 

equation) and nonlinear ones (the KdV equation), so that it was possible to obtain the solution of the 

problem with the speed compatible with a single direct evolution using usual methods in PDE, without 

losing precision in the solution. 
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