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ABSTRACT 

The continued existence of mutual categories of uncertainties, viz. probabilistic and fuzzy 

nevertheless both are away from each other, even though contribute with a fundamental 

accountability in declining uncertainties and accordingly constructing the structure under 

learning supplementary skilled. Additionally, it is apprehended that the maximum entropy 

principle cooperate with a crucial accountability for the learning of optimization problems 

connected with the hypothetical information models. The current communication has been 

produced from this position of observation and formulates transaction with two new entropic 

models for discrete fuzzy distributions and additionally makes them functional for the 

acquaintance of maximum entropy principle under the situation of fuzzy constraints. 

Keywords: Entropy, Fuzzy entropy, Increasing function, Decreasing function, Maximum 

entropy principle, Concavity. 

 

INTRODUCTION  

         The entropic model well established by Shannon [22] has extraordinarily agreeable 

properties and make available the magnificent relevance in a sequence of disciplines. This 

original burst through discovery of entropic model guided the researchers to scrutinize new-

fangled and pioneering entropic models. Shannon [22] structured the hypothetical environment 

upon introducing the crucial conception of entropy ( )H P attached with the discrete probability 

spaces. The fundamentally well-acknowledged perception of probabilistic entropy premeditated 

by Shannon [22] enriched the text of coding theory with the facilitation of numerous entropic 

models. This entrenched advancement arranged the stone of discrete information entropic model 

with astonishingly agreeable properties and was well acknowledged by subsequent appearance:  

)(PH = 
1

n

i i

i

p log p
=

−                                                                                                      (1.1) 

Monitoring the magnificent properties of entropic model (1.1), numerous pioneers made 

investigations and consequently introduced an assortment of models from application point of 
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observation towards multiplicity of disciplines. These pioneers consist of Huang and Zhang [4], 

Parkash and Kakkar [14], Kapur [8], Markechová et al. [11] etc.  

            The theoretical awareness about the maximum entropy principle signifies that it 

contributes with a historic dependability for the learning of plentiful optimization problems 

interconnected with entropic models. On the other hand, the observation of weighted models 

cannot be overlooked because of their astonishingly dynamic nature. For this rationale, Parkash, 

Kumar, Mukesh and Kakkar [18] developed new entropic models and broadened the application 

area of coding theory. These discrete parametric weighted entropic models have been established 

by the subsequent quantitative outward show: 

( )
1

1

1
1 1

1
; , 1

2 1

n n

i i i i

i i

H P W w p w p



 
 


−

= =

  
 = −  

−    
                                                                 (1.2) 

and 
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−  
  




 or 1, 1                                                 (1.3) 

Subsequent to the detection of entropic model, Zadeh [23] established the theory of fuzzy sets 

which took delivery of affirmation from assorted quarters and happened to be most well-liked. 

Observing the initiative of this hypothesis, De Luca and Termini [3] recommended fuzzy 

entropic model analogous to Shannon’s [22] entropic model.  

     Recently Qin et al. [21] delivered consequential clarification about the disagreement 

flanked by the source and target data distributions. The authors supplemented that this learning 

process recommends cross-domain fault diagnosis modus operandi dependent upon enhanced 

multi-scale fuzzy entropic model and enhanced joint distribution alteration with the endeavor to 

address incompatible data distribution sandwiched between the source and target domain. 

Experimental consequences display that enhanced multi-scale discrete fuzzy entropic models 

have superior distinctive capability and transferable aptitude than numerous accessible entropy 

methods, and the enhanced joint distribution adaptation is additional generalization to relocate 

circumstances with complex data distributions.  

     Additionally, İnce [5] made amplification regarding the fuzzy entropy that it is second-

handed to articulate the precise values of fuzziness and is described it by means of the perception 

of membership function. The maximum entropy principle endeavors to choose such function 

with restricted number of fuzzy values subject to restrictions engendered. Many other pioneer 

who made their contributions towards the development of fuzzy entropic models for discrete 

fuzzy distributions are Bassanezi and Roman-Flores [1], Kapur [9], Parkash [12], Parkash, 

Sharma and Mahajan [19, 20] etc. whereas some additional pioneer who made contributions 

towards the creation of discrete fuzzy divergence models in fuzzy spaces include Bhandari et al. 

[2], Parkash [13], Parkash and Kumar [15, 16, 17], Joshi and Kumar [7] etc. 

https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=751640
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=264797
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=307037
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57226689361&zone=
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=1187194
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=872201
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          Jaynes [6] projected a magnificent guideline to dispense numerical probabilities through 

the accessibility of assured partial information. The additional pioneers who broaden the learning 

of this projection include Kapur and Kesavan [12], Parkash, Sharma and Mahajan [19, 20] etc. In 

this paper, we have prepared amplification in Jayne’s [9] maximum entropy principle for discrete 

fuzzy spaces intended for studying primary fuzziness under fuzzy restrictions. To accomplish our 

intention, we have firstly constructed some inventive weighted trigonometric fuzzy entropic 

models as demonstrated in the next section. 

 

2. GROWTH OF INNOVATIVE WEIGHTED TRIGONOMETRIC FUZZY ENTROPIC 

MODELS 

I. We, first put forward a new-fangled weighted trigonometric fuzzy entropic model, given by 

the subsequent appearance: 

1

1

( ) (1 ( ))
( ; ) ;0 , 1

n
A i A i

i

i

x x
H A W w Sin Sin Sin n

n n n

   
 

=

− 
= + −    

 
                             (2.1) 

Differentiating equation (2.1) w.r.t.

 

( )A ix , we get 

 
1

1 ( )( )( ; )

( )

A ii A i

A i

xw xH A W
Cos Cos

x n n n

  



 −
= − 

  
 

Also 

 22

1

2 2

1 ( )( )( ; )
0

( )

A ii A i

A i

xw xH A W
Sin Sin i

x n n n

  



 −
= − +   

  
 

This demonstrates the concavity of 1( ; )H A W  and its highest value happens at
1

( )
2

A ix i =  .  

Thus, we observe that 1( ; )H A W  persuade the subsequent desirable properties: 

(i) 1( ; )H A W is concave. 

(ii) 1( ; )H A W is an increasing function of ( )A ix when 
1

0 ( )
2

A ix   

because 1( ; ) 0 ( ) 0A iH A W when x= = and  1 max

1
( ; ) 0 when ( )  

2
A iH A W x i =   

(iii) 1( ; )H A W is a decreasing function of ( )A ix when 
1

( ) 1
2

A ix   

because 1 max

1
( ; ) 0 when ( )  

2
A iH A W x i =  and  1( ; ) 0 ( ) 0A iH A W when x= =  

(iv) 1( ; )H A W does not change when ( )A ix  is changed to 1 ( )A ix− . 

(v) 1( ; ) 0H A W =  when ( )A ix = 0 or 1. 

(vi) 1( ; ) 0H A W   

The knowledge of these six properties demonstrates the soundness of the entropic model shaped 

in (2.1). 
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II. We, next propose another pioneering weighted trigonometric fuzzy entropic model, specified 

by the subsequent manifestation: 

2

2

1

( ; ) ( ) (1 ( )) 2 ;0
2

n

i A i A i

i

H A W w Cos x Cos x Cos


    
=

 
= + − −   

 
                                (2.2) 

Proceeding on comparable deliberations, we can demonstrate the legitimacy of the fuzzy 

entropic model wrought in (2.2). 

In continuation, we have convoluted the maximum entropy principles through the support of 

entropic models (2.1) and (2.2). 

 

3. APPLICATIONS OF DISCRETE WEIGHTED FUZZY ENTROPIC MODELS FOR 

THE STUDY OF MAXIMUM FUZZY PRINCIPLE 

To make accessible applications, we have well deliberated the subsequent optimizational 

problems interconnected with our entropic models and exposed that the maximization of fuzzy 

entropy in every case is achieved through concavity. For the solution of these problems we 

employ the subsequent set of fuzzy constraints: 

0

1

( )
n

A i

i

x
=

 =                                                                                                                          (3.1) 

and   

1

( ) ( ) ; 1,2,..., 1
n

A i r i

i

x g x K r m and m n
=

 = = +                                                                   (3.2)                                                    

where 0K   is constant, ( )r ig x  are understood to be recognized values and ( )A ix  are fuzzy 

values. Since ( )r ig x  are implicitly recognized, the expected fuzzy values specified in (3.1) are 

presupposed to be recognized accurately. 

Problem-I: Here, we reflect on optimization of weighted trigonometric fuzzy entropic models 

produced in equation (2.1) of the above section under the situation of fuzzy constraints (3.1) and 

(3.2).  

To provide the solution, we reveal the subsequent Lagrangian appearance: 

( )
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2

1

( ) (1 ( ))
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i i

n
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=
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   

 
+   − 

 

 



                                   (3.4)            

Differentiating equation (3.4) w.r.t. ( )A ix , we acquire the subsequent manifestation: 

   1 2

2
2 ( ) 1 ( )

( ) 2 2

i
A i r i

A i

wL
Sin Sin x g x

x n n n
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  




== − − + +


                                                (3.5)                                     

Thus 0
( )A i

L

x


=


 gives 
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 
 1 21

( )
2 ( ) 1

2 2

2

r i

A i

i

g xn
x Sin

n w
Sin

n

 




−

 
 + 

− =   
   

 

 

 

or
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 

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−

   
   + 
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Applying the constraints (3.1) and (3.2), we get hold of the subsequent demonstration: 
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1
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1
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2
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  

When 2 0 → , we achieve the subsequent manifestation: 

 11
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Thus when 2 0  , we accomplish the subsequent materialization: 
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1
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Let 
 1 21
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1

2

2
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i
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n

 

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−
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As a consequence, we acquire 

 1 max
1

( ; ) ( )
n

i

i

H A W w f 
=

=  

where 
1

1
2 2

( )
n

n n
f Sin Sin Sin

  


 

 
− − 

 
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1
1 0

2 2
( )

n

n
f Sin Sin

 


 

  
−   

  
 = − +   

which confirm the concavity of ( )f   and in view of the fact that sum of concave functions is 

also concave, we perceive that  1 max
( ; )H A W  is concave. 

Problem-II: Here, we think about optimizing the fuzzy entropic model created in equation (2.2) 

of the above section under the circumstances of fuzzy constraints (3.1) and (3.2).  

To make available the solution, we expose the subsequent Lagrangian outward show: 

( )

2
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2

1

( ) (1 ( )) 2 ( )
2
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     
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 



                       (3.6)  

Differentiating equation (3.6) w.r.t. ( )A ix , we get hold of the subsequent materialization: 

( )  1 2( ) 1 ( ) ( )
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i A i A i r i

A i
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w Sin x Sin x g x

x
     
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2
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i
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
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Employing the constraints (3.1) and (3.2), we get hold of the subsequent revelation: 
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and
 
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When 2 0 → , we achieve the subsequent manifestation: 
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Thus when 2 0  , we have 
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 

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 


 

−

−

    
   +  
 +   
    
       

  = 
     
    +  
  + − + −   
     
         

1

2

n

i



=

 
 
 
 
 
 
 
 
 
 
 
 

                (3.7) 

Let 
 1 21

( )1 2
1

2
2

2

r i

i

g x
Sin

w Cos

 
 

 

−

    
   +  
 + =   
    
       

 =   

Thus ( )2 max
1

; ( )
n

i

i

H A W w f 
=

  =                                                                                                         

where   22
2

( )f Cos Cos Cos


− − = + and    0( ) Cos Cosf + −   = − < 0 

Consequently (3.7) confirms the concavity of ( )2 max
H A   . 

Concluding Remarks: The maximum entropy principle has established remarkable applications 

coupled with probabilistic spaces but under inescapable circumstances where such models 

cannot fit into place, we make certain the prospect of fuzzy models. Moreover, in view of the 

fact that the magnitude of weighted models cannot be overlooked from application point of 

observation, we have engendered weighted fuzzy models for discrete fuzzy distributions. Our 

conclusions make accessible the learning of maximum fuzziness under a situation of fuzzy 
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restrictions. It is complementary that such learning be capable of the extension to auxiliary well 

acknowledged models in the fuzzy spaces. 
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