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Abstract 
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1. Introduction  

The Fibonacci numbers (𝐹𝑛) and Lucas Numbers (𝐿𝑛) are defined by the second-order Linear 

recursive relations 

        

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 , 𝑛 ≥  2   with   𝐹0 = 0    and 𝐹1 = 1 (1) 

             and   

𝐿𝑛  = 𝐿𝑛−1 + 𝐿𝑛−2, 𝑛 ≥  2  with 𝐿0 = 2 and  𝐿1 = 1 (2) 

    Again, the Complex Fibonacci numbers [7] are represented by the recursive relation as 

follows 

 

𝐹∗
𝑛 = 𝐹∗

𝑛−1 + 𝐹∗
𝑛−2 , 𝑛 ≥  2   with   𝐹∗

0 = 𝑖    and 𝐹∗
1 = 1 + 𝑖  (3) 

where 𝑖2 = −1 and 

𝐹∗
𝑛 = 𝐹𝑛 + 𝑖 𝐹𝑛+1 (4) 

The Chebyshev polynomials of first, second, third, and fourth kind [2][5] defined 

recursively for integer  𝑛 ≥ 1, are as under: 

𝒯𝑛  ( 𝑧) =   2𝑧 𝒯𝑛−1  ( 𝑧)  − 𝒯𝑛−2  ( 𝑧)   with    𝒯0  ( 𝑧)  = 1 and    𝒯1  ( 𝑧) = 𝑧                     (5) 

𝒰𝑛  ( 𝑧) =  2𝑧 𝒰𝑛−1  ( 𝑧) − 𝒰𝑛−2  ( 𝑧)   with     𝒰0  ( 𝑧) = 1 and 𝒰1  ( 𝑧) = 2𝑧                 (6) 

     𝒱𝑛  ( 𝑧) =  2𝑧 𝒱𝑛−1  ( 𝑧) − 𝒱𝑛−2  ( 𝑧)   with 𝒱0  ( 𝑧) = 1  and  𝒱1  ( 𝑧) = 2𝑧 − 1               (7) 

  𝒲𝑛  ( 𝑧) =  2𝑧 𝒲𝑛−1  ( 𝑧) −  𝒲𝑛−2  ( 𝑧) with 𝒲0  ( 𝑧) = 1 and 𝒲1  ( 𝑧) = 2𝑧 + 1           (8) 

These Second-order linear recurrence sequences in turn leads to following general 

formulae [1][5] 
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𝒯𝑛(𝑧) =
1

2
[(𝑧 + √𝑧2 − 1)

𝑛

 + (𝑧 − √𝑧2 − 1)
𝑛

]                   (9) 

   𝒰𝑛(𝑧) =
1

2√𝑧2 − 1
[(𝑧 + √𝑧2 − 1)

𝑛+1

− (𝑧 − √𝑧2 − 1)
𝑛+1

] (10) 

Utilizing above discussed recurrence relations, it can be easily observed that, for integer 

𝑛 ≥ 0, we have ([1]-[3], [5]), 

             𝒱𝑛(𝑧) = 𝒰𝑛(𝑧) − 𝒰𝑛−1(𝑧)          (11) 

    𝒲𝑛(𝑧) = 𝒰𝑛(𝑧) + 𝒰𝑛−1(𝑧) (12) 

𝒲𝑛(𝑧) = (−1)𝑛   𝒱𝑛 (−𝑧) (13) 

The Chebyshev polynomials properties were given by many authors for instance Zhang [2] has 

studied the finite sums of the product of Chebyshev polynomials, Fibonacci and Lucas 

Numbers and derived interesting results, particularly 

∑ 𝒰𝑑1
(𝑧) ∙ 𝒰𝑑2

(𝑧) ⋯

𝑑1+𝑑2+⋯+𝑑𝑟+1=𝑛

𝒰𝑑𝑟+1
(𝑧) =

1

2𝑟  𝑟!
𝒰𝑛+𝑟

𝑟 (𝑧) (14) 

where𝒰𝑛
𝑟 (𝑧) denotes the 𝑟𝑡ℎ derivative of 𝒰𝑛(𝑧) w.r.t x and the sum runs over all the r+1- 

dimensional non-negative integral coordinates (𝑑1, 𝑑2, ⋯ , 𝑑𝑟+1) such that 𝑑1 + 𝑑2 + ⋯ +

𝑑𝑟+1 = 𝑛 

In the same line, this paper shall attempt to introduce some more identities, involving 

finite sums of the product of the Fibonacci and the Lucas numbers and the derivative of the 

second kind Chebyshev polynomials using computational method. We have following main 

results. 

Theorem 1: For n, 𝑟 ≥0,  

∑ 𝐹2𝑑1+1 ∙ 𝐹2𝑑2+1 ⋯

𝑑1+𝑑2+⋯+𝑑𝑟+1=𝑛

𝐹2𝑑𝑟+1+1 =
1

2𝑟  𝑟!
∑(−1)𝑗

𝑛

𝑗=0

(
𝑟 + 1

𝑗
) 𝒰𝑛−𝑖+𝑗

𝑟 (
3

2
) 

where (𝑟+1
𝑗

) = 0   for j > r+1 

Theorem 2: For n, 𝑟 ≥0,  

∑ 𝐿2𝑑1+1 ∙ 𝐿2𝑑2+1 ⋯

𝑑1+𝑑2+⋯+𝑑𝑟+1=𝑛

𝐿2𝑑𝑟+1+1 =
1

2𝑟  𝑟!
∑ (

𝑟 + 1

𝑗
)

𝑛

𝑗=0

𝒰𝑛−𝑖+𝑗
𝑟 (

3

2
) 

where (𝑟+1
𝑗

) = 0   for j > r+1 

Theorem 3: For n, 𝑟 ≥0,  

∑ 𝐹∗
2𝑑1+1 ∙ 𝐹∗

2𝑑2+1 ⋯

𝑑1+𝑑2+⋯+𝑑𝑟+1=𝑛

𝐹∗
2𝑑𝑟+1+1 =

(𝑖𝑛+1)𝑟+1

2𝑟  𝑟!
∑(−1)𝑗

𝑛

𝑗=0

(
𝑟 + 1

𝑗
) 𝒰𝑛−𝑖+𝑗

𝑟 (−
𝑖

2
)  
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                                                                                          =
1

(𝑖𝑛−1)𝑟+1 2𝑟  𝑟!
∑(−1)𝑗

𝑛

𝑗=0

(
𝑟 + 1

𝑗
) 𝒰𝑛−𝑖+𝑗

𝑟 (
𝑖

2
) 

where (𝑟+1
𝑗

) = 0   for j > r+1   and  𝐹∗
𝑛 𝑖𝑠  𝑎 𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝐹𝑖𝑏𝑜𝑛𝑎𝑐𝑐𝑖 𝑛𝑢𝑚𝑏𝑒𝑟.    

Corollary 1: For n, 𝑟 ≥0,  

∑ 𝐹−(2𝑑1+1) ∙ 𝐹−(2𝑑2+1) ⋯

𝑑1+𝑑2+⋯+𝑑𝑟+1=𝑛

𝐹−(2𝑑𝑟+1+1) =
1

2𝑟  𝑟!
∑(−1)𝑗

𝑛

𝑗=0

(
𝑟 + 1

𝑗
) 𝒰𝑛−𝑖+𝑗

𝑟 (
3

2
) 

where (𝑟+1
𝑗

) = 0   for j > r+1 

 

Corollary 2: For n, 𝑟 ≥0,  

∑ 𝐿−(2𝑑1+1) ∙ 𝐿−(2𝑑2+1) ⋯

𝑑1+𝑑2+⋯+𝑑𝑟+1=𝑛

𝐿−(2𝑑𝑟+1+1) =
(−1)𝑟+1

2𝑟  𝑟!
∑ (

𝑟 + 1

𝑗
)

𝑛

𝑗=0

𝒰𝑛−𝑖+𝑗
𝑟 (

3

2
) 

where (𝑟+1
𝑗

) = 0   for j > r+1 

Corollary 3: For n, 𝑟 ≥0,  

∑ 𝐹∗
−(2𝑑1+1) ∙ 𝐹∗

−(2𝑑2+1) ⋯

𝑑1+𝑑2+⋯+𝑑𝑟+1=𝑛

𝐹∗
−(2𝑑𝑟+1+1) =

((−𝑖)𝑛+1)𝑟+1

2𝑟  𝑟!
∑(−1)𝑗

𝑛

𝑗=0

(
𝑟 + 1

𝑗
) 𝒰𝑛−𝑖+𝑗

𝑟 (
𝑖

2
) 

                                                                                          =
1

((−𝑖)𝑛−1)𝑟+1 2𝑟  𝑟!
∑(−1)𝑗

𝑛

𝑗=0

(
𝑟 + 1

𝑗
) 𝒰𝑛−𝑖+𝑗

𝑟 (−
𝑖

2
) 

where (𝑟+1
𝑗

) = 0   for j > r+1   and  𝐹∗
𝑛 𝑖𝑠  𝑎 𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝐹𝑖𝑏𝑜𝑛𝑎𝑐𝑐𝑖 𝑛𝑢𝑚𝑏𝑒𝑟.  

2. Proof of the Theorems and Corollaries. 

From [6], we have  

∑ 𝒱𝑑1
(𝑧) ∙ 𝒱𝑑2

(𝑧) ⋯

𝑑1+𝑑2+⋯+𝑑𝑟+1=𝑛

𝒱𝑑𝑟+1
(𝑧) =

1

2𝑟  𝑟!
∑(−1)𝑗

𝑛

𝑗=0

(
𝑟 + 1

𝑗
) 𝒰𝑛−𝑖+𝑗

𝑟 (𝑧) (15) 

 

∑ 𝒲𝑑1
(𝑧) ∙ 𝒲𝑑2

(𝑧) ⋯

𝑑1+𝑑2+⋯+𝑑𝑟+1=𝑛

𝒲𝑑𝑟+1
(𝑧) =

1

2𝑟  𝑟!
∑ (

𝑟 + 1

𝑗
)

𝑛

𝑗𝑗=0

𝒰𝑛−𝑖+𝑗
𝑟 (𝑧)            (16) 
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where all sums in (15)-(16) runs over all non-negative integers (𝑑1, 𝑑2, ⋯ , 𝑑𝑟+1) such that 𝑑1 +

𝑑2 + ⋯ + 𝑑𝑟+1 = 𝑛 with (𝑟+1
𝑗

) = 0   for j > r+1. 

 

For proof of theorem 1, take  𝑧 =
3

2
  in equation (15), we have 

∑ 𝒱𝑑1
(

3

2
) ∙ 𝒱𝑑2

(
3

2
) ⋯

𝑑1+𝑑2+⋯+𝑑𝑟+1=𝑛

𝒱𝑑𝑟+1
(

3

2
) =

1

2𝑟  𝑟!
∑(−1)𝑗

𝑛

𝑗=0

(
𝑟 + 1

𝑗
) 𝒰𝑛−𝑖+𝑗

𝑟 (
3

2
) (17) 

Using ,      𝒰𝑛 (
3

2
) = 𝐹2𝑛+2 in equation (11)to get  𝒲𝑛 (

3

2
) =  𝐹2𝑛+1    

So, we have from (17) 

∑ 𝐹2𝑑1+1 ∙ 𝐹2𝑑2+1 ⋯

𝑑1+𝑑2+⋯+𝑑𝑟+1=𝑛

𝐹2𝑑𝑟+1+1 =
1

2𝑟  𝑟!
∑(−1)𝑗

𝑛

𝑗=0

(
𝑟 + 1

𝑗
) 𝒰𝑛−𝑖+𝑗

𝑟 (
3

2
) 

Hence the theorem 1 is proved. ∎ 

For theorem 2, similarly, taking  𝑧 =
3

2
  in equation (16), we have  

∑ 𝒲𝑑 (
3

2
) ∙ 𝒲𝑑2

(
3

2
) ⋯

𝑑1+𝑑2+⋯+𝑑𝑟+1=𝑛

𝒲𝑑𝑟+1
(

3

2
) =

1

2𝑟  𝑟!
∑ (

𝑟 + 1

𝑗
)

𝑛

𝑗=0

𝒰𝑛−𝑖+𝑗
𝑟 (

3

2
) (18) 

Using ,      𝒰𝑛 (
3

2
) = 𝐹2𝑛+2 in equation (8) to get  𝒲𝑛 (

3

2
) =  𝐿2𝑛+1        

we have  

∑ 𝐿2𝑑1+1 ∙ 𝐿2𝑑2+1 ⋯

𝑑1+𝑑2+⋯+𝑑𝑟+1=𝑛

𝐿2𝑑𝑟+1+1 =
1

2𝑟  𝑟!
∑ (

𝑟 + 1

𝑗
)

𝑛

𝑗=0

𝒰𝑛−𝑖+𝑗
𝑟 (

3

2
) 

Hence the theorem 2 is proved. ∎                                                                                                                                    

For proof of the theorem 3, take 𝑧 =  ̶ 
𝑖

 2
  in equation (15), and 𝑧 =   

𝑖

2
  in (16) , we have 

∑ 𝒱𝑑1
( ̶ 

𝑖

 2
) ∙ 𝒱𝑑2

( ̶ 
𝑖

 2
) ⋯

𝑑1+𝑑2+⋯+𝑑𝑟+1=𝑛

𝒱𝑑𝑟+1
( ̶ 

𝑖

 2
) =

1

2𝑟  𝑟!
∑(−1)𝑗

𝑛

𝑗=0

(
𝑟 + 1

𝑗
) 𝒰𝑛−𝑖+𝑗

𝑟 ( ̶ 
𝑖

 2
) (19) 

∑ 𝒲𝑑1
( 

𝑖

2
) ∙ 𝒲𝑑2

( 
𝑖

2
) ⋯

𝑑1+𝑑2+⋯+𝑑𝑟+1=𝑛

𝒲𝑑𝑟+1
( 

𝑖

2
) =

1

2𝑟  𝑟!
∑ (

𝑟 + 1

𝑗
)

𝑛

𝑗=0

𝒰𝑛−𝑖+𝑗
𝑟 ( 

𝑖

2
)  (20)   
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Using ,   𝒰𝑛 (
𝑖

2
) = 𝑖𝑛𝐹𝑛+1 in equation (12) to get    𝒲𝑛 (

𝑖

2
) = 𝑖𝑛−1𝐹𝑛

∗  

and using this in turn in (13) we get,  𝒱𝑛 (−
𝑖

2
) =  

𝐹𝑛
∗

𝑖𝑛+1  . 

Therefore (15) and (16) reduces to 

∑ 𝐹∗
2𝑑1+1 ∙ 𝐹∗

2𝑑2+1 ⋯

𝑑1+𝑑2+⋯+𝑑𝑟+1=𝑛

𝐹∗
2𝑑𝑟+1+1 =

(𝑖𝑛+1)𝑟+1

2𝑟  𝑟!
∑(−1)𝑗

𝑛

𝑗=0

(
𝑟 + 1

𝑗
) 𝒰𝑛−𝑖+𝑗

𝑟 (−
𝑖

2
) (21) 

 

∑ 𝐹∗
2𝑑1+1 ∙ 𝐹∗

2𝑑2+1 ⋯

𝑑1+𝑑2+⋯+𝑑𝑟+1=𝑛

𝐹∗
2𝑑𝑟+1+1 =

1

(𝑖𝑛−1)𝑟+1 2𝑟  𝑟!
∑(−1)𝑗

𝑛

𝑗=0

(
𝑟 + 1

𝑗
) 𝒰𝑛−𝑖+𝑗

𝑟 (
𝑖

2
) (22) 

This establishes the theorem 3. ∎ 

For proof of   Corollary 1 and 2, using 𝐹−𝑛 = (−1)𝑛+1𝐹𝑛 and 𝐿−𝑛 = (−1)𝑛 𝐿𝑛 in theorem 1 

and 2 respectively, we get the desired results.  Again, the Corollary 3 can be established by 

taking the   conjugate of  𝐹∗
𝑛 in theorem 3 and using 𝐹∗

−𝑛 = (−1)𝑛+1𝐹∗
𝑛

̅̅ ̅̅ ̅ , where 𝐹∗
𝑛

̅̅ ̅̅ ̅ is 

conjugate of  𝐹∗
𝑛. ∎ 
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