
JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 3638-3647

https://publishoa.com

ISSN: 1309-3452

3638

A Malware Detection Method for Health Sensor Data Based on Machine

Learning and Genetic Algorithm

P Devabalan, Prof. CSE:BVCE, Email:devabalanme@gmail.com

Chandra Mouli VSA, Prof. CSE:BVCE. Email: mouliac@yahoo.co.in

Anumala Sai Kumar, CSE:BVCE

Appana Pavan Kumar, CSE:BVCE

Ashok Kumar Kusumanchi, CSE:BVCE

E Vamsi Trivikram, CSE:BVCE

Received 2022 March 25; Revised 2022 April 28; Accepted 2022 May 15

Abstract:

Small modifications in the virus code are easily detected by conventional signature-based malware detection techniques.

The majority of malware programmes today are modifications of other programmes. They therefore have various

signatures yet share certain similar patterns. Instead than just noticing slight changes, it's important to recognise the

virus pattern in order to protect sensor data. However, we suggest a quick detection strategy to find patterns in the code

using machine learning-based approaches in order to quickly discover these health sensor data in malware programmes.

To evaluate the code using health sensor data, XGBoost, LightGBM, and Random Forests will be specifically utilised.

The codes are either supplied into them as single bytes or tokens or as sequences of bytes or tokens (e.g. 1-, 2-, 3-, or 4-

grams). Terabytes of labelled programmes, both virus and benign ones, have been gathered. Choosing and obtaining the

features, modifying the three models to train and test the dataset, which comprises of health sensor data, and evaluating

the features and models are the challenges of this assignment. When a malware programme is discovered by one model,

its pattern is broadcast to the other models, effectively thwarting the infiltration of the malware programme.

Keywords: Random Forests algorithm, LightGBM, and XGBoost.

I. INTRODUCTION

All kinds of sensors are being used to gather health sensor data as we enter the Internet of Things Era. Eventually,

malicious software or programmes that are hidden in health sensor data and are regarded as intrusions in the target host

computer are executed in accordance with a hacker's predetermined logic. Computer viruses, worms, Trojan horses,

botnets, ransomware, and other types of malicious software are examples of data from health sensors that is malicious.

Malware assaults can harm computer networks and systems while stealing sensitive data and core data. It poses one of

the biggest risks to the security of computers today. categories of analysis

i) Static evaluation:

It is typically done by analysing each component and illustrating the many resources of a binary file without actually

using it. A disassembler can also be used to disassemble (or redesign) binary files (such as IDA). Humans are able to

read and comprehend assembly code, which can occasionally be converted from machine code. Malware analysts are

able to decipher assembly instructions and visualise the program's intended behaviour. Some contemporary malware is

developed utilising unclear methods to thwart this kind of examination, such introducing grammatical flaws in the code.

Although these mistakes can be perplexing to the disassembler, they are nonetheless functional during execution.

ii) Dynamic analysis:

It involves analysing how the malware behaves when it is actually running on the host machine. Modern malware may

employ a wide range of misleading strategies to evade dynamic analysis, such as testing active debuggers or virtual

environments, delaying the execution of harmful payloads, or requesting interactive user input.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 3638-3647

https://publishoa.com

ISSN: 1309-3452

3639

We primarily concentrated on static code analysis in this work. The primary feature matching or broad-spectrum

signature scanning techniques used in early static code analysis. Broad-spectrum scanning examines the feature code

and employs masked bytes to separate the sections that need to be compared from those that do not, while feature

matching simply uses feature string matching to complete the detection. The hysteresis issue is critical since both

approaches must get malware samples and extract features before they can be detected. In addition, when malware

technology advances, the number of malware variants suddenly rises and malware starts to change during transmission

in an effort to escape being detected and eliminated. It is challenging to extract a fragment of code to serve as a virus

signature because the shape of the variations varies greatly.

1.1 Malware Samples Gathered:

The foundation for code analysis is the efficient acquisition of malware samples. The classification model can perform

more accurate detection functions when integrated with machine learning techniques, but only after proper training

using the sample data. Malware samples can be obtained in a variety of methods.

i) User-side sampling: The majority of anti-virus software companies use this as their primary technique. Antivirus

software users that transmit malware samples to providers. This strategy performs well in real-time, but it is challenging

to get the data directly because security providers frequently decide not to release their data in an open manner.

ii) Open network databases, such as Virus Bulletin, Open Malware, and VX Heavens, among others. The open online

sample systems are currently constrained in comparison to the speed at which malicious code is updated, and the

websites have issues such being subject to attacks. Therefore, the development of a malware sharing mechanism has

demonstrated its significance more and more.

iii) Additional technological strategies: A particularly fragile system is created to entice attackers to attack in order for

the system to get malware samples through collection utilising a capture tool like a honeypot (such as the Nepenthes

honeypot). Additionally, some Trojans and Internet backdoors can be acquired via spam traps or security discussion

forums. But the size of the capture sample using the aforementioned technological methods is quite little.

1.2 Motivation:

As there isn't a single paper that discusses the predictions made in this, the motivation behind this study is to determine

how machine learning and boosting algorithms will aid in better malware detection and to understand how the

combination of these models works in a better way than the existing one. To know and comprehend how these models

might compare and contrast one another in terms of data prediction.

1.3 Problem Proposition:

We employ a gradient framework for high performance because the running speed is too sluggish and the performance

is inadequate. Other issues include the need to repeatedly traverse the whole training set for each iteration. Each split

node requires a split-gain calculation, which takes a long time as well.

Size of the project:

In order to train and test the dataset, which comprises of health sensor data, this work's scope is to choose and obtain the

features and adjust the three models.

Review the specifications and models.

This may also apply to medical gadgets in intensive care units, hospital wards, doctor's offices, lab equipment, dental

offices, and goods for in-home care. give an attacker remote access to a compromised machine, Send spam to gullible

recipients from the compromised device, Investigate the local network of the affected user.

II. SUGGESTIVE SYSTEM

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 3638-3647

https://publishoa.com

ISSN: 1309-3452

3640

Malware detection essentially boils down to a classification issue that determines whether a sample is legitimate

software or malicious software. Therefore, the key processes of a machine learning algorithm drive host malware

detection technology, and the primary research steps of this study are as follows: Amass enough samples of both

legitimate software and malicious code. Effectively process the sample's data, then extract the characteristics. Select the

classification's primary features further. Create a classification model by combining the training data with machine

learning methods. Utilizing the trained classification model, find unknown samples.

The models XGBoost, LightGBM, and Random Forest were used in this study. Prior to using these 3 models, we

evaluated the SVM (Support Vector Machine), but the performance was insufficient and the running speed was too

slow.

2.1 Methods:

2.1.1 Machine learning algorithms

The ability of machine learning (ML) algorithms to solve huge non-linear problems on their own while utilising

information from many sources is one of their key advantages. In real-world situations, ML enables superior decision-

making and informed action with no (or little) human involvement. To create a comparable malicious code classifier,

the machine learning algorithm can be trained using the distinctive data that are gleaned from the static and dynamic

analysis of the harmful code. Some of the ML models that were employed in this include:

SVM:

A supervised machine learning approach called Support Vector Machine (SVM) can be applied to problems involving

classification and regression. However, classification issues are where it's most frequently employed. Finding a

hyperplane in an N-dimensional space that clearly classifies the data points is the goal of the SVM method.

Simple Bayes:

In comparison to more complex algorithms, the Naive Bayes classifier can be extremely quick. Each class distribution

can be individually assessed as a one-dimensional distribution thanks to the separation of the class distributions.

Given the goal value, it is assumed that each attribute value P(d1, d2, d3|h) is conditionally independent, and its values

are computed as P(d1|h) * P(d2|H), and so on.

Analogous Regression:

As a classifier, logistic regression is used to group observations into distinct classes. The method uses the logistic

sigmoid function to translate its output into a probability value and forecasts the goal using the idea of probability.

Statistics experts created the logistic function, also known as the sigmoid function, to characterise the characteristics of

population expansion in ecology, which rise swiftly and peak at the carrying capacity of the ecosystem. Any real-valued

number can be transformed into a value between 0 and 1, but never precisely at those ranges, using this S-shaped curve.

1 / (e-value + 1) (1)

Where value is the actual numerical value you want to alter and e is the base of the natural logarithms (Euler's number

or the EXP() function in your spreadsheet). The logistic function was used to translate the numbers between -5 and 5

into the range between 0 and 1. The results are plotted below.

Algorithm for Random Forests:

Three random principles are used in this model: selecting training data at random when creating trees, choosing specific

subsets of features when splitting nodes, and only taking into account a small part of all characteristics when dividing

each node in each simple decision tree. Each tree in a random forest learns from a random selection of the data points

during training data.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 3638-3647

https://publishoa.com

ISSN: 1309-3452

3641

Boosting an extremely gradient:

A regularising gradient boosting framework is offered by this open-source software package. Integrated cross-

validation, regularisation to prevent overfitting, effective handling of missing data, catch awareness, tree pruning, and

parallelized tree building are all features of this technique that are used in this model. Among XGBoost's key attributes

are: Parallelization: Multiple CPU cores are used to train the model. Regularization: To prevent overfitting, XGBoost

provides a variety of regularisation penalties. Non-linearity: XGBoost can identify non-linear data patterns and learn

from them.

The following are XGBoost's drawbacks:

I Each iteration necessitates repeatedly navigating the whole training set.

ii) Each split node requires a split-gain calculation to be performed, which takes a lot of time.

LightGBM:

It is a model for boosting. It is a quick, distributed, high-performance gradient framework built on decision tree

algorithms and is used for many different machine learning tasks, including classification and ranking. It is under the

purview of Microsoft's DMTK project. It is used for classification, ranking, and other machine learning applications and

is based on decision tree algorithms.

It divides the tree leaf-wise with the best fit since it is based on decision tree algorithms, as opposed to other boosting

algorithms that divide the tree depth- or level-wise. As a result, in Light GBM, when growing on the same leaf, the leaf-

wise method can reduce more loss than the level-wise strategy, which leads to significantly superior accuracy that can

only be sometimes attained by any of the existing boosting algorithms.

Additionally, it moves remarkably quickly, hence the name "Light." Algorithm and Process Design:

Fig.1 Process Design

III. Data collection:

We gathered enough legal software samples and malware code samples to create a health sensor dataset, which we then

published.

Data preprocessing: We efficiently processed the sample's data to extract its features.

Data should be divided into train and test data for train and test modelling. The model will be trained using Train, and

performance will be evaluated using Test data.

Run SVM, Navie Bayes, Random Forest, and XGboost algorithms. Create a classification model by combining the

training data with machine learning methods.

Data Collection

Data Preprocessing

Train and Test Modeling

Accuracy Graph

Run algorithm

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 3638-3647

https://publishoa.com

ISSN: 1309-3452

3642

Feature selection: Pick out the most important elements for categorization and eliminate the extraneous features.

Accuracy Graph: With the help of this module, we can view a graph of all the accuracy results.

IV. Execution and Results:

4.1 Details of the Data

We extract 27 subdivided features, such as the byte count (256d, where d represents dimensions), opcode 1-gram

(150d), opcode 2-4-grams (150, 450, and 750d), segment (150, 450, and 750d), and dll (150, 450, and 750d), and run 81

experiments (we run each feature's libsvn code).

The malware sample used for the training set and test set is from Secure Age's malware sample from April 2017,

respectively. The experiments consist of 4 sections:

testing each feature's and model's impact on this useful dataset.

comparing the performance of many models for a particular attribute.

determining which feature overall delivers the best performance.

determining which dimension, with relation to a particular attribute, produces the greatest outcomes. We evaluate

whether opcode or daf characteristics are superior for 1-gram to 4-gram evolutionary trends. We also evaluate which

kind of feature a particular model chooses to use.

Table.1

Class No sample count

Label Name

1 1541

Worm

2 2478

Adware

3 2942

Backdoor

4 475

Trojan

5 42

Backdoor

6 751

TrojanDownloader

7 398

Backdoor

8 1228

obfuscated malware

9 1013

Backdoor

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 3638-3647

https://publishoa.com

ISSN: 1309-3452

3643

4.2 Performance Metrics:

To evaluate them, three metrics are used.

I. Area Under the Curve (AUC)

The AUC indicates the likelihood that, given two randomly chosen samples, the classifier will properly assign the

positive sample a higher score than the negative sample. The sorting ability of the model is stronger the higher the AUC

value is.

II. Accuracy and Recall

We designate the number of positive samples in this dataset as P and the number of negative samples as N. (malware or

legitimate software).

If a sample's prediction is positive and it turns out to be positive, like in the first scenario, we refer to it as a true positive

(TP).

In the second scenario, we refer to it as a false positive if the prediction is positive but the actual value is negative (FP).

In the third scenario, a false negative occurs when the forecast is negative but the actual number is positive (FN).

A true negative (TN) is what happens in the last scenario when both the prediction and the actual value are negative.

There can only be one of these four situations for each sample. There isn't any other option. Then, we have the

subsequent: Precision-P=TP/TP+FP,

N=TN+FP, P=TP+FN (2)

Precision-N=TN/TN+FN (3)

Recall-P=TP/P; Recall-N=TN/N; (4) (5)

Recall reflects the classification model's capacity to recognise P/N samples. The model's capacity to recognise P/N

samples increases with recall. The precision represents the model's capacity to distinguish between N/P samples.

III. Precision:

It displays the classifier's overall accuracy, or the percentage of accurate predictions.

4.3 Result:

The Validation Summary Based on the tested outcomes of our proposed model, which performs better in malware

detection for health data, AUC Curve, Precision, Recall, Accuracy metrics of machine learning models, including

Random Forest, Naive Bayes, support vector machine, Logistic Regression, and Extreme Gradient Boosting, were

employed as predictors.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 3638-3647

https://publishoa.com

ISSN: 1309-3452

3644

Fig.2.Classification vs count

Fig-3 Basic Preprocessing

Fig-4 split the data into train and test

Train data will be used for training and to test the performance we are using test data.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 3638-3647

https://publishoa.com

ISSN: 1309-3452

3645

Fig-5: Mentioned algorithms will be run on the data

Fig.6: Accuracy Comparison for all the models

Generic Optimization Algorithm

In this study, we used a variety of algorithms to identify malware from health sensor data, but we didn't use any feature

interpretation or selection algorithms that explain which crucial features contribute to greater accuracy. Similarly, in the

proposed study, many algorithms gave a 100% accuracy rate, but we didn't know which features were most important to

achieve that level of accuracy. The features with the highest fitness will be chosen and taken into consideration as

crucial characteristics in order to get the highest accuracy, which is why we are using Genetic Method in extension,

which will identify fitness of each feature by utilising Logistic Regression algorithm.

There are 35 features or columns in the dataset, and the genetic algorithm will only select those characteristics that have

high fitness values. In the paper, the author also states that, as an extension, he will interpret or identify the traits that

are most helpful in reaching high accuracy. For reference, see below. from the paper

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 3638-3647

https://publishoa.com

ISSN: 1309-3452

3646

We can see the names of the columns and features in the previous page, and we can see that the dataset has a total of 35

columns. Since we don't know which column contributes the most, we can find out by utilising the extension idea, and

we can then execute each button individually.

Fig.7 Accuracy comparison

In above screen we can see most of algorithms gave 100% accuracy and which columns/features are contributing most

we don’t know so by clicking on ‘Extension Genetic Algorithm Features’ button we can know the names of most

important features

Fig.8 Genetic algorithm operations

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 3638-3647

https://publishoa.com

ISSN: 1309-3452

3647

Out of 35 rows, we can observe in the diagram above. Using a genetic algorithm, 27 columns of data are analysed, and

the most important attributes are then selected as three. Using this extension notion, we may identify which dataset

columns are the most important for achieving high accuracy.

CONCLUSION

The use of machine learning techniques in the identification of dangerous code in health sensor data has been

increasingly recognised by the academic community and various security vendors as the complexity of malware

programmes increases. Combining several models and discussing static code analysis based on various machine

learning algorithms and characteristics is the focus of this study. Malware detection technology for machine learning

could benefit from this work's reference value. This sector, however, is still in its infancy.

REFERENCES

1. M. Shen, B. Ma, L. Zhu, R. Mijumbi, X. Du, and J. Hu, “Cloud-Based Approximate Constrained Shortest

Distance Queries over Encrypted Graphs with Privacy Protection”, IEEE Transactions on Information Forensics &

Security, Volume: 13, Issue: 4, Page(s): 940 – 953, April 2018, DOI: 10.1109/TIFS.2017.2774451.

2. P. Dong, X. Du, H. Zhang, and T. Xu, “A Detection Method for a Novel DDoS Attack against SDN Controllers by

Vast New Low-Traffic Flows,” in Proc. of the IEEE ICC 2016, Kuala Lumpur, Malaysia, 2016.

3. Z. Tian, Y. Cui, L. An, S. Su, X. Yin, L. Yin and X. Cui. A Real-Time Correlation of Host-Level Events in Cyber

Range Service for Smart Campus. IEEE Access. vol. 6, pp. 35355-35364, 2018. DOI:

10.1109/ACCESS.2018.2846590.

4. Q. Tan, Y. Gao, J. Shi, X. Wang, B. Fang, and Z. Tian. Towards a Comprehensive Insight into the Eclipse Attacks

of Tor Hidden Services. IEEE Internet of Things Journal. 2018. DOI: 10.1109/JIOT.2018.2846624.

5. Z. Wang, C. Liu, J. Qiu, Z. Tian, C., Y. Dong, S. Su Automatically Traceback RDP-based Targeted Ransomware

Attacks. Wireless Communications and Mobile Computing. 2018. https://doi.org/10.1155/2018/7943586.

6. L. Xiao, Y. Li, X. Huang, X. Du, “Cloud-based Malware Detection Game for Mobile Devices with Offloading”,

IEEE Transactions on Mobile Computing, Volume: 16, Issue: 10, Pages: 2742 – 2750, Oct. 2017. DOI:

10.1109/TMC.2017.2687918.

7. L. Xiao, X. Wan, C. Dai, X. Du, X. Chen, M. Guizani, “Security in mobile edge caching with reinforcement

learning”, IEEE Wireless Communications Volume: 25, Issue: 3, pp. 116-122, June 2018, DOI:

10.1109/MWC.2018.1700291.

8. Y. Wang, Z. Tian, H. Zhang, S. Su and W. Shi. A Privacy Preserving Scheme for Nearest Neighbor Query.

Sensors. 2018; 18(8):2440. https://doi.org/10.3390/s18082440.

9. ABOU-ASSALEH T , CERCONE N , KESELJ V ,et al. N-gram-based detection of new malicious code[C] The

28th Annual Int. Computer Software and Applications Conference (COMPSAC). 2004: 41-42.

10. Henchiri O, Japkowicz N. A feature selection and evaluation scheme for computer virus detection[C] Data

Mining, 2006. ICDM'06. Sixth International Conference on. Hong Kong, Chian IEEE, 2006: 891-895.

11. Y. Ding , X. Yuan , K. Tang, et al. A fast malware detection algorithm based on objective-oriented association

mining[J]. Computers ＆ Security, 2013,39: 315-324.

https://doi.org/10.1155/2018/7943586
https://doi.org/10.3390/s18082440

