# Antimagic Labeling of Fewgraphs 

Vinodhini $\mathbf{N K}^{\mathbf{1}}$, Jeba Jesintha $\mathbf{J}^{\mathbf{2}}$<br>${ }^{1}$ Department of Mathematics, Anna Adarsh College for Women, University of Madras, Chennai,<br>Part- Time Research Scholar , PG Department of Mathematics, Women's Christian College, University of Madras, Chennai.<br>${ }^{2}$ PG Department of Mathematics, Women's Christian College, University of Madras, Chennai.<br>${ }^{1}$ vinookaran@yahoo.co.in, ${ }^{2}$ jjesintha_75@yahoo.com

Received: 2022 March 15; Revised: 2022 April 20; Accepted: 2022 May 10.


#### Abstract

A labeling of a graph is a function that maps vertices, edges or both of a graph to positive integers. Antimagic labeling of a graph $G=(V, E)$ with $p$ vertices and $q$ edges, introduced by Hartsfield and Ringel is an edge labeling which maps $E$ to $\{1,2, \ldots, q\}$ such that the resulting vertex labels are distinct, where the vertex label is defined to be sum of the labels of the edge incident with the vertex. In this paper we obtain the antimagic labeling for octopus graph , jewel graph and star glued with star graph.


Keywords: Antimagic labeling, Octopus graph, Jewel graph, Star graph.

2010 Mathematics Subject Classification: 05C78

## 1. Introduction

Labeling is a field of graph theory with diverse applications. Rosa[5] intoduced graph labeling.Hartsfield and Ringel [3] proved that paths , cycles, wheels, and complete graphs admit antimagic labeling. They have also conjectured that all trees except $K_{2}$ are antimagic and all connected
graphs except $K_{2}$ are antimagic. These two conjectures are still open. Vaidya and Vyas[6,7] have proved that graphs obtained by switching of vertex in path, cycle, wheel, helm, fan and some path related graph are antimagic. Bacaet.al[1]have obtained antimagic labelings of certain families of connected

JOURNAL OF ALGEBRAIC STATISTICS
Volume 13, No. 2, 2022, p. 3524-3528
https://publishoa.com
ISSN: 1309-3452
graphs and regular graphs.Miller and Baca [4] have obtained antimagic valuation of generalised Petersen graph. A detailed survey of labelings is given by Galian [2]. Antimagic labelings have widepread applications in surveillance security systems, coding theory, completely separating systems and in psychology.

## 2. Definitions

Definition 1 An Octopus graph $O_{n}$, ( $n \geq 2$ ) is obtained by the one point union of a Fan graph $F_{n}(\mathrm{n} \geq 2)$ with a Star graph $K_{1, n}$ where $n$ is any positive integer. Octopus graph $O_{n}$ is shown in Figure 1.


Figure 1: Octopus Graph $\mathrm{O}_{\mathrm{n}}$
Definition 2 The Jewel graph $J_{n}$ is a graph with vertex set $V\left(J_{n}\right)=\left\{\alpha_{0}, \beta_{0}, \gamma_{0}, \alpha_{i}: 1 \leq\right.$ $i \leq n+1$ and edge set $E / n=\{\alpha 0 \alpha 1$, aißO, $\left.\alpha_{i} \gamma_{0}: 0 \leq i \leq n+1\right\}$.


Figure 2: Jewel graph $\boldsymbol{J}_{\boldsymbol{n}}$
Definition 3 The Star glued with star graph $S_{m, n}$ is the graph obtained by attaching a star $K_{1, m}$ to every pendant vertex of the star graph $K_{1, n}$.


Figure 3: Star Glued with Star graph $\boldsymbol{S}_{\boldsymbol{m}, \boldsymbol{n}}$

# JOURNAL OF ALGEBRAIC STATISTICS 

Volume 13, No. 2, 2022, p. 3524-3528
https://publishoa.com
ISSN: 1309-3452

## 3. Main Results

In this section we prove three theorems.

Theorem 1

The Octopus graph $O_{n}$ admits antimagic labeling.

## Proof:

Let $O_{n},(n \geq 2)$ be a octopus graph. Let us denote the apex vertex of $O_{n}$ as $u_{0}$. Let us denote the remaining vertices of degree 2 adjacent to $u_{0}$ as $u_{1}, u_{2}, \ldots, u_{n}$ and the pendant vertices adjacent to $u_{0}$ as $u_{n+1}, u_{n+2}, \ldots, u_{2 n}$ in the anticlockwise direction. Thus the vertex set is $V\left(O_{n}\right)=$ $\left\{u_{0}, u_{i}: 1 \leq i \leq 2 n\right\}$ and the edge set is $E\left(O_{n}\right)=\left\{u_{0} u_{i}: 1 \leq i \leq 2 n, u_{i} u_{i+1}: 1 \leq\right.$ $i \leq n-1\}$. Also $\left|V\left(O_{n}\right)\right|=2 n+1$, $\left|E\left(O_{n}\right)\right|=3 n-1$. Now we define the edge labeling as $\zeta: E \rightarrow\{1,2, \ldots, 3 n-1\}$

$$
\begin{aligned}
& \zeta\left(u_{0} u_{i}\right)=i, \\
& \zeta\left(u_{i} u_{i+1}\right)=2 n+i,
\end{aligned}
$$

The induced vertex labels are $\xi: V \rightarrow \mathbb{Z}^{+}$ are
$\xi\left(u_{0}\right)=n(n+1)$
$g\left(u_{1}\right)=n+2$
$\xi\left(u_{i+1}\right)=4 n+3 i+2$,
$\xi\left(u_{n}\right)=4 n-1$

$$
\xi\left(u_{i}\right)=i, i=n+1, n+2, \ldots, 2 n
$$

The vertex labels are distinct. Hence the octopus graph is antimagic.

## Theorem 2

The jewel graph $J_{n}$ is antimagic.

## Proof:

Consider the Jewel graph $J_{n}$ with vertex set $V\left(J_{n}\right)=\left\{\alpha_{0}, \beta_{0}, \gamma_{0}, \alpha_{i}: 1 \leq i \leq n+1\right\}$ and edge set $E\left(J_{n}\right)=\left\{\alpha_{0} \alpha_{1}, \alpha_{i} \beta_{0}, \alpha_{i} \gamma_{0}\right.$ : $0 \leq i \leq n+1\}$. The total number of vertices are given by $\left|V\left(J_{n}\right)\right|=n+4$. The total number of edges are given by $\left|E\left(J_{n}\right)\right|=2 n+5$. Now we define the edge labeling as $\zeta: E \rightarrow\{1,2, \ldots, 2 n+$ 5\} as
$\zeta\left(\alpha_{i} \beta_{0}\right)=2 i+1, \quad 0 \leq i \leq n+1$
$\zeta\left(\alpha_{i} \gamma_{0}\right)=2 i+2, \quad 0 \leq i \leq n+1$
$\zeta\left(\alpha_{0} \alpha_{1}\right)=2 n+5$

Thie $\dot{\text { 于nduduced. }}$, ventuex labels are $\xi: V \rightarrow \mathbb{Z}^{+}$ $\operatorname{ar} \dot{\varepsilon}=1,2, \ldots, n-1$
$\xi\left(\alpha_{0}\right)=2 n+8$
$\xi\left(\beta_{0}\right)=(n+2)^{2}$

$$
\begin{gathered}
\xi\left(\gamma_{0}\right)=(n+2)(n+3) \\
i=1,2, \ldots n-2 \\
\xi\left(\alpha_{1}\right)=2 n+12
\end{gathered}
$$

$$
\xi\left(\alpha_{i}\right)=4 i+7,
$$

The vertex labels are distinct. Hence the Jewel graph is antimagic.

Theorem 3
The Star glued with star graph is antimagic.

Proof :
Consider the Star glued with star graph $S_{m, n}$, the apex vertex is denoted as $\gamma$, the vertices adjacent to the apex vertex are denoted as $\beta_{1}, \beta_{2}, \beta_{3}, \ldots \beta_{n}$ in the anticlockwise direction. The vertices non adjacent to the apex vertices are denoted as $\alpha_{j}{ }^{i}, 1 \leq i \leq n, 1 \leq j \leq m$. Thus the vertex set $V\left(S_{m, n}\right)=\left\{\alpha_{j}{ }^{i}, \beta_{i}, \gamma: 1 \leq i \leq\right.$ $n, 1 \leq j \leq m$. The edges incideent with the apex vertex are denoted as $y_{1}, y_{2}, y_{3}, \ldots y_{n}$ and the edges not incident with the apex are denoted as edge $x_{j}{ }^{i}, 1 \leq i \leq n, 1 \leq j \leq m$. Thus the edge set $E\left(S_{m, n}\right)=\left\{x_{j}{ }^{i}: 1 \leq i \leq n, 1 \leq\right.$ $\left.j \leq m, y_{i}: 1 \leq i \leq n\right\}$. The total number of vertices are given by $\left|V\left(S_{m, n}\right)\right|=m n+$ $n+1$. The total number of edges are given by $\left|E\left(S_{m, n}\right)\right|=m n+n$. Now we define the edge labeling as $\zeta: E \rightarrow\{1,2, \ldots, m n+n\}$ as

$$
\begin{gathered}
\zeta i\left(\bar{x}_{i}^{j}\right), 3,(j ., n 1+n 1+i, 1 \leq i \leq n, 1 \leq j \\
\leq m
\end{gathered}
$$

$$
\zeta\left(y_{i}\right)=m n+n-i+1,1 \leq i \leq n
$$

The induced vertex labels are $\xi: V \rightarrow \mathbb{Z}^{+}$ are
$\xi\left(\alpha_{i}{ }^{j}\right)=(j-1) n+i, 1 \leq i \leq n, 1 \leq$ $j \leq m$
$\xi\left(\beta_{i}\right)=\frac{m}{2}[2 i+(m-1) n]+m n+n-$
$i+1,1 \leq i \leq n$
$\xi(\gamma)=\frac{n}{2}[2 m n+n+1]$
The vertex labels are distinct. Hence the Star glued with star graph is antimagic.

## 4. Conclusion

In this paper we have proved that Octopus graph $O_{n}$, Jewel graph $J_{n}$ and Star glued with Star graph $S_{m, n}$ admits antimagic labeling.

## 5. References

[1] Baca M., Miller M., Ryan J. and Semanicova - Fenovcicova A., " Magic and AntimagicGraphs" ,Springer, (2019).
[2] Gallian J. A, "A dynamic survey of graph labeling" ,The Electronic

## JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 3524-3528
https://publishoa.com
ISSN: 1309-3452

Journal of Combinatorics, 21, DS6(2018).
[3] Hartsfield .N and Ringel .G., "Pearls in Graph Theory",Academic Press, San Diego, (1990).
[4]Miller M. and. Bǎca M, Antimagic valuations of generalized Petersen graphs, Australasian J. Combin. 22 (2000) 135-139.
[5] Rosa A "'On certain valuations of the vertices of a graph", Theory of Graphs (Internat.Symposium, Rome, July 1966), Gordon and Breach, N. Y.

