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Abstract 

Graph coloring is a component of graph labeling in graph theory; it is the assignment 

of labels generally referred to as "colors" to elements of a graph subject to specified 

constraints. In this article, we will almost certainly look at fractional colorings of graphs in 

which the amount of color assigned to a vertex is determined by local characteristics such as 

its degree or the clique number of its neighborhood. The fractional chromatic number of a 

graph is inferior to all rational numbers a/b such that there exists a proper a/b-coloring of G. 

In this article, we studied fractional coloring in graph theory for many types of graphs such as 

path graph, cycle graph, complete graph and tree related graphs. 
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1 Introduction 

Graphsareoneofthemostcommonr

epresentationsofbothnaturalandman-

made 
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structures.Inphysical,biological,social,an

dinformationsystems,graphscan beused 

to model a wide range of relationships 

and processes.Graphs can be used to 

illustratea wide range of real-world 

issues.The fields of graph 

theory,computer engineering, and 

operations research experienced 

exponential growth in the late twentieth 

century and early twenty-first 

century.Graphs are used in computer 

science to describe 

communicationnetworks,dataorganizatio

n,computingdevices,computationflow,an

d soon. 

Adirectedgraph,forexample,candescribea

website’slinkstructure,with vertices 

representing web pages and directed 

edges representing links from one 

pagetoanother.Travel,biology,computerc

hipdesign,andavarietyofotherindustries 

can all benefit from a similar 

approach.As a result, developing 

algorithms to manage graphs is a hot 

topic in computer 

science.Graphrewritesystemsarefrequent

ly 

usedtodescribeanddepictgraphtransforma

tions.Graphdatabases,whicharede- 

signed for transaction-safe,persistent 

storing and querying of graph-structured 

data,areacomplementtographtransformat

ionsystemsthatfocusonrule-basedin-

memory graph manipulation.Each edge 

of a graph can be given a weight, which 

can be used to extend its 

structure.Weighted graphs, also known 

as graphs with weights, are used to 

illustrate structures in which pairwise 

links have numerical values.The weights 

could, for example, indicate the length 

of each road in a graph representing a 

road network. 

2 LiteratureReview 

M. Larsen, J. Propp, explained 

the fractional chromatic number of 

Mycielski’s Graphs [4].On some 

properties of linear complexes was 

discussed by A. A. Zykov[8].C. 

Brause, B. Randerath, D. Rautenbach, 

and I. Schiermeyer,analyzed lower 

bound on 

theindependencenumberofagraphinter

msofdegreesandlocalcliquesizes[9].In[

10]showedthecoloringonnodesofanetw

ork.ExplainedColoringquasi-

linegraphsin [11].Subcubic triangle-

free graphs have fractional chromatic 

number at most
5

14
.  Was analyzed in 

[13].Z. Dvorak, J.S. Sereni, and J. 

Volec.Deliberates Fractional coloring 
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of triangle-free planar Graphs [14].In 

bounding the fractional chromatic 

number of Kδ-

freegraphswasexplained[16].[17]J.R.G

riggexaminedLowerboundsonthe 

independence number in terms of the 

degrees. Asymptotic choice number 

for triangle free graphs and studied 

Fractional total coloring’s of graphs of 

high girth [18],[19]. 

Thelastfractionofafractionalconjecture

wasanalyzedin[20],[21].[22]M.Molloy 

deliberate the list chromatic number of 

graphs with small clique number [23]. 

3 Preliminaries 

Definition 3.1.“LetGbeagraphwith n

verticesandH beanothergraphwithroot 

vertex v

.TherootedproductofGandHisdefinedasthe

graphwithonecopyofG and n copiesofH 

identifyingthevertex iu ofGwiththevertex v

inthe thi copyofH for each ni 1 .” 

Definition3.2.Acoloredgraphisagraphinwhiche

achvertexisassignedacolor. 

Definition3.3.A properly colored graph is a 

colored graph whose color assignments 

conformtothecoloringrulesappliedtothegraph. 

Definition3.4.Agraphparameter )(G

,thechromaticnumberofG,asthesmallest 

positiveinteger n suchthatthereexistsaproper n

-coloringofG. 

Definition3.5.The fractional chromatic 

number of a graph, )(GF  is the infimum 

of all rational numbers ba  such that there 

exists a proper ba -coloring of G. 

Definition3.6.Aregulargraphisagraphinwhichev

eryvertexhasthesamedegree. An n-regular graph 

is a regular graph in which all vertices have 

degree n. 

Observation3.7.Let nK

beacompletegraphwithnvertices,then nK(

⊙ )nK = nf K( ⊙ )nK . 

Observation3.8.Let nP and nK be the path 

graph and cycle graph with n vertices 

respectively, then nP( ⊙ )nK = nf P( ⊙

)nK . 
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 Figure1: nK ⊙ nK  

 

 

 

 

Figure2 : 3P ⊙ 4K  

 

Observation3.9.Let Cn and Km be the cycle 

and path graph with mn, vertices 

respectively, then nC( ⊙ )mK = nf P( ⊙

)mK . 

Theorem 3.10. If Cm,mbe comb graph with n 

vertices then rooted product of fraction 

chromatic number is mmf C ,( ⊙
2

3
), mmC  

Proof: 

Let G be a comb graph with n 

vertices and nvvv ,...,, 21 be the set of 

vertices in pathgraphofcaterpillar.Let

nuuu ,...,, 21

bethesetofverticesintheleavesconnectedb

ythepathgraph.Therootedproductoftwoco

mbgraph isntimesoffirstgraph 

connectedbysecondgraph.Thenumberofv

erticesinrootedproductgraphis 2n . The 

fraction chromatic number of comb 

graph is 2.The rooted product of any two 

trees are always a tree, then the rooted 

product of two comb graph is tree, so the 

chromatic number of rooted product of 

comb graph is less than or equal to 

two.Hence mmf C ,( ⊙
2

3
), mmC . 
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Figure3:C2,2⊙C2,2 

Theorem3.11.If Pm and Pn be the path graph 

with m,n vertices respectively then mf P( ⊙

2

3
) nP . 

Proof: 

Let mvvv ,...,, 21

bethesetofverticespathgraphwithmvertices

and nuuu ,...,, 21

bethesetofverticesinpathgraphwithnverti

ces.Therootedproductofanytwo graph 

makes a caterpillar graph.The fractional 

chromatic number of path graph 

istwo.In the path graph mP  there are n 

copies of mP  in the rooted product.The 

chromatic number of any tree is two.So 

the fractional chromatic number of 

caterpillar is 

lessthanorequaltotwo.Therefore mf P(

⊙
2

3
) nP . 

Theorem3.12.If nω , mω

bethetwowheelgraphwithn,mverticesrespectiv

elythen nf ω( ⊙
2

5
) mω . 

Proof: 

Let muuu ,...,, 21

besetofverticesofwheelgraphwithmverti

ces nvvv ,...,, 21 be 

thesetofverticesofsecondwheelgraph.Byth

edefinitionofrootedproductntimes of 

wheel graphs are joined by 

corresponding vertices of root 

graph.The chromatic number of wheel 

graph is three.There are n copies of mω  

are joined by nω .The fractional 
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chromatic number is less than 

three.Hence nf ω( ⊙
2

5
) mω . 

Conclusion 

In this article we examined 

fractional chromatic number of rooted 

product of complete and path graph and 

cycle graph. We also studied about 

fractional chromatic number of rooted 

product of two wheel graphs. 
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