Volume 13, No. 2, 2022, p. 3362-3370 https://publishoa.com ISSN: 1309-3452

Stochastic Modelling and Forecasting for LPG Prices: SARIMA Approach

T. Jai Sankar, I. Angel Agnes Mary and P. Sameerabanu

Department of Statistics, Bharathidasan University, Tiruchirappalli, Tamilnadu, INDIA

tjaisankar@gmail.com, angelagnes709@gmail.com and imashameera@gmail.com

Received 2022 March 25; Revised 2022 April 28; Accepted 2022 May 15.

Abstract

Liquefied Petroleum Gas (LPG) is a by product of crude oil and natural gas that is rich in hydrocarbons. LPG can be used for cooking, water heating, and space heating and drying. LPG allows the user to control the level of heat and ensures a clean cooking environment. This study examines to predict and forecast analysis for Chennai's monthly LPG prices from December 2013 to November 2021 through the Seasonal Autoregressive Integrated Moving Average (SARIMA) approach. The use of Mean Absolute Percentage Error (MAPE) and Bayesian Information Criterion (BIC) criteria for the fitted model considered appropriate LPG pricing. The best model to forecast the Gas Prices is SARIMA $(0,1,1)(1,1,0)_{12}$. Based on the chosen model, it could be predicted that LPG price would increase to Rs. 1,308.75 in November 2023 from Rs. 900.20 in December 2021 in Chennai.

Key Words: LPG Price forecasting, PACF, SARIMA.

Introduction

LPG is a multipurpose fuel and used worldwide as an alternative fuel for various applications; residential, commercial, agribusiness, industrial, and auto gas. In the absence of natural gas, LPG is the best alternative fuel. Cooking with other fuels such as wood or kerosene results in pollution, accumulation of soot, and the heat generated is difficult to control. LPG has been in India since 1950 and was used only by the middle and upper class, despite government subsidies for all. In recent years, the Government of India has sought to change these access and utilization practices through a series of target policies. From 2009 to 2012, Rajiv Gandhi Gramin LPG Vitaran Yojana provided 1.5 million new LPG connections to rural areas (Jain, 2016). Since 2015, the Government of India, in collaboration with three major oil companies, has launched three major projects to improve LPG for poor and rural households. LPG prices in India are based on the Import Parity Price (IPP) of the international market and the fuel is imported into the country.

Materials and Methods

As the aim of the study was to predict and forecast analysis for Chennai's monthly LPG prices from December 2013 to November 2021 through the Seasonal Autoregressive Integrated Moving Average (SARIMA) approach, and data collected from the Annual Report (2020-21) of Indian Oil Corporation Limited. Akaike (1970) discussed the stationary time series by an AR (p), where p is finite and bounded by the same integer. Moving Average (MA) models were used by Slutzky (1973). Box and Pierce (1976) considered the distribution of residual autocorrelations in ARIMA. SARIMA model introduced by Box and Jenkins (1976), was frequently used for discovering the pattern and predicting the future values of the time series data. Hannan and Quinn (1979) suggested obtaining the order of a time series model by minimizing the errors for pure AR models, and Hannan (1980) for ARMA models. A second order determination method could be considered as a variance of Schwarz's Bayesian Criterion (SBC) which gives a consistent estimate of the order of an ARMA model. Hosking (1981) introduced a family of models, called fractionally differenced autoregressive integrated moving average models, by generalizing the 'd' fraction in ARIMA (p,d,q) model. Pindyck (1994) explored the relationship between short-term stocks and prices for copper, wood, and heating oil. Solomon (2001) sought to predict future oil and gas prices by triggering a linear regression analysis of the impact of oil and natural gas prices on oil industry activity. Stephane et al., (2003) attempted to estimate the actual oil price. Zamani (2004) proposed an economic forecasting model for short-term oil spot prices. Japlonowski et al., (2007) proposed a conclusion analysis model for evaluating the crude oil price forecast. Ogwo (2007) proposed an equivalent gas price model. Mogopadhyay et al., (2012) suggested that fuel stacking practiced for cooking methods in rural homes with

Volume 13, No. 2, 2022, p. 3362-3370 https://publishoa.com ISSN: 1309-3452

LPG. Holoda et al., (2017); Troncoso and da Silva, (2017) explained an important task of the fuel stacking procedures for the popular and clean option.

The seasonal ARIMA model incorporates both non-seasonal and seasonal factors in a multiplicative model. One shorthand notation for the model is

ARIMA (p,d,q)×(P,D,Q)_S

with p = non-seasonal AR order, d = non-seasonal differencing, q = non-seasonal MA order, P = seasonal AR order, D = seasonal differencing, Q = seasonal MA order and S = time span of repeating seasonal pattern, $\Phi =$ Autoregressive polynomial Order and $\Theta =$ Moving average polynomial Order.

Without differencing operations, the model could be written more formally as

$$\Phi(B^{s})\phi(B)(x_{t}-\mu) = \Theta(B^{s})\theta(B)\omega_{t}$$
(1)

The non-seasonal components are:

AR:
$$\phi(B) = 1 - \phi_1 B - \dots - \phi_p B^p$$

MA: $\theta(B) = 1 + \theta_1 B + \dots - \theta_q B^q$

The seasonal components are:

Seasonal AR:
$$\Phi(B^{S}) = 1 - \Phi_{1}B^{S} - \dots - \Phi_{p}B^{PS}$$

Seasonal MA: $\Theta(B^{S}) = 1 + \Theta_{1}B^{S} - \dots - \Theta_{Q}B^{QS}$

On the left side of equation (1) the seasonal and non-seasonal AR components multiply each other, and on the right side of equation (1) the seasonal and non-seasonal MA components multiply each other.

SARIMA Analysis:

Table 1: Actual LPG Price (Rs.) in Chennai

Month	Amount								
Dec 2013	1014	Aug 2015	604	Apr 2017	732	Dec 2018	827	Aug 2020	611
Jan 2014	1234	Sep 2015	577	May 2017	639	Jan 2019	705	Sep 2020	610
Feb 2014	1132	Oct 2015	532	Jun 2017	560	Feb 2019	673	Oct 2020	610
Mar 2014	1082	Nov 2015	560	Jul 2017	574	Mar 2019	717	Nov 2020	610
Apr 2014	981	Dec 2015	623	Aug 2017	533	Apr 2019	722	Dec 2020	685
May 2014	929	Jan 2016	672	Sep 2017	609	May 2019	728	Jan 2021	710
Jun 2014	905	Feb 2016	587	Oct 2017	657	Jun 2019	753	Feb 2021	760
Jul 2014	924	Mar 2016	526	Nov 2017	750	Jul 2019	653	Mar 2021	835

Volume 13, No. 2, 2022, p. 3362-3370 https://publishoa.com ISSN: 1309-3452

				_					
Aug	922	Apr	521	Dec	756	Aug	591	Apr	825
2014	, 22	2016	521	2017	100	2019	571	2021	010
Sep	002	May	529	Jan	751	Sep	(07	May	925
2014	903	2016	538	2018	/31	2019	607	2021	825
Oct	883	Jun	560	Feb	746	Oct	620	Jun	825
2014	005	2016	500	2018	740	2019	020	2021	825
Nov	864	Jul	551	Mar	700	Nov	696	Jul	851
2014	004	2016	551	2018	700	2019	090	2021	0.51
Dec	750	Aug	500	Apr	664	Dec	714	Aug	876
2014	730	2016	300	2018	004	2019	/14	2021	870
Jan	705	Sep	478	May	663	Jan	734	Sep	901
2015	705	2016	470	2018	005	2020	734	2021	901
Feb	600	Oct	501	Jun	713	Feb	881	Oct	916
2015	000	2016	501	2018	/15	2020	001	2021	910
Mar	606	Nov	539	Jul	771	Mar	826	Nov	916
2015	000	2016	559	2018	//1	2020	820	2021	910
Apr	614	Dec	594	Aug	806	Apr	762		
2015	014	2016	394	2018	800	2020	/02		
May	(00	Jan	505	Sep	839	May	570		
2015	609	2017	595	2018	039	2020	570		
Jun	620	Feb	661	Oct	896	Jun	607		
2015	020	2017	001	2018	090	2020	007		
Jul	629	Mar	747	Nov	060	Jul	611		
2015	628	2017	747	2018	960	2020	611		

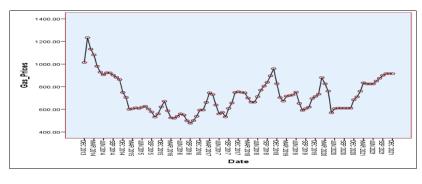


Figure1: Time Plot for Month-wise LPG Prices

Figure 1 depicts that the data used were non-stationary. The time series plot of monthly Gas Prices from December 2013 to December 2021 with d=1 was created as shown in Figure 2.

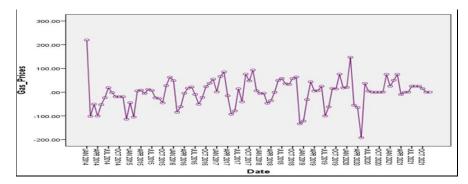


Figure 2: Time Plot for Month-wise LPG Prices with d=1

Volume 13, No. 2, 2022, p. 3362-3370 https://publishoa.com ISSN: 1309-3452

La	Autocorrelat	Box-L	jung S	tatistic	Partial	Std.	
g	ion	Std. Error ^a	Value	df	Sig. ^b	Autocorrelati on	Error
1	0.221	0.100	4.843	1	0.028	0.221	0.102
2	0.007	0.100	4.848	2	0.089	-0.044	0.102
3	-0.241	0.099	10.706	3	0.013	-0.245	0.102
4	-0.142	0.099	12.772	4	0.012	-0.039	0.102
5	-0.109	0.098	13.995	5	0.016	-0.073	0.102
6	-0.073	0.098	14.559	6	0.024	-0.104	0.102
7	0.017	0.097	14.591	7	0.042	0.014	0.102
8	0.137	0.097	16.611	8	0.034	0.100	0.102
9	0.139	0.096	18.710	9	0.028	0.046	0.102
10	0.126	0.096	20.450	10	0.025	0.084	0.102
11	-0.061	0.095	20.857	11	0.035	-0.066	0.102
12	-0.031	0.094	20.966	12	0.051	0.050	0.102
13	-0.162	0.094	23.953	13	0.032	-0.106	0.102
14	-0.087	0.093	24.813	14	0.036	-0.033	0.102
15	0.105	0.093	26.090	15	0.037	0.176	0.102
16	0.123	0.092	27.871	16	0.033	0.015	0.102

Table 2: ACF and PACF of LPG Prices with d=1

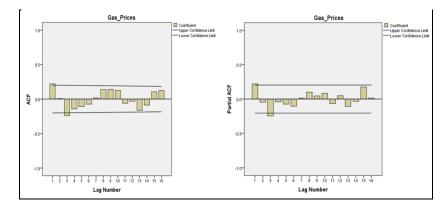


Figure 3: ACF and PACF plot with *d*=1

There is a significant autocorrelation at 3 lags which indicates that seasonality of data needed to be considered (Figure 3). First seasonal differencing needed to be done. The time series plot of monthly Gas Prices with d=1 and D=1 was created as shown in Figure 4.Stationary and normal time series plot with seasonality proof after the transformation of difference, d=1 and seasonal difference, D=1. The ACF and PACF plots with transformation d=1 and D=1 were depicted as shown in Figure 5.

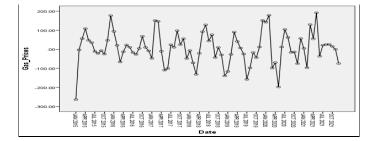


Figure 4: Time Plot for Month-wise LPG Prices with d=1 and D=1

Volume 13, No. 2, 2022, p. 3362-3370 https://publishoa.com ISSN: 1309-3452

Auto		Std.	Box-Lj	jung St	atistic	Partial Auto	Std.
Lag	correlati on	Error ^a	Value	df	Sig. ^b	correlatio n	Error
1	0.312	0.107	8.493	1	0.004	0.312	0.109
2	-0.051	0.107	8.725	2	0.013	-0.165	0.109
3	-0.401	0.106	23.102	3	0.000	-0.377	0.109
4	-0.287	0.105	30.548	4	0.000	-0.066	0.109
5	-0.135	0.105	32.221	5	0.000	-0.087	0.109
6	-0.047	0.104	32.423	6	0.000	-0.197	0.109
7	0.029	0.103	32.500	7	0.000	-0.076	0.109
8	0.171	0.103	35.293	8	0.000	0.108	0.109
9	0.300	0.102	43.977	9	0.000	0.176	0.109
10	0.202	0.101	47.954	10	0.000	0.050	0.109
11	-0.146	0.101	50.068	11	0.000	-0.179	0.109
12	-0.443	0.100	69.764	12	0.000	-0.260	0.109
13	-0.214	0.099	74.425	13	0.000	0.146	0.109
14	-0.031	0.098	74.521	14	0.000	-0.067	0.109
15	0.216	0.098	79.412	15	0.000	-0.015	0.109
16	0.151	0.097	81.825	16	0.000	-0.005	0.109

Table 3: ACF and PACF of LPG Prices with d=1 and D=1

^a The underlying process assumed is independence (white noise).

^b Based on the asymptotic chi-square approximation.

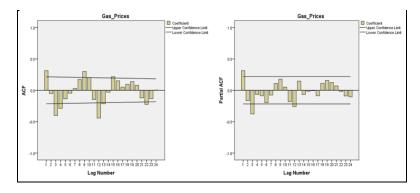


Figure 5: ACF and PACF plot with *d*=1 and D=1

Volume 13, No. 2, 2022, p. 3362-3370 https://publishoa.com ISSN: 1309-3452

From the ACF plot (Figure 5), there is significant autocorrelation at Lags 1 and 3 which will be the value of q. While the significant autocorrelation at Lag 3 indicates that the value of Q=1. From the PACF plot, there is significant autocorrelation at Lags 1 and 3 which will be the value of p. While the autocorrelation at Lag 3 presents but less significant, hence, it indicates that the value of P = 0 or P = 1. In addition, the PACF trails off after a lag and has a hard cut-off in the ACF after the lag q, at p=0 needed to be considered in the models.

In this study, the lags 12 on the order AR and MA were ignored. Table 4 displays parameter estimator (column 3) and the significance test of α value (column 4). The following hypothesis will be used to identify significant models:

H₀: $\alpha > 0.05$: Model insignificant

H₁: $\alpha < 0.05$: Model significant

There were 6 initial models being identified from Table 4, it is clearly shown that only SARIMA $(0,1,1)(1,1,0)_{12}$ has reached the assumptions of the model diagnostics.

Model: SARIMA	Parameters	Estimation	Significant	MAPE	Normalized BIC	
(1, 1, 0)(1, 1, 0)	AR	0.373	0.001	7.703	8.692	
$(1,1,0)(1,1,0)_{12}$	SAR	-0.564	0.000	1.105	8.092	
	AR	0.216	0.552			
(1 1 1)(1 1 1)	MA	-0.100	0.784	7.318	8.749	
$(1,1,1)(1,1,1)_{12}$	SAR	-0.224	0.274	7.310	0.749	
	SMA	0.525	0.009			
	AR	0.303	0.290			
$(1,1,1)(1,1,0)_{12}$	MA	-0.095	0.745	7.277	8.674	
	SAR	-0.564	0.000			
$(0,1,1)(1,1,0)_{12}$	MA	-0.318	0.003	7.352	8.625	
(0,1,1)(1,1,0)12	SAR	-0.554	0.000	1.332	0.023	
	MA	-0.266	0.014			
$(0,1,1)(1,1,1)_{12}$	SAR	-0.181	0.349	6.885	8.584	
	SMA	0.613	0.002			
	AR	0.301	0.006			
$(1,1,0)(1,1,1)_{12}$	SAR	-0.228	0.250	7.349	8.687	
	SMA	0.526	0.008			

Table 4: Significant parameters of identified models

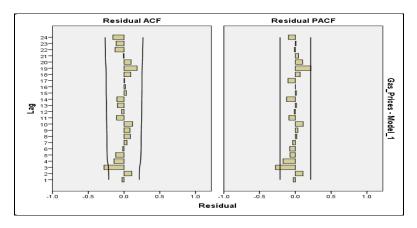
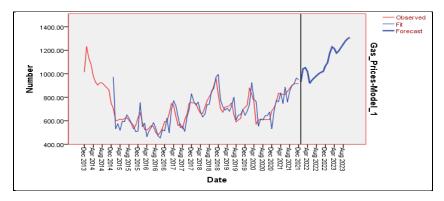


Figure 6: Residuals of ACF and PACF

Volume 13, No. 2, 2022, p. 3362-3370 https://publishoa.com ISSN: 1309-3452


The residual plots of ACF and PACF in Figure 6 shows that, the model is adequate a random variation from the origin zero (0), the points below and above are all uneven, hence the model fitted is adequate.

Model parameters and fit statistics were estimated and the results of estimation are presented in Tables 5. BIC value was 8.625. Hence, the most suitable model for LPG priceswas SARIMA (0, 1, 1) $(1, 1, 0)_{12}$, as this model had the lowest normalized BIC value.

		Estimate	SE	t	Sig.
Constar	nt	4.010	6.636	0.604	0.547
Difference		1			
MA	Lag 1	-0.312	0.104	-3.002	0.004
AR, Seasonal	Lag 1	-0.551	0.100	-5.510	0.000
Seasonal Diff	ference	1			

 Table 5: ARIMA Model Parameters

The forecasted plot of SARIMA $(0,1,1)(1,1,0)_{12}$ through Box-Jenkins method is shown in Figure 7 and the forecasted results were tabulated in Table 6.

Figure 7: Actual and Estimated of LPG Prices

Year	Foreca st	UCL	LCL	Year	Foreca st	UCL	LCL
Dec	900.20	995.53	725.5	Dec	1066.7	1674.10	459.34
2021	900.20	<i>yy</i> J.JJ	0	2022	2	1074.10	439.34
Jan	933.13	1069.1	797.0	Jan	1094.6	1747.54	441.74
2022	955.15	9	8	2023	4	1747.34	441./4
Feb	1042.8	1267.2	818.4	Feb	1177.6	1879.86	475.42
2022	5	7	2	2023	4	10/9.00	475.42
Mar	1052.3	1339.1	765.6	Mar	1229.5	1977.80	481.20
2022	8	2	4	2023	0	1977.80	
Apr	1018.5	1356.3	680.8	Apr	1215.0	2006.73	423.33
2022	5	0	0	2023	3	2000.75	423.33
May	918.89	1300.9	536.8	May	1176.5	2000 40	242 70
2022	918.89	0	8	2023	5	2009.40	343.70

Table 6: Forecasting for LPG Prices

Volume 13, No. 2, 2022, p. 3362-3370 https://publishoa.com ISSN: 1309-3452

Jun	945.51	1367.1	523.8	Jun	1194.7	2066.76	322.66
2022	945.51	6	7	2023	1	2000.70	322.00
Jul	965.38	1423.2	507.5	Jul	1223.9	2133.47	314.34
2022	905.58	4	2	2023	1	2155.47	514.54
Aug	982.81	1474.2	491.3	Aug	1251.7	2197.33	306.14
2022	902.01	3	9	2023	3	2177.33	500.14
Sep	999.97	1522.8	477.1	Sep	1279.4	2259.74	299.13
2022	999.97	0	5	2023	4	2239.74	299.15
Oct	1012.9	1565.3	460.4	Oct	1299.7	2313.56	285.92
2022	2	7	7	2023	4	2313.30	203.92
Nov	1019.1	1599.7	438.5	Nov	1308.7	2355.02	262.48
2022	4	1	8	2023	5	2555.02	202.48

Conclusion

The results showed that prices would not remain stable throughout the year. The most appropriate SARIMA model for LPG price forecasting of data was found to be SARIMA $(0,1,1)(1,1,0)_{12}$. From the temporal data, it can be found that forecasted prices would increase to Rs. 1,308.75 in November 2023 from Rs.900.20 in December 2021 in Chennai. The results will be useful to the farming community and other relevant stakeholders. Using time series data from December 2013 to November 2021 on LPG prices, this study provides an evidence on future gas prices in the country, which can be considered for future policy making and formulating strategies for augmenting and sustaining prices in India.

References

- 1. C. Jablonowski and R. MacAskie, The value of oil and gas price forecasts, presented at SPE Hydrocarbon Economics and Evaluation Symposium, Dallas, Texas, April 1-3, 2007, pp. 1-8, SPE Publication # 107570.
- 2. E. Slutzky, The summation of random causes as the source of cyclic processes, *Econometrica*, (1973), no. **5**, 105-146.
- 3. E.J. Hannan, The estimation of the order of an ARMA process, Annuals of Statistics, (1980), no. 8, 1071-1081.
- 4. E.J., Hannan and B.G. Quinn, The determination of the order of an autoregression, *Journal of Royal Statistical Society*, (1979), no. **B**(41), 190-195.
- 5. G.E.P. Box and D.A. Pierce, Distribution of Residual Autocorrelations in ARIMA Models, J. American Stat. Assoc., (1970), no. 65, 1509-1526.
- 6. G.E.P. Box and G.M. Jenkins, Time Series Analysis: Forecasting and Control, San Francisco, Holden-Day, California, USA, 1976.
- 7. H. Akaike, Statistical Predictor Identification, *Annals of Institute of Statistical Mathematics*, (1970), no. **22**, 203-270.
- 8. Hollada Jacqueline, N. Williams Kendra, H. Miele Catherine, Danz David, A. Harvey Steven and Checkley William, Perceptions of Improved Biomass and Liquefied Petroleum Gas Stoves in Puno, Peru: Implications for Promoting Sustained and Exclusive Adoption of Clean Cooking Technologies, *International Journal of Environmental Research and Public Health*, (2017), no. **14(2)**, 182.
- 9. I.S. Agbon and J.C. Araque, Predicting oil and gas spot prices using chaos Time Series Analysis and Fuzzy Neural Network model, *SPE Hydrocarbon Economics and Evaluation Symposium, Dallas, Texas*, (2003).
- 10. J.R.M. Hosking, Fractional differencing, *Biometrika*, (1981), no. 68(1), 165-176.
- 11. Jain Abhishek, LPG for every Indian household, *The Hindu*, (2016), URL: http://www.the hindu.com/opinion/op-ed/LPG-for-every-Indian- household/article14169579.ece
- 12. M Zamani, An Econometrics Forecasting Model of Short Term Oil Spot Price, Paper presented at the 6th IAEE European Conference, Zurich, 2004.
- 13. Mukhopadhyay Rupak, Sambandam Sankar, Pillarisetti Ajay, Jack Darby, Mukhopadhyay Krishnendu, Balakrishnan Kalpana, Vaswani Mayur, N. Bates Michael, L. Kinney Patrick and Arora Narendra, Cooking Practices, Air Quality, and the Acceptability of Advanced Cook-stoves in Haryana, India: An Exploratory Study to Inform Large-Scale Interventions. *Global Health Action*, (2012), no. **5**(1), 19016.

Volume 13, No. 2, 2022, p. 3362-3370 https://publishoa.com ISSN: 1309-3452

- 14. O.I. Solomon, M.K. Kunju, and O.I. Omowunmi, The responsiveness of global E&P industry to changes in Petroleum prices: Evidence from 1960-2000, *SPE Hydrocarbon Economics and Evaluation Symposium, Dallas, Texas*, (2001). pp 1-12. SPE68587.
- 15. S. Pindyck Robert, Inventories and the Short-Run Dynamics of Commodity Prices, *RAN Journal of Economics*, (1994), no.25, 14.
- 16. Stephane Dees, Sanchez, Marcelo, Karadeloglou, Pavlos, and Kaufmann, K. Robert, Modeling the world oil market: Assessment of a quarterly econometric model, *Energy Policy*, (2003) no. **35(1)**, 178-191.
- 17. Troncoso Karin, and da Silva Agnes Soares, LPG Fuel Subsidies in Latin American and the Use of Solid Fuels to Cook. *Energy Policy*, (2017), no. **107**, 188–196.
- 18. U.J.O. Ogwo, Equivalent Gas Pricing Model. SPE 111897, presented at 31st Nigerian Annual International Conference and Exhibition held in Abuja, Nigeria, (2017).