Distance Closed G-Eccentric Domination in Fuzzy Graphs

A. Mohamed Ismayil

Associate Professor
Department of Mathematics
Jamal Mohamed College
(Affiliated to Bharathidasan University)
Tiruchirappalli -620 020, Tamil Nadu, INDIA.

S. Muthupandiyan*

Research Scholar
Department of Mathematics
Jamal Mohamed College
(Affiliated to Bharathidasan University)
Tiruchirappalli -620 020, Tamil Nadu, INDIA.
*Corresponding Author. E-mail:muthupandiyanmaths@gmail.com
Received 2022 March 25; Revised 2022 April 28; Accepted 2022 May 15.

Abstract

A dominating set D of the vertex set $V(G)$ in a fuzzy graph $G(\tau, \omega)$ is said to be a g-eccentric dominating set if for every $b \in V-D, \exists$ at least one g-eccentric vertex a of b in D. A subset $D \subseteq V(G)$ of a fuzzy graph $G(\tau, \omega)$ is said to be distance closed set if for every vertex $a \in D$ and for every vertex $c \in V-D, \exists$ at least one vertex $b \in D$ such that $d_{g}(a, b)($ in $<D>)=d_{g}(a, c)($ in $G)$. A subset D of a vertex set $V(G)$ in a fuzzy graph $G(\tau, \omega)$ is said to be distance closed g-eccentric dominating set if $\langle D>$ is distance closed and D is g-eccentric dominating set. The lowest cardinality of the distance closed g-eccentric dominating set is called the distance closed g-eccentric domination number of G. This article discusses the distance closed g-eccentric dominating set and its number in fuzzy graphs. Bounds for the distance closed g-eccentric domination number are found for several fuzzy graph types. Several theorems, results, and observations are presented on distance closed g-eccentric dominating sets and numbers in fuzzy graph

AMS Subject Classification 2010: 05C05; 05C12; 05C72.
Keywords and Phrases: Distance closed set, g-eccentric dominating set, Distance closed g-eccentric dominating set.

I Introduction

Rosenfeld [7] is a man who invented the concept of fuzzy graphs (abbreviated as FG). In the year 2010, T.N. Janakiraman et al. [3] introduced the distance closed domination in graph. In 2010, T.N. Janakiraman et al. [4] developed the notion of eccentric domination in graph. Linda.J.P and M.S.Sunitha [5] proposed the concept of g-eccentric nodes, g-boundary nodes, and g-interior nodes of a FG in 2012. The concept of a graph's distance closed eccentric domination number was initially introduced by M. Bhanumathi and Sudha Senthil [2] in 2016. Mohamed Ismayil and Muthupandiyan proposed g-eccentric domination in FG in 2020 [6].

The concepts of a distance closed g-eccentric point set, a distance closed g-eccentric dominating set, and corresponding FG numbers are introduced in this article. Theorems and proofs on distance closed g-eccentric dominating sets are presented. For some typical FG, bounds on distance closed g-eccentric domination number are found.

For unknown graph and FG notions, the reader should refer $[1,7,8]$. In this research, only connected FG are consider.
Definition 1.1. $[6,8] A$ FG $G(\tau, \omega)$ is characterized with two functions τ on V and ω on $\subseteq V \times V$, where $\tau: V \rightarrow$ $[0,1]$ and $\omega: E \rightarrow[0,1]$ such that $\omega(a, b) \leq \tau(a) \wedge \tau(b), \forall a, b \in V$. We anticipate that V is a nonempty finite set, ω is reflexive and symmetric functions. We indicate the crisp grpah $G^{*}=\left(\tau^{*}, \omega^{*}\right)$ of the fuzzy graph $G(\tau, \omega)$ where

Volume 13, No. 2, 2022, p. 3346-3352
https://publishoa.com
ISSN: 1309-3452
$\tau^{*}=\{a \in V: \tau(a)>0\}$ and $\omega^{*}=\{(a, b) \in E: \omega(a, b)>0\}$. The order and size of a fuzzy graph $G(\tau, \omega)$ are denoted and defined by $p=\sum_{a \in V} \tau(a)$ and $q=\sum_{a b \in E} \omega(a, b)$ respectively.

Definition 1.2. [6, 8] An edge (a, b) is strong (or strong arc) in a FG $G(\tau, \omega)$ if $\omega(a, b) \geq \omega^{\infty}(a, b)=$ $\operatorname{CONN}_{G-(a, b)}(a, b)$. A path P in a FG of length n is a sequence of distinct nodes $a_{0}, a_{1}, \ldots, a_{n}$ such that $\omega\left(a_{i-1}, a_{i}\right)>$ $0, i=1,2, . . n$ and the strength of the path P is $s(P)=\min \left\{\omega\left(a_{i-1}, a_{i}\right), i=1,2, \ldots n\right\}$.

Definition 1.3. [6, 8] Let $G(\tau, \omega)$ be a fuzzy graph. If (a, b) is strong then b is called strong neighbors of a. The strong neighborhood of a is the collection of all of its strong neighbors and represented by $N_{s}(a)$. The closed strong neighborhood of a is $\mathrm{N}_{s}[\mathrm{a}]=\mathrm{N}_{\mathrm{s}}(\mathrm{a}) \cup\{\mathrm{a}\}$. The strong degree of a vertex $b \in \tau^{*}$ is defined as the sum of membership values of all strong edges occurring at b and it is denoted by $d_{s}(b)$. Also it is defined by $d_{s}(b)=\sum_{a \in N_{s}(b)} \omega(a, b)$ where $N_{s}(b)$ denotes the set of all strong neighbors of b.

Definition 1.4. $[1,6]$ The distance between two vertices in a graph $G(V, E)$ is the number of edges in a shortest path (graph geodesic) connecting them, denoted by $d(a, b)$. A strong path P in $G(\tau, \omega)$ from a to b is called geodesics if there is no shorter strong path from a to b and a length of $a-b$ geodesic is the geodesic distance(g -distance) from a to b denoted by $d_{g}(a, b)$.

Definition 1.5. [5, 6] The geodesic eccentricity (g-eccentricity) $e_{g}(a)$ of a vertex $a \in V$ in a connected $\operatorname{FG} G(\tau, \omega)$ is characterized by $e_{g}(a)=\max \left\{d_{g}(a, b), b \in V\right\}$. The least g-eccentricity among the vertices of G is called g-radius and indicated by $r_{g}(G)=\min \left\{e_{g}(a), a \in V\right\}$ and the greatest g-eccentricity among the vertices of G is called gdiameter and indicated by $d_{g}(G)=\max \left\{e_{g}(a), a \in V\right\}$. A vertex b is g-central vertex if $e_{g}(b)=r_{g}(G)$. Moreover, a vertex b in G is g-peripheral vertex if $e_{g}(b)=d_{g}(G)$.

Definition 1.6. [5] Let $a, b \in V(G)$ be any two vertices in a FG $G(\tau, \omega)$. A vertex a at g-distance $e_{g}(b)$ from b is a geccentric point of b. The g-eccentric set of a vertex b is defined and the domination number is symbolised by by $E_{g}(b)=$ $\left\{a: d_{g}(a, b)=e_{g}(b)\right\}$.

Definition 1.7. [6] The set $S \subseteq V$ in a $\operatorname{FG} G(\tau, \omega)$ is g-eccentric point set if for each $b \in V-S$, there exists at least one g-eccentric point a of b in S.

Definition 1.8. [6, 4] A dominating set $D \subseteq V(G)$ in a FG $G(\tau, \omega)$ is said to be a g-eccentric dominating set if each vertex $b \notin D$, then \exists at least a g-eccentric vertex a of b in D. The least scalar cardinality taken over all g-eccentric dominating set is called g-eccentric domination number and the domination number is symbolised by $\gamma_{\text {ged }}(G)$.

Definition 1.9. [2] A subset $D \subseteq V(G)$ of a $\operatorname{FG} G(\tau, \omega)$ is said to be distance closed set(DC-set) if for each vertex $a \in$ D and for each vertex $c \in V-D, \exists$ at least one vertex $b \in D$ such that $d_{g}(a, b)($ in $<D>)=d_{g}(a, c)($ in $G)$ and respectively.

II Distance Closed g-Eccentric Point Set in Fuzzy Graph

In this part, the distance closed g-eccentric point set and its numbers are defined in FG. Specific results, observations, and bounds on the distance closed g-eccentric number have been achieved for some classes of FG.

Definition 2.1. A sub set $S \subseteq V(G)$ of a FG $G(\tau, \omega)$ is said to be distance closed g-eccentric point set (DCgEP-set) if (i) $<S>$ is distance closed (ii) S is g-eccentric point set(gEP-set).

Definition 2.2. The least cardinality of all the distance closed g-eccentric point set S of a $\mathrm{FG} G(\tau, \omega)$ is distance closed g-eccentric number and is accompanied by $e_{d c g}(G)$. The greatest cardinality of all the distance closed g-eccentric point set S of a fuzzy graph $G(\tau, \omega)$ is the upper distance closed g-eccentric number and is accompanied by $E_{d c g}(G)$.

Note 2.3. For any FG, the distance closed set have at least two vertices. Hence $e_{d c g} \leq 2$.

Volume 13, No. 2, 2022, p. 3346-3352
https://publishoa.com
ISSN: 1309-3452

Example 2.4.

Figure 1
In the figure (1), we see that the DCgEP-sets $S_{1}=\left\{b_{2}, b_{3}\right\}, S_{2}=\left\{b_{3}, b_{4}\right\} S 3=\{b 1, b 2\}$ and $S_{4}=\left\{v_{1}, v_{4}\right\}$. Hence, $e_{d c g}(G)=0.6$ and $E_{d c g}(G)=0.8$.

Observation 2.5.

1. If S is a DCgEP-set, then $S^{0} \supset S$ is also an DCgEP-set.
2. If S is a minimal DCgEP-set, then $S^{0} \subset S$ is not a DCgEP- set.
3. In T_{τ}, every DCgEP-set contains at least one pendent vertex.
4. For any FG $G(\tau, \omega), e_{d c g}(G) \leq E_{d c g}(G)$.
5. The complement of an DCgEP-set need not be a DCgEP-set (See Figure 2).

Figure 2
Example 2.6. In the figure (2), the set $S=\left\{b_{1}, b_{4}, b_{5}, b_{6}\right\}$ is DCgEP-set, but the complement of S is $\left\{b_{2}, b_{3}\right\}$ which is not a DCgEP-set.

Observation 2.7.

1. $\quad e_{d c g}\left(K_{\tau}\right) \leq 2,|\tau *| \geq 3$.
2. $\quad e_{d c g}\left(S_{\tau}\right) \leq 2,|\tau *| \geq 3$.

Volume 13, No. 2, 2022, p. 3346-3352
https://publishoa.com
ISSN: 1309-3452

III Distance Closed g-Eccentric Dominating set in Fuzzy Graph

The distance closed g-eccentric dominating set and its number, as well as theorems relating to the number of distance closed g-eccentric dominating sets in FG are explored in this section.

Definition 3.1. A sub set $D \subseteq V(G)$ of a FG $G(\tau, \omega)$ is said to be a distance closed g-eccentric dominating set (DCgEDset) if

1. $<D>$ is distance closed and
2. $\quad D$ is g-eccentric dominating set (gED-set).

The DCgED-set of a FG $G(\tau, \omega)$ is described as minimal if there does not exists any DCgED-set $S^{0} \subset S$ in G. The least cardinality taken over all the minimal DCgED-set is called the distance closed g-eccentric domination number and is denoted as $\gamma_{d c g e d}(G)$. The greatest cardinality taken over all the minimal DCgED-set is called the upper distance closed g-eccentric domination number and is typified by $\Gamma_{\text {dcged }}(G)$.

Example 3.2.

In the figure (1), the DCgED-sets are $D_{1}=\left\{b_{3}, b_{2}\right\}, D_{2}=\left\{b_{1}, b_{2}\right\}, D_{3}=\left\{b_{3}, b_{4}\right\}$ and $D_{4}=\left\{b_{1}, b_{4}\right\}$. All the sets D_{1}, D_{2}, D_{3} and D_{4} are minimal DC-set and g-ED-set. Hence, $\gamma_{\text {dcged }}(G)=0.6$ and $\Gamma_{\text {dcged }}(G)=0.8$.

Note 3.3. The minimum DCgED-set in a FG is denoted by $\gamma_{d c g e d}-$ set
Note 3.4. Every DCgED-set contains at least 2 vertices.

Observation 3.5.

1. Clearly, $0<\gamma_{\text {dcged }}(G) \leq p$.
2. If D is a minimal DCgED-set, then the subset $D^{0} \subset D$ is not a DCgED-set.
3. If D is a DCgED-set then the set $D^{\prime \prime} \supset D$ is also a DCgED-set.
4. For any connected FG $G(\tau, \omega), \gamma_{d c g e d}(G) \leq \Gamma_{\text {dcged }}(G)$.
5. If D is a DCgED-set then the complement $V-D$ is need not be a DCgED-set.

Example 3.6. In the figure (2), the set $S=\left\{b_{1}, b_{4}, b_{5}, b_{6}\right\}$ is DCgED-set, but the complement of S is $\left\{b_{2}, b_{3}\right\}$, not a DCgED-set.

Theorem 3.7. $\gamma_{\text {dcged }}\left(K_{\tau}\right) \leq 2,\left|\tau^{*}\right| \geq 3$.
Proof. Let $K_{\tau}=G(\tau, \omega)$ be a complete FG where $\left|\tau^{*}\right| \geq 3$, then $r_{g}(G)=d_{g}(G)=1$. By note 3.4 let $D=\{a, b\}$. Here a or b dominates other vertices and is also a g-eccentric point of other vertices. Since $e_{g}(a)=e_{g}(b)=1, D$ is a DC-set. Therefore, D is a DCgED-set. Hence, $\gamma_{d c g e d}\left(K_{\tau}\right) \leq 2$.

Theorem 3.8 $\gamma_{\text {dcged }}\left(K_{\tau_{1}, \tau_{2}}\right) \leq 3,\left|\tau_{1}^{*}\right|=1$ and $\left|\tau_{2}^{*}\right|=n, n \geq 3$.
Proof. Let $K_{\tau_{1}, \tau_{2}}=G(\tau, \omega)$ be a star FG where $\left|\tau_{1}^{*}\right|=1$, and $\left|\tau_{2}^{*}\right|=n, n \geq 3$. Let $D=\{a, b, c\}$. Here a be a g-central vertex such that $d_{s}(a)=p$ in G. Clearly $r_{g}(G)=1$ and $d_{g}(G)=2$ and also a dominates all vertices in $V-D$ and every point of $V-D$ has a g-EP in D. Here any two non adjacent vertices b, c of eccentricity 2 together with a will form a DCgED-set. Hence, $\gamma_{d c g e d}\left(K_{\tau_{1}, \tau_{2}}\right) \leq 3$.

Theorem 3.9 $\gamma_{\text {dcged }}\left(K_{\tau_{1}, \tau_{2}}\right) \leq 4,\left|\tau_{1}^{*}\right|=m$ and $\left|\tau_{2}^{*}\right|=n$ and $m, n \geq 3$.

Volume 13, No. 2, 2022, p. 3346-3352
https://publishoa.com
ISSN: 1309-3452
Proof. Let $G(\tau, \omega)=\left(K_{\tau_{1}, \tau_{2}}\right)$ be a complete bipartite FG where $\left|\tau_{1}^{*}\right|=m$ and $\left|\tau_{2}^{*}\right|=n$ and $m, n \geq 3$ and $\tau=\tau_{1} \cup$ τ_{2} such that each element $\left|\tau_{1}^{*}\right|$ is adjacent to each element of $\left|\tau_{2}^{*}\right|$. Here every vertices of $G(\tau, \omega)$ has g-eccentricity equal to two with $r_{g}(G)=d_{g}(G)=2$. Let $D=\{a, b, f, g\}, a, f \in m$ and $b, g \in n, u$ dominates all the vertices of n and it is g-eccentricity of $m-\{u\}$, similarly b dominates all the vertices of m and it is the g-eccentric vertex of $n-\{b\}$. Hence, D is a minimum DCgED-set and hence, $\gamma_{d c g e d}\left(K_{\tau_{1}, \tau_{2}}\right) \leq 4$.

Note 3.10.

1. If $m=n=1$, then $\gamma_{\text {dcged }}\left(K_{\tau_{1}, \tau_{2}}\right) \leq 2$.
2. If $m=n=2$, then $\gamma_{\text {dcged }}\left(K_{\tau_{1}, \tau_{2}}\right) \leq 3$.
3. If $m=1, n=2$ or $m=2, n=1$, then $\gamma_{\text {dcged }}\left(K_{\tau_{1}, \tau_{2}}\right) \leq 3$.

Theorem 3.11. $\gamma_{\text {dcged }}\left(W_{\tau}\right) \leq 4,\left|\tau^{*}\right| \geq 4$.
Proof. Let $G(\tau, \omega)=W_{\tau},\left|\tau^{*}\right| \geq 4$. Let $D=\{a, b, f, c\}$ where a, b and f are any three adjacent non g-central vertices and c is the g-central vertex. Clearly, $r_{g}(G)=1$ and $d_{g}(g)=2$. Hence, D is the DCgED-set. Therefore, $\gamma_{\text {dcged }}\left(W_{\tau}\right) \leq 4$.

IV Bounds for Distance Closed g-eccentric domination number of Fuzzy graph.

Bounds on the distance closed g-eccentric domination number are examined in this section.
Theorem 4.1. Let $K_{\tau},\left|\tau^{*}\right|=n, n$ is even, and $G(\tau, \omega)$ be a FG obtained from complete FG K_{τ} by deleting edges of a linear factor, then $\gamma_{d c g e d}(G)=p$.

Proof. Let D be a $\gamma_{\text {dcged }}$-set. We know that $\gamma_{\text {dcged }}(G) \leq p$. If $\gamma_{\text {dcged }}(G)=p$,then $\gamma_{\text {dcged }}(G)<p$. This implies that $\exists a \in D$ such that $e_{g}(a /<D>)<e_{g}(a / G)$. Therefore, D is not a DC-set which is a contradiction to our assumption. Hence, $\gamma_{\text {dcged }}(G)=p$.

Theorem 4.2. If $G(\tau, \omega)$ be a self centered FG with a dominating edge which is not in a triangle, then $\gamma_{\text {dcged }}(G) \leq 4$.
Proof. Let $a b \in E(G)$ be a dominating edge of a $\operatorname{FG} G(\tau, \omega)$ which is not in a triangle and let $c a, b f \in E(G)$, then $D=\{a, b, c, f\}$ is a $\gamma_{\text {dcged }}$-set. Hence, $\gamma_{\text {dcged }}(G) \leq 4$.

Theorem 4.3. Let $G(\tau, \omega)$ be a self centered FG then $\gamma_{\text {dcged }}(G) \leq 1+2 \delta_{s}(G)$.
Proof. Let $b \in V(G)$ such that $d_{s}(b)=\delta_{s}(G)$. Let $\{b\} \cup N_{s}(b)$ is a gED-set. Consider $f \in N s(b)$ such that f has no g-eccentric vertex in $N_{s}(b)$. Then f has g-eccentric vertex g in $N_{2}(b)$. Let $S \subseteq N_{2}(b)$ such that vertices in $N_{s}(b)$ have their g-eccentric vertices in D. Thus $D=\{v\} \cup N_{s}(b) \cup S$ form a DCgED- set. Hence, $\gamma_{d c g e d}(G) \leq 1+\delta_{s}(G)+$ $\delta_{s}(G)=1+2 \delta_{s}(G)$.

Theorem 4.4. Let $G(\tau, \omega)$ be FG with $r_{g}(G)>2$. Then $\gamma_{d c g e d}(G) \leq p-\Delta_{s}(G)+2$.
Proof. Let $a \in V(G)$ such that $d_{g}(a)=\Delta_{s}(G)$. Since $r_{g}(G)>2$, vertices in $N_{s}(a)$ have their g-eccentric vertices in $V-N_{s}(a)$ only. Hence, $V-N_{s}(a)$ is a g-ED-set of $G(\tau, \omega)$. Consider, $N_{s}(a)$, if $N_{s}(a)$ is complete, $\left(V-N_{s}(a)\right) \cup$ $\{b\}$, where $b \in N_{s}(a)$ and degree ≥ 2 is a DCgED- set. If $N_{s}(a)$ is not complete, let $f, g \in N_{s}(a)$ such that f and g are not adjacent in $N_{s}(a)$. Then $\left(V-N_{s}(a)\right) \cup\{f, g\}$ is a DCgED-set. Hence, $\gamma_{\text {dcged }}(G) \leq p-\Delta_{s}(G)+2$.

Observation 4.5.

1. A vertex subset D of a $\operatorname{FG} G(\tau, \omega)$ is a DCgED-set if and only if

Volume 13, No. 2, 2022, p. 3346-3352
https://publishoa.com
ISSN: 1309-3452
(i) $\quad e_{g}(a /<D>) \geq e_{g}(a / G)$ for $a \in D$.
(ii) Every node with g-eccentricity at most $d_{g}(G)-1$ is a cut vertex, where $d_{g}(G)$ is the diameter of G.
2. A FG with $\gamma_{\text {dcged }}(G)=p$ is called a 0 -distance closed g-eccentric dominating FG.
3. $\quad \gamma_{\text {dcged }}(G) \leq 2 \mathrm{iff} G(\tau, \omega)$ is complete.
4. If $G(\tau, \omega) \neq K_{\tau}$, then $\gamma_{\text {dcged }}(G) \geq 3$.

Theorem 4.6. In a FG $G(\tau, \omega), r_{g}(G)=1, d_{g}(G)=2$ and $\gamma_{\text {ged }}(G) \leq 2$, then $\gamma_{d c g e d}(G) \leq 3$.
Proof. Given in a FG $G(\tau, \omega), r_{g}(G)=1, d_{g}(G)=2$ and $\gamma_{g e d}(G) \leq 2$. Let $D=\{f, g\}$ be a g-ED set, $\gamma_{\text {ged }}(G) \leq$ $2, E_{1}=\left\{b \in V(G) e_{g}(b)=1\right\}$ and $E_{2}=\left\{b \in V(G), e_{g}(b)=2\right\}$.

Case (i): Since, $r_{g}(G) \neq g_{g}(G), e_{g}(f)=e_{g}(g)=1$, is not possible.
Case(ii): $e_{g}(f)=1, e_{g}(g)=2$. In this case, f is g-eccentric to all other vertices of E_{2}. Let $c \in E_{2}, c$ is not adjacent to b. Let $D=\{f, g, c\}$ is a $\gamma_{d c g e d}$-set. Hence, $\gamma_{\text {dcged }}(G) \leq 3$.

Case(iii): $e_{g}(f)=e_{g}(g)=2$. All the other vertices of E_{2} are adjacent to either f or b. If there is a vertex $h \in E_{2}$ such that it is adjacent to both f and g then f, g are not g-eccentric to h. Hence D is not a $\gamma_{g e d}$-set, which is a contradiction. Therefore, there is no h in E_{2} which is adjacent to both f, g.

Sub Case (i): f and g are adjacent in $G(\tau, \omega)$. Take $D=\{a, f, g\}$ where $e_{g}(a)=1$, then D is a $\gamma_{\text {dcged }}$-set. Hence, $\gamma_{\text {dcged }}(G) \leq 3$.

Sub Case (ii): f and g are not adjacent in $G(\tau, \omega)$. In this case take $D=\{f, g, h\}$, where $e_{g}(h)=2$, then D is a $\gamma_{\text {dcged }}{ }^{-}$ set. Hence, $\gamma_{\text {dcged }}(G) \leq 3$. Thus we see that, a FG with radius one and diameter 2 , then $\gamma_{\text {dcged }}(G) \leq 3$ if $\gamma_{\text {ged }}(G) \leq$ 2.

Corollary 4.7.

1. If $r_{g}(G)=1$ and $G(\tau, \omega)$ has a pendent vertex, then $\gamma_{\text {dcged }}(G) \leq 3$.

Theorem 4.8. There is no $\operatorname{FG} G(\tau, \omega)$ such that both G and \bar{G} are 0-DCgED-graphs.
Proof. Since all the 0 -distance closed dominating FG $G(\tau, \omega)$ are with $d_{g}(G) \geq 3$ and there is no FG for which both G and \bar{G} are with $d_{g}(G) \geq 3$, we have the result.

Observation 4.9.

1. If $G=\overline{K_{\tau}}+K_{1}+K_{1}+\overline{K_{\tau}},|\tau *|=2$, then $\gamma(G) \leq 2, \gamma_{\text {ged }}(G) \leq 4, \gamma_{\text {dcl }}(G) \leq 4, \gamma_{\text {dcged }}(G) \leq 4$.
2. If $G=K_{\tau}+K_{1}+K_{1}+K_{\tau},\left|\tau^{*}\right| \geq 2$, then $\gamma(G) \leq 2, \gamma_{\text {ged }}(G) \leq 2, \gamma_{d c l}(G) \leq 4, \gamma_{d c g e d}(G) \leq 4$.

Theorem 4.10. For a bi central fuzzy tree T_{τ} with $r_{g}\left(T_{\tau}\right)=2$, then $\gamma_{\text {dcged }}\left(T_{\tau}\right) \leq 4$.
Proof. All the four vertices of a bi central path form a DCgED- set. Hence the theorem follows.
Observation 4.11. For a bi central fuzzy tree T_{τ},

1. $\quad \gamma_{\text {dcged }}\left(T_{\tau}\right) \leq \gamma_{\text {ged }}\left(T_{\tau}\right)+1$, if there exists atleast one peripheral vertex with support vertex $u, d_{g}(u) \leq 2$.

Volume 13, No. 2, 2022, p. 3346-3352
https://publishoa.com
ISSN: 1309-3452
2. $\quad \gamma_{\text {dcged }}\left(T_{\tau}\right)=\gamma_{\text {ged }}\left(T_{\tau}\right)$, if strong degree of every support vertex is greater than two.

Observation 4.12. For a unicentral fuzzy tree T_{τ},

1. $\quad \gamma_{\text {dcged }}\left(T_{\tau}\right) \leq \gamma_{\text {ged }}\left(T_{\tau}\right)+2$, if there exists atleast one peripheral vertex with support vertex $u, d_{g}(u) \leq 2$.
2. $\quad \gamma_{\text {dcged }}\left(T_{\tau}\right)=\gamma_{\text {ged }}\left(T_{\tau}\right)$, if strong degree of every support vertex is greater than two.

References

[1] Harary, F.,Graph Theory, 1 - 284, Addition - Wesley Publishing Company Reading, Mass (1992).
[2] M. Bhanumathi and Sudha Senthil, Distance Closed Eccentric Domination Number of a Graph, Elixir dis. Math. Volume 101 (2016), 44033 - 44037.
[3] T.N. Janakiraman, P.J.A. Alphonse and V. Sangeetha, Distance closed domination in Graph, International journal of Engineering science, Advanced Computing and Bio Technology, Volume 1, No. 3 (2010), 109 - 117.
[4] T.N. Janakiraman, M. Bhanumathi and S. Muthumani, Eccentric domination in Graphs, International journal of Engineering Science, Advanced Computing and Bio-Techonology,Volume. 1 No. 2 (Apr-June 2010), 55 - 70 .
[5] Linda.J.P and M.S.Sunitha, On g-eccentric nodes g-boundary nodes and interior nodes of a fuzzy graph, International Journal of science and Application, Vol.2, No. 2 (May 2012), 697 - 707.
[6] Mohamed Ismayil and S. Muthupandiyan, g-Eccentric Domination in Fuzzy graphs, our Heritage(ISSN:0474-9030), Vol 68, Issue 4 (Jan2020), 191-200.
[7] A. Rosenfeld, Fuzzy graphs, $77-95$ In: L. A. Zadeh., K. S.Fu and M. Shimura, Eds, I, Academic Press, New York (1975).
[8] Sunitha, M. S., and Sunil Mathew. "Fuzzy graph theory: a survey." Annals of Pure and Applied mathematics 4.1 (2013): 92-110.

