Volume 13, No. 2, 2022, p. 3294-3299

https://publishoa.com ISSN: 1309-3452

General Position Problem of Middle, Splitting and Shadow Graph of Path, Cycle and Star

R. Prabha¹, Sabreen Nazia G.

¹Department of Mathematics Ethiraj College for Women, Chennai – 8

e-mail: prabha75@gmail.com e-mail: naziasabreen@gmail.com

Received 2022 March 25; Revised 2022 April 28; Accepted 2022 May 15.

Abstract

For a given graph G, the general position problem is to find the *general position number* of G which is the maximum number of vertices of G such that no three vertices lie on a common geodesic and is denoted by gp(G). In this paper, the *general position number* for Middle, Splitting and Shadow graph of path, cycle and star are computed.

AMS Subject Classification: 05C12

Keywords: General position problem, Middle graph, Splitting Graph, Shadow graph

1 Introduction

A set $S \subseteq V(G)$ is called a general position set of G if S contains no three vertices of G that lie on a common geodesic. The general position number of G is the cardinality of the maximum general position set of G and is denoted by gp(G). The classical no-three-in-line problem was first introduced by Dudeney [1] and the general position problem was first introduced in [4] motivated by the General Position Subset Selection Problem in Discrete Geometry [3, 8] which is a problem to find a largest subset of point in general position. The general position problem was also proven to be NP-complete in [4]. In this paper, we compute the gp-number of Middle, Splitting and Shadow graph of Path, Cycle and Star.

2 Preliminaries

In this paper, we use simple connected graphs. The shortest path between any two vertices u and v of a graph G is known as *geodesic* or *isometric path*. A general position set is a set $S \subseteq V(G)$ such that no three vertices of S lie on a common isometric path in G. A *max-gp set* of G is a general position set of maximum cardinality and this cardinality is called the *gp-number* of G and is denoted by gp(G). In [4], it is proved that $gp(P_n) = 2$ for $n \ge 2$ and $gp(C_3) = 3$, $gp(C_4) = 2$ and $gp(C_n) = 3$ for $n \ge 5$.

3 General Position Number of Middle Graph of P_n , C_n and $K_{1,n}$

Definition 3.1 (Middle Graph) The *Middle graph* of a connected graph G is denoted by M(G) and is a graph whose vertex set is $V(G) \cup E(G)$ and any two vertices in V[M(G)] are adjacent if

- (i) They are adjacent edges of G or
- (ii) One is a vertex of G and the other is an edge incident with it.

Theorem 3.2 Let $M(P_n)$ be the Middle graph of a path P_n , $n \ge 2$. Then, $gp[M(P_n)] = n$.

Proof. Let $v_1, v_2, ... v_n$ and $u_1, u_2, ... u_{n-1}$ be the vertices of $M(P_n)$ corresponding to the vertices and edges of P_n respectively.

Volume 13, No. 2, 2022, p. 3294-3299

https://publishoa.com

ISSN: 1309-3452

Figure 4.1 Middle graph of path P₅

Consider the set $S = \{v_1, v_2, ... v_n\}$. Clearly, this set is a general position set of $M(P_n)$. Hence, $gp[M(P_n)] \ge n$. If T is any general position set of $M(P_n)$ such that $T \cap S \ne \emptyset$ then $|T \cap \{u_1, u_2, ... u_{n-1}\}| \le 1$. If $u_i \in T$, $1 \le i \le n-1$, then obviously either $T \cap \{v_1, v_2, ... v_i\} = \emptyset$ or $T \cap \{v_{i+1}, v_{i+2}, ... v_n\} = \emptyset$. Hence, $gp[M(P_n)] \le n$. This completes the proof.

Theorem 3.3 Let $M(C_n)$ be the Middle graph of a cycle C_n , $n \ge 3$. Then, $gp[M(C_n)] = n$.

Proof. Let $v_1, v_2, ... v_n$ and $u_1, u_2, ... u_n$ be the vertices of $M(C_n)$ corresponding to the vertices and edges of C_n respectively. Consider the set $S = \{v_1, v_2, ... v_n\}$. Hence, $gp[M(C_n)] \ge n$ follows from the fact that S is a general position set.

Figure 4.2 Middle graph of cycle C₅

If T is any general position set of $M(C_n)$ then $|T \cap \{u_1, u_2, ... u_n\}| \le 3$, since $gp(C_n) = 3$ for $n \ge 5$. Further we observe that if $u_i \in T$, then either $v_i \notin T$ or $v_{i+1} \notin T$, $1 \le i \le n$. Hence, $gp[M(C_n)] \le n$, which completes the proof.

Theorem 3.4 Let $M(K_{1,n})$ be the Middle graph of a star $K_{1,n}$, $n \ge 2$. Then, $gp[M(K_{1,n})] = n + 1$.

Proof. Let $v, v_1, v_2, ... v_n$ and $u_1, u_2, ... u_n$ be the vertices of $M(K_{1,n})$ corresponding to the vertices and edges of $K_{1,n}$ respectively.

Figure 4.3 Middle graph of star $K_{1.4}$

Consider the set $S = \{v, v_1, v_2, ... v_n\}$. It follows that the set S is a general position set of $M(K_{1,n})$. Hence, $gp[M(K_{1,n})] \ge n+1$. Observe that no more vertices can be added to S since each u_i lies in $(v-v_i)$ and (v_i-v_{i+1}) geodesic, $1 \le i \le n$. Hence, $gp[M(K_{1,n})] = n+1$, which completes the proof.

Volume 13, No. 2, 2022, p. 3294-3299

https://publishoa.com ISSN: 1309-3452

4 General Position Number of Splitting Graph of P_n , C_n and $K_{1,n}$

Definition 4.1 (Splitting Graph) The *Splitting graph* of a connected graph G is obtained by adding a new vertex u_i for each vertex $v_i \in V(G)$ and joining u_i to all $v_i \in V(G)$ that are adjacent to v_i . It is denoted by S(G).

Theorem 4.2 Let $S(P_n)$ be the Splitting graph of a path $P_n, n \ge 3$. Then, $gp[S(P_n)] = 4$.

Proof. Let $v_1, v_2, ... v_n$ and $u_1, u_2, ... u_n$ be the vertices of $S(P_n)$ corresponding to the vertices of P_n and the newly added vertices respectively.

Figure 4.4 Splitting graph of path P₅

For n=3, $\{v_1,v_3,u_1,u_3\}$ is the required general position set. Now, let $n\geq 4$. Consider the set $S=\{u_1,u_2,u_3,u_4\}$. We observe that S is a general position set of $S(P_n)$. Hence, $gp[S(P_n)]\geq 4$. Consider the three isometric paths $\mathcal{P}_1=v_1-v_2-\cdots v_n$, $\mathcal{P}_2=u_1-v_2-u_3-v_4\cdots -v_n$ if n is odd/even and $\mathcal{P}_3=v_1-u_2-v_3-u_4\cdots v_n/\mathcal{P}_3=v_1-u_2-v_3-u_4\cdots v_n/\mathcal{P}_3=v_1-u_2-v_3-u_4\cdots v_n$ if n is odd/even in $S(P_n)$. Let T be any general position set of $S(P_n)$. Suppose |T|>4, then obviously at least three vertices of T will lie on any one of the isometric paths \mathcal{P}_1 , \mathcal{P}_2 or \mathcal{P}_3 , which is a contradiction since $gp(P_n)=2$, $n\geq 2$. Hence, $gp[S(P_n)]\leq 4$. This completes the proof.

Theorem 4.3 Let $S(C_n)$ be the Splitting graph of a cycle C_n , $n \ge 3$. Then, $gp[S(C_n)] = n$.

Proof. Let $v_1, v_2, ... v_n$ and $u_1, u_2, ... u_n$ be the vertices of $S(C_n)$ corresponding to the vertices of C_n and the newly added vertices respectively. Consider the set $S = \{u_1, u_2, ... u_n\}$. Clearly, this set is a general position set of $S(C_n)$. Hence, $gp[S(C_n)] \ge n$. Let T be any general position set of $S(C_n)$ then $|T \cap \{v_1, v_2, ... v_n\}| \le 3$, since $gp(C_n) = 3$ for $n \ge 5$. Further we observe that if $v_i \in T$, then either $u_i \notin T$ or $u_{i+1} \notin T$, $1 \le i \le n$. Hence, $gp[S(C_n)] \le n$, which completes the proof.

Figure 4.5 Splitting graph of cycle C₅

Theorem 4.4 Let $S(K_{1,n})$ be the Splitting graph of a star $K_{1,n}$, $n \ge 2$. Then, $gp[S(K_{1,n})] = 2n$.

Proof. Let $v, v_1, v_2, ... v_n$ and $u, u_1, u_2, ... u_n$ be the vertices of $S(K_{1,n})$ corresponding to the vertices of $K_{1,n}$ and the newly added vertices respectively.

Volume 13, No. 2, 2022, p. 3294-3299

https://publishoa.com ISSN: 1309-3452

U₁ U₂ U₃ U₄ V₄

Figure 4.6 Splitting graph of star $K_{1,4}$

Consider the set $S = \{v_1, v_2, ... v_n, u_1, u_2, ... u_n\}$. This set is a general position set of $S(K_{1,n})$. Hence, $gp[S(K_{1,n})] \ge 2n$. Consider the isometric paths $\mathcal{P}_i = u_i - v - v_i - u$, $1 \le i \le n$ in $S(K_{1,n})$. Let T be any general position set of $S(K_{1,n})$. Suppose |T| > 2n, then at least three vertices of T will lie on any one of the isometric paths \mathcal{P}_i , which is a contradiction. Hence, $gp[S(K_{1,n})] \le 2n$. This completes the proof.

5 General Position Number of Shadow Graph of P_n , C_n and $K_{1,n}$

Definition 5.1 (Shadow Graph) The Shadow graph of a connected graph G is constructed from G by taking two copies of G namely G and G' and by joining each vertex v in G to the neighbors of the corresponding vertex u in G'. It is denoted by $D_2(G)$

Theorem 5.2 Let $D_2(P_n)$ be the Shadow graph of a path P_n , $n \ge 3$. Then, $gp[D_2(P_n)] = 4$.

Proof. Let $v_1, v_2, ... v_n$ and $u_1, u_2, ... u_n$ be the vertices of $D_2(P_n)$ corresponding to the vertices of P_n and the newly added vertices respectively.

Figure 4.7 Shadow graph of path P₅

Consider the set $S = \{v_1, v_n, u_1, u_n\}$. We can clearly observe that S is a general position set of $D_2(P_n)$. Hence, $gp[D_2(P_n)] \geq 4$. Consider the isometric paths $\mathcal{P}_1 = v_1 - v_2 - \cdots v_n$, $\mathcal{P}_2 = u_1 - u_2 - \cdots u_n$ in $D_2(P_n)$. It can be observed that $|S \cap \mathcal{P}_1| = 2$ and $|S \cap \mathcal{P}_2| = 2$. Let T be any general position set of $D_2(P_n)$. Suppose, |T| > 4, then $|T \cap \mathcal{P}_1| > 2$ and $|T \cap \mathcal{P}_2| > 2$, which is a contradiction. Hence, $gp[D_2(P_n)] \leq 4$, which completes the proof.

Theorem 5.3 Let $D_2(C_n)$ be the Shadow graph of a cycle C_n . Then, $gp[D_2(C_3)] = 3$, $gp[D_2(C_4)] = 4$ and $gp[D_2(C_n)] = 6$ for $n \ge 5$.

Proof. Let $v_1, v_2, ... v_n$ and $u_1, u_2, ... u_n$ be the vertices of $D_2(C_n)$ corresponding to the vertices of C_n and the newly added vertices respectively. For n=3,4, the proof is obvious. Consider the case when $n \ge 5$. Let $S=\{v_1, v_3, v_{n-1}, u_{1,u_3}, u_{n-1}\}$. This set is a general position set of $D_2(C_n)$. Hence, $gp[D_2(C_n)] \ge 6$. Consider the isometric cycles $C_1 = \{v_1, v_2, ... v_n\}$ and $C_2 = \{u_1, u_2, ... u_n\}$ in $D_2(C_n)$. Let T be an arbitrary general position set of $D_2(C_n)$. Suppose |T| > 6, then obviously at least three vertices of T will lie on any one of the isometric paths in C_1 or C_2 , which is a contradiction. Hence, $gp[D_2(C_n)] \le 6$. This completes the proof.

Volume 13, No. 2, 2022, p. 3294-3299

https://publishoa.com

ISSN: 1309-3452

Figure 4.8 Shadow graph of cycle C_5

Theorem 5.4 Let $D_2(K_{1,n})$ be the Shadow graph of a star $K_{1,n}$, $n \ge 2$. Then, $gp[D_2(K_{1,n})] = 2n$.

Proof. Let $v, v_1, v_2, ... v_n$ and $u, u_1, u_2, ... u_n$ be the vertices of $D_2(K_{1,n})$ corresponding to the vertices of $K_{1,n}$ and the newly added vertices respectively.

Figure 4.9 Shadow graph of star $K_{1.4}$

Consider the set $S = \{v_1, v_2, ... v_n, u_1, u_2, ... u_n\}$. Clearly, this set is a general position set of $D_2(K_{1,n})$. Hence, $gp[D_2(K_{1,n})] \ge 2n$. Let $T \subseteq V[D_2(K_{1,n})]$. Suppose |T| > 2n, then obviously either $v \in T$ or $u \in T$, in which case $|T \cap S| \le 1$. Hence, $gp[D_2(K_{1,n})] \le 2n$. This completes the proof.

References

- 1. H. E. Dudeney, Amusements in Mathematics, Nelson, Edinburgh, 1917.
- 2. S. L. Fitzpatrick, *The isometric path number of the Cartesian product of paths*, Congr. Numer. 137 (1999) 109 119.
- 3. V. Ferose, I. Kanj, A. Niedermeier, *Finding points in general position*, International Journal of Computational Geometry and Applications, 27(4) (2017), 277 296.
- 4. P. Manuel, S. Klavžar, *Graph Theory general position problem*, Bulletin of the Australian Mathematical Society, 98(2) (2017), 177 187.
- 5. P. Manuel and S. Klavžar, *The graph Theory general position problem on some interconnection networks*, Fund. Inform, (2018) 163 pp. 339 350.
- A. Misiak, Z. Stepien, A. Szymaskiewicz, L. Szymaskiewicz, M. Zwierzchowski, *A note on the no-three-in-line problem on torus*, Discrete Math. 339 (2016) 217 –221.

Volume 13, No. 2, 2022, p. 3294-3299

https://publishoa.com ISSN: 1309-3452

- 6. J. –J. Pan. G. J. Chang, *Isometric path numbers of graphs*, Discretre Math. 306 (2006) 2091 2096.
- 7. M. Payne, D. R. Wood, *On the general position subset selection problem*, SIAM J. Discrete Math, 27 (2013) 1727 1733.
- 8. Por, D. R. Wood, *No-Three-in-Line-3D*, Algorithmica 47 (2007) 481 488.
- 9. Thenmozhi, R. Prabha, *Power domination of Middle graph of path, cycle and star*, International Journal of Pure and Applied Mathematics, 114 (2017), 13 19.