Geometric Mean Cordial Labeling of Helm Graph

V Annamma ${ }^{\mathbf{1}}$, Jawahar Nisha M I ${ }^{\mathbf{2} \square}$
${ }^{1}$ Assistant Professor of Mathematics, L.N. Government College, Ponneri
${ }^{2}$ Assistant Professor of Mathematics, J.B.A.S College for Women, Teynampet, Chennai
Email: nishabdul@gmail.com

Received 2022 March 25; Revised 2022 April 28; Accepted 2022 May 15.

ABSTRACT

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. Let $f: V(G) \rightarrow\{0,1,2\}$ be a mapping. Assign the label $\lceil\sqrt{f(u) f(v)}\rceil$ for each edge $u v . f$ is called a geometric mean cordial $(G M C)$ labeling if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$, where the number of vertices and edges labeled with x for $x \in\{0,1,2\}$ is denoted by $v_{f}(x)$ and $e_{f}(x)$ respectively. A graph with a GMC labeling is called a GMC graph. In this research article we investigate the GMC labeling of Helm graph H_{n} and also establish the GMC labeling of some graph operations on Helm graph such as Fusion and Duplication. We also prove that the graph operation Switching on Helm graph does not admit GMC labeling.

Keywords: Duplication, Fusion, Geometric Mean Cordial Labeling, Helm graph, Switching
AMS Subject Classification: 05C78

INTRODUCTION

In this research article we consider only simple, finite, undirected and connected graphs. An assignment of numbers which are integers to the edges or vertices, or both with some conditions is called graph labeling. Let G be a graph. Let $V(G)$ denote vertex set of G and $E(G)$ denote edge set of G. Let $f: V(G) \rightarrow\{0,1,2\}$ be a mapping. Define the induced edge labeling $f^{*}: E(G) \rightarrow\{0,1,2\}$ by $\lceil\sqrt{f(u) f(v)}\rceil \forall$ edge $u v$. f is called a geometric mean cordial (GMC) labeling if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$, for all $0 \leq i, j \leq 2$. Here $v_{f}(x)$ represents the number of vertices labeled with x and $e_{f}(x)$ represents the number of edges labeled with x where $x \in\{0,1,2\}$. A graph that admits GMC labeling is a GMC graph [4]. In this research article we discuss the GMC labeling of the graph Helm H_{n} and also establish the GMC labeling of few graph operations on Helm graph such as Fusion and Duplication. We also investigate that the graph operation Switching on Helm graph does not admit GMC labeling.

PRELIMINARIES

Definition 2.1. [5]

The wheel W_{n} is the graph obtained by combining K_{1} and C_{n} i.e. $W_{n}=K_{1}+C_{n}$. The apex of the wheel W_{n} is the vertex corresponding to K_{1}. The vertices on the rim of the wheel W_{n} are the vertices of C_{n} and the edges on the rim of the wheel W_{n} are the edges of C_{n}.

Definition 2.2. [3]
The Helm graph H_{n} is constructed by joining a pendant edge to each vertex on the rim of a wheel W_{n}.
Definition 2.3. [4]
The set of all vertices which are adjacent to the vertex v in G is called open neighbourhood of the vertex v in G.
Definition 2.4. [2]

The fusion of any two vertices u and v of G as a single vertex w, gives a new graph G^{\prime} in such a way that the edges incident with either u or v in G is now incident with w in G^{\prime}.

Definition 2.5. [4]
The duplication of any vertex u of G by another new vertex w gives a graph G^{\prime} such that the neighbourhood of w is the neighbourhood of u.

Definition 2.6. [2]
A switching of any vertex v in a graph G is constructed by removing all the edges which are incident with v and joining the vertex v with the vertices v_{i}, where the vertices v_{i} are not adjacent to v in G.

RESULTS

Theorem 3.1: The graph helm H_{n} is a GMC graph if $n \geq 5$.
Proof: Let Helm H_{n} be a graph whose vertex set $V\left(H_{n}\right)=\left\{u, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and its edge set $E\left(H_{n}\right)=$ $\left\{u u_{i}, u_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{n} u_{1}\right\}$. Let l denote the number of vertices and k denote the number of edges. Then $l=2 n+1$ and $k=3 n$.

Define $f: V(G) \rightarrow\{0,1,2\}$ as shown below:

Case (i): $\boldsymbol{n} \equiv \mathbf{0}(\bmod 3)$

Let $n=3 t, t>1$

$$
f(u)=1
$$

$f\left(u_{i}\right)=\left\{\begin{array}{ll}0, & 1 \leq i \leq t-1 \\ 2, & t \leq i \leq 2 t-1 \\ 1, & 2 t \leq i \leq 3 t\end{array} \quad\right.$ and $f\left(v_{i}\right)=\left\{\begin{array}{rrr}0, & 1 \leq i \leq t+1 \\ 2, & t+2 \leq i \leq 2 t+1 \\ 1, & 2 t+2 \leq i \leq 3 t\end{array}\right.$
Then $v_{f}(0)=v_{f}(2)=2 t, v_{f}(1)=2 t+1$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)=3 t$.
Case (ii): $n \equiv 1(\bmod 3)$
Let $n=3 t+1, t>1$

$$
f(u)=1
$$

$f\left(u_{i}\right)=\left\{\begin{array}{lc}0, & 1 \leq i \leq t-1 \\ 2, & t \leq i \leq 2 t-1 \\ 1, & 2 t \leq i \leq 3 t+1\end{array} \quad\right.$ and $f\left(v_{i}\right)=\left\{\begin{array}{cr}0, & 1 \leq i \leq t+2 \\ 2, & t+3 \leq i \leq 2 t+3 \\ 1, & 2 t+4 \leq i \leq 3 t+1\end{array}\right.$
Then $v_{f}(0)=v_{f}(1)=v_{f}(2)=2 t+1$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)=3 t+1$.
Case (iii): $n \equiv 2(\bmod 3)$
Let $n=3 t+2, t \geq 1$

$$
f(u)=1
$$

$f\left(u_{i}\right)=\left\{\begin{array}{ccc}0, & 1 \leq i \leq t \\ 2, & t+1 \leq i \leq 2 t \\ 1, & 2 t+1 \leq i \leq 3 t+2\end{array}\right.$ and $f\left(v_{i}\right)=\left\{\begin{array}{cc}0, & 1 \leq i \leq t+1 \\ 2, & t+2 \leq i \leq 2 t+3 \\ 1, & 2 t+4 \leq i \leq 3 t+2\end{array}\right.$
Then $v_{f}(0)=2 t+1, v_{f}(1)=v_{f}(2)=2 t+2$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)=3 t+2$.

Volume 13, No. 2, 2022, p. 3265-3271
https://publishoa.com
ISSN: 1309-3452
From all the above three cases, we see that $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0,1,2\}$.
Hence f is a GMC labeling.
Illustration 3.1: GMC Labeling of graph Helm H_{52}

Figure 1. GMC Labeling of Helm H_{52}.
Here $v_{f}(0)=v_{f}(2)=v_{f}(1)=35$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)=52$.
Therefore $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0,1,2\}$.
Note: H_{3} and H_{4} does not admit GMC labeling.
Theorem 3.2: The graph formed by fusing any two pendent vertices of Helm graph H_{n} is a GMC graph if $n \geq 5$ and $n \neq 6$.

Proof: Let G_{f} represents the graph formed by fusing any two pendent vertices v_{i} and v_{j} as one vertex u^{\prime} in a Helm graph H_{n}. Then its vertex set $V\left(G_{f}\right)=\left\{u, u^{\prime}, u_{i}, v_{j}: 1 \leq i \leq n, 1 \leq j \leq n-2\right\}$ and its edge set $E\left(G_{f}\right)=\left\{u u_{i}, u_{j} v_{j}: 1 \leq i \leq\right.$ $n, 1 \leq j \leq n-2\} \cup\left\{u_{n-1} u^{\prime}, u_{n} u^{\prime}\right\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{n} u_{1}\right\}$.

Let $\left|V\left(G_{f}\right)\right|=l$ and $\left|E\left(G_{f}\right)\right|=k$. Then $l=2 n, k=3 n$.
Define $f: V(G) \rightarrow\{0,1,2\}$ as shown below:
Case (i): $\boldsymbol{n} \equiv \mathbf{0}(\bmod 3)$
Let $n=3 t, t>2$

$$
f(u)=1, f\left(u^{\prime}\right)=1
$$

$f\left(u_{i}\right)=\left\{\begin{array}{ll}0, & 1 \leq i \leq t-1 \\ 2, & t \leq i \leq 2 t-1 \\ 1, & 2 t \leq i \leq 3 t\end{array} \quad\right.$ and $f\left(v_{i}\right)=\left\{\begin{array}{cr}0, & 1 \leq i \leq t+1 \\ 2, \quad t+2 \leq i \leq 2 t+1 \\ 1, & 2 t+2 \leq i \leq 3 t-2\end{array}\right.$
Then $v_{f}(0)=v_{f}(1)=v_{f}(2)=2 t$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)=3 t$.
Case (ii): $n \equiv \mathbf{1}(\bmod 3)$

Volume 13, No. 2, 2022, p. 3265-3271
https://publishoa.com
ISSN: 1309-3452

Let $n=3 t+1, t>1$

$$
f(u)=1, f\left(u^{\prime}\right)=2
$$

$f\left(u_{i}\right)=\left\{\begin{array}{ll}0, & 1 \leq i \leq t-1 \\ 2, & t \leq i \leq 2 t-1 \\ 1, & 2 t \leq i \leq 3 t+1\end{array} \quad\right.$ and $f\left(v_{i}\right)=\left\{\begin{array}{cc}0, & 1 \leq i \leq t+2 \\ 2, & t+3 \leq i \leq 2 t+1 \\ 1, & 2 t+2 \leq i \leq 3 t-1\end{array}\right.$
Then $v_{f}(0)=2 t, v_{f}(1)=v_{f}(2)=2 t+1$ and $e_{f}(0)=e_{f}(1)=3 t+1, e_{f}(2)=3 t$.
Case (iii): $n \equiv 2(\bmod 3)$
Let $n=3 t+2, t \geq 1$

$$
f(u)=1, f\left(u^{\prime}\right)=2
$$

$f\left(u_{i}\right)=\left\{\begin{array}{rcc}0, & 1 \leq i \leq t \\ 2, & t+1 \leq i \leq 2 t \\ 1, & 2 t+1 \leq i \leq 3 t+2\end{array} \quad\right.$ and $f\left(v_{i}\right)=\left\{\begin{array}{cc}0, & 1 \leq i \leq t+1 \\ 2, & t+2 \leq i \leq 2 t+1 \\ 1, & 2 t+2 \leq i \leq 3 t\end{array}\right.$
Then $v_{f}(0)=v_{f}(2)=2 t+1, v_{f}(1)=2 t+2$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)=3 t+2$.
From all the above three cases, we see that $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0,1,2\}$.
Hence f is a GMC labeling.
Illustration 3.2: Fusion of vertices v_{29} and v_{30} of H_{30} and its GMC labeling.

Figure 2. Fusion of vertices v_{29} and v_{30} of H_{30} and its GMC labeling.
Here $v_{f}(0)=v_{f}(2)=v_{f}(1)=20$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)=30$.
Therefore $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0,1,2\}$.
Theorem 3.3: The graph formed by duplication of any arbitrary pendent vertex v_{i} of graph Helm H_{n} is a GMC graph if $n \geq 5$.

Proof: Let G_{d} represents the graph formed by duplication of any arbitrary pendent vertex v_{i} of a graph Helm H_{n}. Then its vertex set $V\left(G_{d}\right)=\left\{u, u_{i}, v_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i}^{\prime}: i=1\right.$ or 2 or $\left.\ldots n\right\}$ and its edge set $E\left(G_{d}\right)=\left\{u u_{i}, u_{i} v_{i}: 1 \leq i \leq\right.$ $n\} \cup\left\{u_{i} v_{i}^{\prime}: i=1\right.$ or 2 or $\left.\ldots n\right\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{n} u_{1}\right\}$. Let $\left|V\left(G_{f}\right)\right|=l$ and $\left|E\left(G_{f}\right)\right|=k$. Then $l=2 n+$

Volume 13, No. 2, 2022, p. 3265-3271
https://publishoa.com
ISSN: 1309-3452
$2, k=3 n+1$.
Define $f: V(G) \rightarrow\{0,1,2\}$ as shown below:
Case $(\mathbf{i}): \boldsymbol{n} \equiv \mathbf{0}(\bmod 3)$
Let $n=3 t, t>1$
$f(u)=1, f\left(v_{i}^{\prime}\right)=0$ for $i=1$ or 2 or $\ldots n$
$f\left(u_{i}\right)=\left\{\begin{array}{rlr}0, & 1 \leq i \leq t-1 \\ 2, & t \leq i \leq 2 t-1 \\ 1, & 2 t \leq i \leq 3 t\end{array} \quad\right.$ and $f\left(v_{i}\right)=\left\{\begin{aligned} 0, & 1 \leq i \leq t+1 \\ 2, & t+2 \leq i \leq 2 t+1 \\ 1, & 2 t+2 \leq i \leq 3 t\end{aligned}\right.$
Then $v_{f}(0)=v_{f}(1)=2 t+1, v_{f}(2)=2 t$ and $e_{f}(0)=3 t+1, e_{f}(1)=e_{f}(2)=3 t$.
Case (ii): $n \equiv 1(\bmod 3)$
Let $n=3 t+1, t>1$
$f(u)=1, f\left(v_{i}^{\prime}\right)=0$ for $i=1$ or 2 or $\ldots n$
$f\left(u_{i}\right)=\left\{\begin{array}{ll}0, & 1 \leq i \leq t-1 \\ 2, & t \leq i \leq 2 t-1 \\ 1, & 2 t \leq i \leq 3 t+1\end{array} \quad\right.$ and $f\left(v_{i}\right)=\left\{\begin{array}{cr}0, & 1 \leq i \leq t+2 \\ 2, & t+3 \leq i \leq 2 t+3 \\ 1, & 2 t+4 \leq i \leq 3 t+1\end{array}\right.$
Then $v_{f}(0)=2 t+2, v_{f}(1)=v_{f}(2)=2 t+1$ and $e_{f}(0)=3 t+2, e_{f}(1)=e_{f}(2)=3 t+1$.
Case (iii): $n \equiv 2(\bmod 3)$
Let $n=3 t+2, t \geq 1$
$f(u)=1, f\left(v_{i}^{\prime}\right)=0$ for $i=1$ or 2 or $\ldots n$
$f\left(u_{i}\right)=\left\{\begin{array}{rrrr}0, & 1 & \leq i \leq t \\ 2, & t+1 & \leq i \leq 2 t \\ 1, & 2 t+1 \leq i \leq 3 t+2\end{array} \quad\right.$ and $f\left(v_{i}\right)=\left\{\begin{array}{rrrl}0, & 1 & \leq i \leq t+1 \\ 2, & t+2 \leq i \leq 2 t+3 \\ 1, & 2 t+4 \leq i \leq 3 t+2\end{array}\right.$
Then $v_{f}(0)=v_{f}(1)=v_{f}(2)=2 t+2$ and $e_{f}(0)=3 t+3, e_{f}(1)=e_{f}(2)=3 t+2$.
From all the above three cases, we see that $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0,1,2\}$.
Hence f is a GMC labeling.
Illustration 3.3: GMC Labeling of graph formed by duplication of vertex v_{1} of graph Helm H_{30}.

Figure 3. Duplication of vertex v_{1} of H_{30} and its GMC labeling.

Volume 13, No. 2, 2022, p. 3265-3271
https://publishoa.com
ISSN: 1309-3452
Here $v_{f}(0)=v_{f}(1)=21, v_{f}(2)=20$ and $e_{f}(0)=31, e_{f}(1)=e_{f}(2)=30$.
Therefore $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0,1,2\}$.
Theorem 3.4: The graph formed by switching any arbitrary vertex of graph Helm H_{n} does not admit GMC labeling.
Proof: Let G_{s} represents the graph formed by switching the vertex u (apex) of graph Helm H_{n}. Then its vertex set $V\left(G_{s}\right)=$ $\left\{u, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and its edge set $E\left(G_{s}\right)=\left\{u v_{i}, u_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{n} u_{1}\right\}$. Let $\left|V\left(G_{f}\right)\right|=l$ and $\left|E\left(G_{f}\right)\right|=k$. Then $l=2 n+1, k=3 n$.

Define $f: V(G) \rightarrow\{0,1,2\}$ as shown below:

Case $(\mathbf{i}): \mathbf{n} \equiv \mathbf{0}(\bmod 3)$

Let $n=3 t, t>1$

$$
f(u)=1
$$

$f\left(u_{i}\right)=\left\{\begin{array}{rrrr}0, & 1 & \leq i \leq t-1 \\ 2, & t & \leq i \leq 2 t \\ 1, & 2 t+1 & \leq i \leq 3 t\end{array} \quad\right.$ and $f\left(v_{i}\right)=\left\{\begin{array}{rrrr}0, & 1 \leq i \leq t+1 \\ 2, & t+2 \leq i \leq 2 t \\ 1, & 2 t+1 \leq i \leq 3 t\end{array}\right.$
Then $v_{f}(0)=v_{f}(2)=2 t, v_{f}(1)=2 t+1$ and $e_{f}(0)=3 t+2, e_{f}(1)=3 t-1$
and $e_{f}(2)=3 t-1$.
Case (ii): $\boldsymbol{n} \equiv \mathbf{1}(\bmod 3)$
Let $n=3 t+1, t>1$

$$
f(u)=1
$$

$f\left(u_{i}\right)=\left\{\begin{array}{cc}0, & 1 \leq i \leq t-1 \\ 2, & t \leq i \leq 2 t+1 \\ 1, & 2 t+2 \leq i \leq 3 t+1\end{array} \quad\right.$ and $f\left(v_{i}\right)=\left\{\begin{array}{cc}0, & 1 \leq i \leq t+2 \\ 2, & t+3 \leq i \leq 2 t+1 \\ 1, & 2 t+2 \leq i \leq 3 t+1\end{array}\right.$
Then $v_{f}(0)=v_{f}(1)=v_{f}(2)=2 t+1$ and $e_{f}(0)=3 t+4, e_{f}(1)=3 t-1$
and $e_{f}(2)=3 t$.
Case (iii): $n \equiv 2(\bmod 3)$
Let $n=3 t+2, t \geq 1$

$$
f(u)=1
$$

$f\left(u_{i}\right)=\left\{\begin{array}{ccc}0, & 1 \leq i \leq t \\ 2, & t+1 \leq i \leq 2 t+1 \\ 1, & 2 t+2 \leq i \leq 3 t+2\end{array}\right.$ and $f\left(v_{i}\right)=\left\{\begin{array}{cc}0, & 1 \leq i \leq t+1 \\ 2, & t+2 \leq i \leq 2 t+2 \\ 1, & 2 t+3 \leq i \leq 3 t+2\end{array}\right.$
Then $v_{f}(0)=2 t+1, v_{f}(1)=v_{f}(2)=2 t+2$ and $e_{f}(0)=e_{f}(2)=3 t+3, e_{f}(1)=3 t$.
From all the above three cases, we see that $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ but $\left|e_{f}(i)-e_{f}(j)\right| \nsubseteq 1$ for all $i, j \in\{0,1,2\}$.
Hence G_{s} does not admit GMC labeling.
Illustration 3.4: Switching of vertex u (apex) of graph Helm H_{16} does not admit GMC labeling.

Figure 4. Switching of apex vertex u of H_{16}.
Here $v_{f}(0)=v_{f}(1)=v_{f}(2)=11$ and $e_{f}(0)=19, e_{f}(1)=14, e_{f}(2)=15$.
Therefore $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \not \leq 1$ for all $i, j \in\{0,1,2\}$.

CONCLUSION

In this research article we investigated the GMC labeling of Helm graph H_{n} and also established the GMC labeling of some graph operations on Helm graph such as Fusion and Duplication. We also discussed that the operation Switching on graph Helm does not admit GMC labeling. Similar results on various graphs is an open area of research.

REFERENCES

[1] K. Chitra Lakshmi and K. Nagarajan (2017), Geometric mean cordial labeling of graphs, International Journal of Mathematics and Soft Computing, 75-87.
[2] A. Edward Samuel and S. Kalaivani (2018), Prime labeling to brush graphs, International Journal of Mathematics Trends and Technology, 259-262.
[3] S. Manimegala Devi, D. S. T. Ramesh and P. Srinivasan (2015), L (d, 2, 1) - labeling of helm graph, Global Journal of Mathematical Sciences: Theory and Practical, 45-52.
[4] S.K. Vaidya and N.J. Kothari (2014), Line gracefulness of some path related graphs, International Journal of Mathematics and Scientific Computing, 15-18.
[5] S. K. Vaidya and N.H. Shah (2013), Prime cordial labeling of some wheel related graphs, Malaya Journal of Matematik, 148-156.

