Volume 13, No. 2, 2022, p. 3234-3237 https://publishoa.com ISSN: 1309-3452

Upper Domatic Number of Certain Graphs

V. Annamma¹, Akthar Jahan H²

¹Department of Mathematics, L. N. Government College, Ponneri, University of Madras, Tamil Nadu, India ² Department of Mathematics, Justice Basheer Ahmed Sayeed College for Women, University of Madras, Chennai, Tamil Nadu, India, 600018 Email: haktharjahan@gmail.com

Received 2022 March 25; Revised 2022 April 28; Accepted 2022 May 15.

Abstract

Let G(V, E) be a graph with vertex set V(G) and edge set E(G). The maximum order of the partitions of the vertex set represented by $\{V_1, V_2, ..., V_k\}$, is called *upper domatic number* where each class of partition dominates one another (i.e.) V_i dominates V_j or V_j dominates V_i or both $(i \neq j)$. Upper domatic number is denoted by D(G). In this paper we determine the upper domatic number of certain graphs such as *double fan graph DF_n*, *friendship graph F_n* and *helm graph H_n*.

AMS Subject Classification: 05C62, 05C69

Key Words and Phrases: upper domatic number, double fan graph, friendship graph, helm graph.

1. Introduction

Cockayne and Hedetniemi [1] in 1977 defined the domatic number to be the maximum order of a partition of the vertices of a graph into dominating sets. The subset *D* of the vertex set *V* is called the dominating set, if every vertices in *V/D* is adjacent to atleast one vertex in *D*. The number of vertices of a minimum dominating set of a graph *G* is called the domination number of *G*, denoted by Y(G). Investigating the relation between the sets in a vertex partition, Teresa W. Haynes [5] introduced the *upper domatic number* D(G), equals the maximum order *k* of a vertex partition $\Pi =$ $\{V_1, V_2, ..., V_k\}$ such that for all i, *j*, $1 \le i < j \le k$, either $V_i \to V_j$ or $V_j \to V_i$ or both. A vertex partition Π meeting this condition is called an *upper domatic partition* and an *upper domatic partition* of order D(G) is called a D - partitionof *G*. The graph considered in this paper are simple, connected and undirected graph. Let G(V, E) be a graph for two disjoint set of vertices S_1 and S_2 , we say that S_1 dominates S_2 denoted by $S_1 \to S_2$. If every vertex in S_1 is adjacent to or dominated by every other vertex in S_2 . In this paper, we determine the *upper domatic number* of certain graphs such as *double fan graph* DF_n , *friendship graph* F_n and *helm graph* H_n .

2. Premilinaries

Definition 2.1[1]: *Dominating set* of graph G(V, E) is defined as the subset of the vertex set V(G) denoted by S such that every vertices of V(G) - S is adjacent to atleast one vertex of S.

Definition 2.2[5]: Upper domatic number D(G) which equals the maximum order k of a vertex partition $\{V, V_{2_i} \dots, V_k\}$ such that for every i, $j, 1 \le i < j \le k$, either V_i dominates V_i or V_i dominates V_i or both $(i \ne j)$.

Definition 2.3[4]: The *double fan graph* DF_n consists of two fan graphs that have a common path. (i.e.) $DF_n = P_n + K_2$

Definition 2.4[2]: The *Helm Graph* H_n is the graph obtained from a wheel graph by adjoining a pendant edge to each node of the cycle.

Definition 2.5[3]: The *Friendship Graph* F_n is a planar undirected graph constructed by joining n copies of the 3-cycle graph C_3 with a common vertex.

Volume 13, No. 2, 2022, p. 3234-3237 https://publishoa.com ISSN: 1309-3452

3. Main Results

Theorem 3.1:

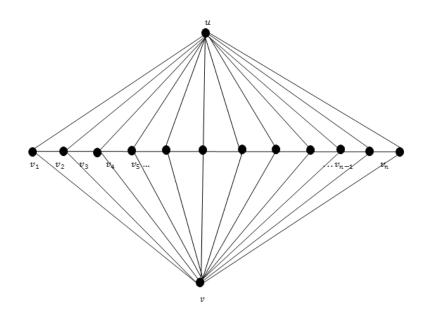
Upper domatic number of double fan graph DF_n for $n \ge 2$ is D(G) = 2.

Proof:

Let G(V, E) be a double fan graph and V be the vertex set defined as such that |V| = n + 2 and E be the Edge set defined as $E(G) = \{u \ v_i / 1 \le i \le n\} \cup \{v \ v_i / 1 \le n\} \cup \{$

Let us consider the partition of the vertex set V(G) as $S_1 = \{u, v\}$ and $S_2 = \{v_i / 1 \le i \le n\}$ then $V - S_1 = \{v_i / 1 \le i \le n\}$ and $V - S_2 = \{u, v\}$. Since S_1 is adjacent to all the vertices of $V - S_1$, we say that S_1 dominates S_2 , similarly S_2 is adjacent to all the vertices of $V - S_2$, we say that S_2 dominates S_1 . Therefore, we conclude that S_1 dominates S_2 and S_2 dominates S_1 (i.e.) $S_1 \rightarrow S_2 \rightarrow S_1$. Since there are only two partitions S_1 and S_2 of the vertex set V(G), the maximum order of the partitions is 2. Hence, upper domatic number of the double fan graph is 2.

Therefore, D(G) = 2.



Theorem 3.2:

Upper domatic number of helm graph DF_n for $n \ge 2$ is D(G) = 2.

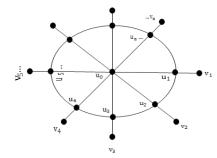
Proof:

Let G(V, E) be a helm graph of order n with the vertex set $V_{i}(G) = \{u_{0}, u_{1}, u_{2}, ..., u_{n}, v, v_{1}, v_{2}, v_{3}, ..., v_{n}\}$ such that |V| = 2n + 1 and the edge set $E(G) = \{u_{0} u_{i} / 1 \le i \le n\} \cup \{u_{i} v_{i} / 1 \le i \le n\} \cup \{u_{i} u_{i+1} / 1 \le i \le n - 1\} \cup \{u_{n} u_{1}\}$, such that |E| = 3n.

Let us consider the partitions set $S_1 = \{u_1, u_2, ..., u_n\}$ and $S_2 = \{u_0, v_1, v_2, ..., v_n\}$. All the vertices in the set S_1 is adjacent to atleast one vertex in the set S_2 , also vice versa. Therefore, we conclude that the set S_1 dominates the set S_2 and the set S_2 dominates the set $S_1 \rightarrow S_2 \rightarrow S_1$. Since there are only two partitions S_1 and S_2 of the vertex set V(G), the maximum order of the partitions is 2. Hence, the upper domatic number of the helm graph is 2.

Volume 13, No. 2, 2022, p. 3234-3237 https://publishoa.com ISSN: 1309-3452

Therefore, D(G) = 2.



Theorem 3.3:

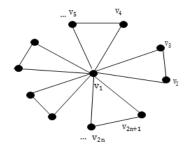
Upper domatic number of friendship graph F_n for $n \ge 2$ is D(G) = 2.

Proof:

Let G(V, E) be a friendship graph of order n with the vertex set with v_1 as the centre vertex and the edge set $E(G) = \{v_1, v_i / 2 \le i \le 2n+1\} \cup \{v_{2i}, v_{2i+1} / 1 \le i \le n\},$ such that |E| = 3n.

Let us consider the partitions set $S_1 = \{v_1\}$ and $S_2 = \{v_2, v_3, ..., v_{2n+1}\}$, Since v_1 is the centre vertex it is adjacent to all other vertices of the vertex set V(G) (i.e.) the vertex in the set S_1 is adjacent to all the vertices in the set S_2 . Hence, we conclude that the set S_1 dominates the set S_2 and the set S_2 dominates the set S_1 (i.e.) $S_1 \rightarrow S_2 \rightarrow S_1$, since there are only two partitions S_1 and S_2 of the vertex set V(G), the maximum order of the partitions is 2. Hence, upper domatic number of the friendship graph is 2.

Therefore, D(G) = 2



4. Conclusion:

In this paper we have deduced the upper domatic number of *double fan graph* DF_n , *friendship graph* F_n , *helm graph* H_n . To investigate the upper domatic number of similar graphs is an open area in research.

References:

[1] E.J. Cockayne, S.T. Hedetniemi, Towards a Theory of Domination in Graphs, Networks 7, (1977), 247–261.

Volume 13, No. 2, 2022, p. 3234-3237 https://publishoa.com ISSN: 1309-3452

- [2] A N Hayyu, Dafik, I M Tirta, R Adawiyah, R M Prihandini, On Resolving Domination Number of Helm Graph and Its Operation, Journal of Physics: Conference Series, (2020)
- [3] S Kurniawati, Slamin, Dafik, D A R Wardani, E R Albirri, On Resolving Domination Number of Friendship Graph and Its Operation, Journal of Physics: Conference Series, (2020)
- [4] A. H. Rokad, Product Cordial Labelling of Double Wheel of Double Fan Related Graphs, Kragujevac Journal of Mathematics, (2019), 7–13.
- [5] Teresa W. Haynes, Jason T. Hedetniemi, Stephen T. Hedetniemi, Alice McRae & Nicholas Phillips, The Upper Domatic Number of a Graph, AKCE International Journal of Graphs and Combinatorics, 17:1, (2020) 139-148.