Volume 13, No. 2, 2022, p. 3182-3187 https://publishoa.com ISSN: 1309-3452

On Intutionistic I – Open Sets In Intutionistic Topological Spaces

J. Arul Jesti¹, P. Suganya²

 ¹Assistant Professor, ²Research Scholar, Reg.No.19222212092015, Department of Mathematics, St. Mary's College(Autonomous),
(Affiliated to Manonmaniam Sundaranar University, Abishekapatti -627012, Tirunelveli) Thoothukudi-1,TamilNadu, India
¹aruljesti@gmail.com
²suganyaprince20@gmail.com

Received 2022 March 25; Revised 2022 April 28; Accepted 2022 May 15. Abstract

The purpose of this paper is to provide the notion of Intutionistic *i*-open sets in Intutionistic topological spaces and study the relation with some existing Intutionistic open sets. Additionally, we expounded some properties of Intutionistic *i*-open sets in Intutionistic topological spaces.

MSC 2010 : 54A05

Keywords Intutionistic *i*-open sets, Intutionistic *i*-closed sets, Intutionistic *i*-interior, Intutionistic *i*-closure, Intutionistic *i*-neighborhood

1. Introduction

The idea of intutionistic fuzzy sets was introduced by Atanassov[1]. Notion of membership and non membership were discovered by Coker [3] in intuitionistic fuzzy topological spaces, subsequently he modified the crisp sets in entire forms. Later, Coker [5] introduced the intuitionistic topological spaces using intuitionistic sets. This paper is an attempt to define the conception of intutionistic *i*-open sets in intutionistic topological spaces and some characterizations of intutionistic *i*-open sets are discussed. Besides, we relate intutionistic *i*-open sets with other existing intuitionistic open sets in intutionistic topological spaces.

2. Preliminaries

Definition 2.1 [2]. Let \mathcal{K} be a non-empty set. An intuitionistic set(IS for short) \mathcal{H} is an object having the form $\mathcal{H} = \langle \mathcal{K}, \mathcal{H}_1, \mathcal{H}_2 \rangle$ where $\mathcal{H}_1, \mathcal{H}_2$ are subsets of \mathcal{K} satisfying $\mathcal{H}_1 \cap \mathcal{H}_2 = \emptyset$. The set \mathcal{H}_1 is called the set of members of \mathcal{H} , while \mathcal{H}_2 is called set of non members of \mathcal{H} .

Definition 2.2 [2]: Let \mathcal{K} be a non-empty set and \mathcal{H} and \mathcal{G} are intuitionistic set in the form $\mathcal{H} = \langle \mathcal{K}, \mathcal{H}_1, \mathcal{H}_2 \rangle$, $\mathcal{G} = \langle \mathcal{K}, \mathcal{G}_1, \mathcal{G}_2 \rangle$ respectively. Then

1. $\mathcal{H} \subseteq \mathcal{G}$ iff $\mathcal{H}_1 \subseteq \mathcal{G}_1$ and $\mathcal{H}_2 \supseteq \mathcal{G}_2$

 $\begin{array}{ll} 2. \ \mathcal{H} = \mathcal{G} \ \mathrm{iff} \ \mathcal{H} \subseteq \mathcal{G} \ \mathrm{and} \ \mathcal{G} \subseteq \mathcal{H} \\ \\ 3. \ \mathcal{H}^{\mathcal{C}} = < \mathcal{K}, \ \mathcal{H}_2, \ \mathcal{H}_1 > & & \\ \mathcal{K}, \ \emptyset, \mathcal{K} >, \widetilde{\mathcal{K}} = < \mathcal{K}, \mathcal{K}, \ \emptyset > & & \\ \mathcal{K}, \ \mathcal{H}_1 \cup \mathcal{G}_1, \ \mathcal{H}_2 \cap \mathcal{G}_2 > & & \\ \end{array}$

6. $\mathcal{H} \cap \mathcal{G} = \langle \mathcal{K}, \mathcal{H}_1 \cap \mathcal{G}_1, \mathcal{H}_2 \cup \mathcal{G}_2 \rangle$.

Furthermore, let $\{A_{\alpha} | \alpha \epsilon \}$ be an arbitrary family of intuitionistic sets in \mathcal{K} , where $A_{\alpha} = \langle \mathcal{K}, \mathcal{H}_{\alpha}^{(1)}, \mathcal{H}_{\alpha}^{(2)} \rangle$. Then

(i)
$$\cap \mathcal{H}_{\alpha} = \langle \mathcal{K}, \cap \mathcal{H}_{\alpha}^{(1)}, \cup \mathcal{H}_{\alpha}^{(2)} \rangle \mathcal{K}$$

Volume 13, No. 2, 2022, p. 3182-3187 https://publishoa.com ISSN: 1309-3452

(ii) $\cup \mathcal{H}_{\alpha} = \langle \mathcal{K}, \cup \mathcal{H}_{\alpha}^{(1)}, \cap \mathcal{H}_{\alpha}^{(2)} \rangle$

Definition 2.3 [5]: An intuitionistic topology is (for short IT) on a non-empty set \mathcal{K} is a family τ of intuitionistic sets in \mathcal{K} satisfying following axioms.

1) $\widetilde{\emptyset}, \widetilde{\mathcal{K}} \in \tau$

2) $\mathcal{G}_1 \cap \mathcal{G}_2 \in \tau$, for any $\mathcal{G}_1, \mathcal{G}_2 \in \tau$

3) $\cup \mathcal{G}_{\alpha} \in \tau$ for any arbitrary family $\{\mathcal{G}_i : \mathcal{G}_{\alpha} / \alpha \in J\}$ where (\mathcal{K}, τ) is called an intuitionistic topological space and any intuitionistic set is called an intuitionistic open set (for short \mathcal{IOS}) in \mathcal{K} . The complement \mathcal{H}^c of an \mathcal{IOS} of \mathcal{H} is called an intuitionistic closed set (for short \mathcal{ICS}) in \mathcal{K} .

Definition 2.4 [5]: Let (\mathcal{K}, τ) be an intuitionistic topological space and $\mathcal{H} = \langle \mathcal{K}, \mathcal{H}_1, \mathcal{H}_2 \rangle$ be an *IS* in \mathcal{K} . Then the *I*-interior and *I*-closure of \mathcal{H} are defined by

 $\mathcal{I}int(\mathcal{H}) = \cup \{ \mathcal{G} : \mathcal{G} \text{ is an } \mathcal{I}OS \text{ in } \mathcal{K} \text{ and } \mathcal{G} \subseteq \mathcal{H} \}.$

 $\mathcal{I}cl(\mathcal{H}) = \cap \{\mathcal{S}: \mathcal{S} \text{ is an } \mathcal{I}CS \text{ in } \mathcal{K} \text{ and } \mathcal{H} \subseteq \mathcal{S}\}$

It can be shown that $\mathcal{I}cl(\mathcal{H})$ is an $\mathcal{I}CS$ and $\mathcal{I}int(\mathcal{H})$ is an $\mathcal{I}OS$ in \mathcal{K} and \mathcal{H} is an $\mathcal{I}CS$ in \mathcal{K} iff $\mathcal{I}cl(\mathcal{H}) = \mathcal{H}$ and \mathcal{H} is an $\mathcal{I}OS$ in \mathcal{K} iff $\mathcal{I}int(\mathcal{H}) = \mathcal{H}$.

Definition 2.5 [6]: Let (\mathcal{K}, τ) be an intutionistic topological space. An intuitionistic set \mathcal{H} of \mathcal{K} is said to be

Intuitionistic semi-open if $\mathcal{H} \subseteq \mathcal{I}cl(\mathcal{I}int(\mathcal{H}))$.

Intuitionistic pre-open if $\mathcal{H} \subseteq Jint(\mathcal{I}cl(\mathcal{H}))$.

Intuitionistic α -open if $\mathcal{H} \subseteq Jint(Jcl(Jint(\mathcal{H})))$.

Intuitionistic β -open if $\mathcal{H} \subseteq \mathcal{I}cl(\mathcal{I}int(\mathcal{I}cl(\mathcal{H})))$.

The family of all intuitionistic semi-open, intuitionistic pre-open, intuitionistic α -open and intuitionistic β -open sets of (\mathcal{K}, τ) are denoted by JSOS, J α OS, and J β OS respectively.

Definition 2.6 [8]: A subset \mathcal{M} of intuitionistic topological space (\mathcal{K}, τ) is called an intuitionistic w-closed set (briefly $\mathcal{I}_{\mathcal{W}}$ -closed) if $\mathcal{I}cl(\mathcal{M}) \subseteq \mathcal{F}$ whenever $\mathcal{M} \subseteq \mathcal{F}$ and \mathcal{F} is intuitionistic semi-open in \mathcal{K} .

Definition 2.7 [9]: A subset \mathcal{M} of intuitionistic topological space (\mathcal{K}, τ) is called an intuitionistic generalized-closed set (briefly $\mathcal{I}g$ -closed) if $\mathcal{I}cl(\mathcal{M}) \subseteq \mathcal{F}$ whenever $\mathcal{M} \subseteq \mathcal{F}$ and \mathcal{F} is \mathcal{I} -open in \mathcal{K} .

Definition 2.8 [2]: Let \mathcal{K} be a non empty set and $p \in \mathcal{K}$ a fixed element in \mathcal{K} . Then the intutionistic set $\tilde{p} = \langle \mathcal{K}, \{p\}, \{p\}^c \rangle$ is called intutionistic point and $\tilde{\tilde{p}} = \langle x, \emptyset, \{p\}^c \rangle$ is called intutionistic vanishing point.

Definition 2.9 [2]: Let $p \in \mathcal{K}$ and $\mathcal{H} = \langle \mathcal{K}, \mathcal{H}_1, \mathcal{H}_2 \rangle$ be an intutionistic set. Then

(i) $\tilde{p} \subseteq \mathcal{H}$ iff $\tilde{p} \in \mathcal{H}_1$

(*ii*) $\tilde{\tilde{p}} \subseteq \mathcal{H}$ iff $\tilde{\tilde{p}} \in \mathcal{H}_2$

3. Intutionistic i-open Sets

Definition 3.1: An intutionistic set \mathcal{D} of an Intutionistic topological space (\mathcal{K}, τ) is named as intutionistic *i*-open set (shortly $\mathcal{I}i$ -open set) if there exist an intutionistic open set $\mathcal{H} \neq \widetilde{\emptyset}$ and $\widetilde{\mathcal{K}}$ such that $\mathcal{D} \subseteq \mathcal{I}cl(\mathcal{D} \cap \mathcal{H})$. The complement of $\mathcal{I}i$ -open set is called $\mathcal{I}i$ -closed set. The set of all intutionistic *i*-open sets of (\mathcal{K}, τ) is denoted by $\mathcal{I}iO$.

Volume 13, No. 2, 2022, p. 3182-3187 https://publishoa.com ISSN: 1309-3452

Example 3.2. Let $\mathcal{K} = \{r, s, t\}$ with a family $\tau = \{\widetilde{\mathcal{K}}, \widetilde{\emptyset}, \mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3\}$ where $\mathcal{H}_1 = \langle \mathcal{K}, \{r\}, \{t\} \rangle$, $\mathcal{H}_2 = \langle \mathcal{K}, \{r, s\}, \emptyset \rangle$ and $\mathcal{H}_3 = \langle \mathcal{K}, \emptyset, \{r, t\} \rangle$. The Intutionistic *i*-open sets are all the intutionistic subsets of \mathcal{K} .

Theorem 3.3. An intutionistic set \mathcal{D} of an Intutionistic topological space (\mathcal{K}, τ) is an intutionistic *i*-closed set iff $Jint(\mathcal{D} \cup \mathcal{F}) \subseteq \mathcal{D}$ where \mathcal{F} is intutionistic closed set.

Proof: Let \mathcal{D} be an intutionistic *i*-closed set. Then, $\mathcal{D}^c = \mathcal{G}$ is intutionistic *i*-open. By the definition of intutionistic *i*-open there exists an intutionistic open set $\mathcal{H} \neq \tilde{\emptyset}$ and $\tilde{\mathcal{K}}$ such that $\mathcal{D}^c \subseteq \mathcal{I}cl(\mathcal{D}^c \cap \mathcal{H}) = (\mathcal{I}int(\mathcal{D} \cup \mathcal{H}^c))^c$ which implies $\mathcal{I}int(\mathcal{D} \cup \mathcal{H}^c) \subseteq \mathcal{D}$. Let $\mathcal{H}^c = \mathcal{F}$ where \mathcal{F} is intutionistic closed set. Then, $\mathcal{I}int(\mathcal{D} \cup \mathcal{F}) \subseteq \mathcal{D}$. Conversely, Let \mathcal{F} be intutionistic

closed set such that $Jint(\mathcal{D} \cup \mathcal{F}) \subseteq \mathcal{D}$. Then $\mathcal{F}^c = \mathcal{H}$ is intutionistic open set. $Jint(\mathcal{D} \cup \mathcal{F}) = (Jcl(\mathcal{D}^c \cap \mathcal{F}^c))^c \subseteq \mathcal{D}$ which implies $\mathcal{D}^c \subseteq Jcl(\mathcal{D}^c \cap \mathcal{H})$ which implies \mathcal{D}^c is intutionistic *i*-open. Hence, \mathcal{D} is intutionistic *i*-closed.

Theorem 3.4. Each intutionistic open set is intutionistic *i*-open set.

Proof : Assume \mathcal{H} be an intutionistic open set. Then $\mathcal{H} \subseteq \mathcal{I}cl(\mathcal{H} \cap \mathcal{H})$. Hence, \mathcal{H} is an

intutionistic *i*-open set.

Remark 3.5. The reverse implication is not true.

Example 3.6. Let $\mathcal{K} = \{m, n\}$ with a family $\tau = \{\widetilde{\mathcal{K}}, \widetilde{\emptyset}, \mathcal{R}_1, \mathcal{R}_2\}$ where $\mathcal{R}_1 = \langle \mathcal{K}, \{n\}, \{m\} \rangle$ and $\mathcal{R}_2 = \langle \mathcal{K}, \emptyset, \{m\} \rangle$.

Corollary 3.7. Each intutionistic closed set is intutionistic *i*-closed set.

Theorem 3.8. Every intutionistic regular open set is intutionistic *i*-open set.

Proof: Let \mathcal{U} be an intutionistic regular open set. Since every intutionistic regular open is intutionistic open and by theorem 3.4., \mathcal{U} is intutionistic *i*-open set.

Remark 3.9. The reverse implication is not true.

Example 3.10. Consider example 3.6. Here $\langle \mathcal{K}, \{n\}, \{m\} \rangle$ is intutionistic *i*-open but not an intutionistic regular open set.

Corollary 3.11. If \mathcal{U} is intutionistic regular closed set, then \mathcal{U} is intutionistic *i*-closed set.

Theorem 3.12: Every intutionistic semi open set is intutionistic *i*-open set.

Proof : Take \mathcal{B} be an intutionistic semi open set. Then there exists an intutionistic open set \mathcal{G} such that $\mathcal{G} \subseteq \mathcal{B} \subseteq \mathcal{I}cl(\mathcal{G})$. Since $\mathcal{G} \subseteq \mathcal{B}, \mathcal{G} \cap \mathcal{B} = \mathcal{G}$. Therefore, $\mathcal{B} \subseteq \mathcal{I}cl(\mathcal{G} \cap \mathcal{B})$. Hence, \mathcal{B} is intutionistic *i*-open.

Remark 3.13. The reverse implication is not true.

Example 3.14. Let $\mathcal{K} = \{\kappa, \lambda\}$ with $\tau = \{\widetilde{\mathcal{K}}, \widetilde{\emptyset}, \mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3\}$ where $\mathcal{V}_1 = \langle \mathcal{K}, \emptyset, \{\lambda\} \rangle$, $V_2 = \langle \mathcal{K}, \{\kappa\}, \{\lambda\} \rangle$ and $V_3 = \langle \mathcal{K}, \{\kappa\}, \emptyset \rangle$. Here $\langle \mathcal{K}, \emptyset, \{\kappa\} \rangle$ is intutionistic *i*-open set but, not an intutionistic semi-open set.

Theorem 3.15. An intutionistic set S is intutionistic *i*-open set whenever S is intutionistic alpha-open set.

Proof : Let \mathcal{H} be an intutionistic alpha open set. Since every intutionistic alpha open set is intutionistic semi open and by theorem 3.12., \mathcal{H} is intutionistic *i*-open set.

Remark 3.16. The reverse implication is not true.

Example 3.17. Consider example 3.14. Here, $\langle \mathcal{K}, \phi, \phi \rangle$ is intutionistic *i*-open but not an intutionistic α -open set.

Volume 13, No. 2, 2022, p. 3182-3187 https://publishoa.com ISSN: 1309-3452

Corollary 3.18. Every intutionistic *i*-closed set is intutionistic α -closed set.

Theorem 3.19. Union of two intutionistic *i*-open sets are intutionistic *i*-open set.

Proof: Let \mathcal{G} and \mathcal{H} be two intutionistic *i*-open sets. Then there exist an intutionistic open set

 \mathcal{C} such that $\mathcal{G} \subseteq Jcl(\mathcal{G} \cap \mathcal{C})$ and $\mathcal{H} \subseteq Jcl(\mathcal{H} \cap \mathcal{C})$. Now $\mathcal{G} \cup \mathcal{H} \subseteq Jcl(\mathcal{G} \cap \mathcal{C}) \cup Jcl(\mathcal{H} \cap \mathcal{C})$

 $= \mathcal{I}cl((\mathcal{G} \cap \mathcal{C}) \cup (\mathcal{H} \cap \mathcal{C})) = Icl((\mathcal{G} \cup \mathcal{H}) \cap \mathcal{G}).$ Therefore, $\mathcal{G} \cup \mathcal{H}$ is intutionistic *i*-open set.

Corollary 3.20. Intersection of two intutionistic *i*-closed sets are intutionistic *i*-closed set.

Proof: Let \mathcal{F} and \mathcal{L} be two intutionistic *i*-closed sets. Then, \mathcal{F}^c and \mathcal{L}^c are intutionistic *i*-

open sets. By the above theorem, $\mathcal{F}^c \cup \mathcal{L}^c = (\mathcal{F} \cap \mathcal{L})^c$ is intutionistic *i*-open. Hence, $\mathcal{F} \cap \mathcal{L}$ is intutionistic *i*-closed set.

Remark 3.21. Intersection of intutionistic *i*-open sets are not intutionistic *i*-open.

Example 3.22. Let $\mathcal{K} = \{17, 19, 21\}$ with $\tau = \{\widetilde{\mathcal{K}}, \widetilde{\emptyset}, \mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3\}$ where $\mathcal{V}_1 = \langle \mathcal{K}, \{17\}, \{19\} \rangle$, $\mathcal{V}_2 = \langle \mathcal{K}, \emptyset, \{19\} \rangle$, $\mathcal{V}_3 = \langle \mathcal{K}, \{17, 21\}, \emptyset \rangle$ and $\mathcal{V}_4 = \langle \mathcal{K}, \{17\}, \emptyset \rangle$. Here, $\langle \mathcal{K}, \{19\}, \emptyset \rangle$ and $\langle \mathcal{K}, \{19, 21\}, \{17\} \rangle$ are intutionistic iopen sets but, their intersection $\langle \mathcal{K}, \{19\}, \{17\} \rangle$ which is not intutionistic i-open.

Remark 3.23. Union of intutionistic *i*-closed sets are not intutionistic *i*-closed sets.

Example 3.24. Consider example 3.22. $\langle \mathcal{K}, \{17\}, \{19,21\} \rangle$ and $\langle \mathcal{K}, \emptyset, \{19\} \rangle$ are intutionistic *i*-closed sets but, their union $\langle \mathcal{K}, \{17\}, \{19\} \rangle$ which is not intutionistic *i*-closed set.

Remark 3.25. Intutionistic *i*-open and Intutionistic pre-open are independent.

Remark 3.26. Intutionistic *i*-open and Intutionistic β -open are independent.

Example 3.27. Let $\mathcal{K} = \{\zeta, \eta\}$ with $\tau = \{\widetilde{\mathcal{K}}, \widetilde{\emptyset}, \mathcal{R}_1, \mathcal{R}_2\}$ where $\mathcal{R}_1 = \langle \mathcal{K}, \zeta, \emptyset \rangle$ and $\mathcal{R}_2 = \langle \mathcal{K}, \emptyset, \emptyset \rangle$. Here, $\langle \mathcal{K}, \eta, \emptyset \rangle$ is both intutionistic pre-open and intutionistic β -open but not an intutionistic *i*-open set. Also, $\langle \mathcal{K}, \emptyset, \zeta \rangle$ is intutionistic *i*-open but not intutionistic pre-open and intutionistic β -open sets. Hence, intutionistic pre-open and intutionistic *i*-open are independent.

Remark 3.26. Intutionistic *i*-open and Intutionistic *g*-open are independent.

Remark 3.27. Intutionistic *i*-open and Intutionistic *w*-open are independent.

Example 3.28. Let $\mathcal{K} = \{\Gamma, \Delta\}$ with $\tau = \{\tilde{\mathcal{K}}, \tilde{\emptyset}, S_1, S_2\}$ where $S_1 = \langle \mathcal{K}, \emptyset, \emptyset \rangle$ and $S_2 = \langle \mathcal{K}, \Delta, \emptyset \rangle$. Here, $\langle \mathcal{K}, \Gamma, \emptyset \rangle$ is both intutionistic *g*-open and intutionistic *w*-open but not an intutionistic *i*-open set. Also, $\langle \mathcal{K}, \emptyset, \Delta \rangle$ is intutionistic *i*-open but not intutionistic *g*-open and intutionistic *w*-open sets. Hence, intutionistic *g*-open and intutionistic *i*-open and intutionistic *i*-open and intutionistic *i*-open sets. Hence, intutionistic *g*-open and intutionistic *i*-open are independent.

Definition 3.29. An intutionistic set \mathcal{D} of an Intutionistic topological space (\mathcal{K}, τ) is named as intutionistic $i\alpha$ -open set (shortly $\mathcal{I}i\alpha$ -open set) if there exist an intutionistic alpha open set $\mathcal{H} \neq \tilde{\emptyset}$ and $\tilde{\mathcal{K}}$ such that $\mathcal{D} \subseteq \mathcal{I}cl(\mathcal{D} \cap \mathcal{H})$.

Definition 3.30. An intutionistic set \mathcal{G} of an Intutionistic topological space (\mathcal{K}, τ) is called as intutionistic *is*-open set if there exist an intutionistic semi open set $\mathcal{M} \neq \tilde{\emptyset}$ and $\tilde{\mathcal{K}}$ such that $\mathcal{G} \subseteq \mathcal{I}cl(\mathcal{G} \cap \mathcal{M})$.

Definition 3.31. An intutionistic set \mathcal{M} of an Intutionistic topological space (\mathcal{K} , τ) is said to

be an intutionistic ip-open set if there exist an intutionistic pre-open set $\mathcal{P} \neq \widetilde{\emptyset}$ and $\widetilde{\mathcal{K}}$ such that $\mathcal{M} \subseteq Jcl(\mathcal{M} \cap \mathcal{P})$.

Theorem 3.32. Every intutionistic *i*-open set is intutionistic $i\alpha$ -open set(respectively intutionistic *is*-open set, intutionistic *ip*-open set).

Volume 13, No. 2, 2022, p. 3182-3187 https://publishoa.com ISSN: 1309-3452

Proof: Let \mathcal{R} be an intutionistic *i*-open set. Then there exist an intutionistic open set $\mathcal{M} \neq \tilde{\emptyset}$ and $\tilde{\mathcal{K}}$ such that $\mathcal{R} \subseteq Jcl(\mathcal{R} \cap \mathcal{M})$. Since every intutionistic open set is intutionistic alpha open set(respectively intutionistic semi open, intutionistic pre-open), \mathcal{R} is intutionistic i α -open set(respectively intutionistic *is*-open set, intutionistic *ip*-open set).

Remark 3.33. The reverse implication is false.

Example 3.34. Let $\mathcal{K} = \{4,8\}$ with a family $\tau = \{\widetilde{\mathcal{K}}, \widetilde{\emptyset}, \mathcal{L}_1, \mathcal{L}_2\}$ where $\mathcal{L}_1 = \langle \mathcal{K}, \{8\}, \{4\} \rangle$ and $\mathcal{L}_2 = \langle \mathcal{K}, \emptyset, \{4\} \rangle$. $\langle \mathcal{K}, \emptyset, \{8\} \rangle$ is intutionistic *i* α -open set but, not an intutionistic *i*-open set.

Example 3.35. Let $\mathcal{K} = \{e, f\}$ with a family $\tau = \{\widetilde{\mathcal{K}}, \widetilde{\emptyset}, \mathcal{T}_1, \mathcal{T}_2\}$ where $\mathcal{T}_1 = \langle \mathcal{K}, \emptyset, \emptyset \rangle$ and $\mathcal{T}_2 = \langle \mathcal{K}, \{f\}, \emptyset \rangle$. $\langle \mathcal{K}, \{e\}, \emptyset \rangle$ is intutionistic *ip*-open set but, not an intutionistic *i*-open set.

Example 3.36. Let $\mathcal{K} = \{\mathbb{k}, \mathbb{I}\}$ with a family $\tau = \{\widetilde{\mathcal{K}}, \widetilde{\emptyset}, S_1, S_2, S_3\}$ where $S_1 = \langle \mathcal{K}, \emptyset, \mathbb{I} \rangle$, $S_1 = \langle \mathcal{K}, \{\mathbb{k}\}, \{\mathbb{I}\} \rangle$ and $S_3 = \langle \mathcal{K}, \{\mathbb{k}\}, \emptyset \rangle$. $\langle \mathcal{K}, \{\mathbb{I}\}, \{\mathbb{k}\} \rangle$ is intutionistic *is*-open set but, not an intutionistic *i*-open set.

Theorem 3.37. If A is intutionistic *i*-open and B is intutionistic open(respectively intutionistic α -open, intutionistic semi open, intutionistic regular open) then $A \cup B$ is intutionistic *i*-open.

Proof: Obvious

4. Some characterizations on Intutionistic i-open sets

Definition 4.1. Let (\mathcal{K}, τ) be an Intutionistic topological space and let $\mathcal{H} \subseteq \mathcal{K}$. The intutionistic *i*-interior of \mathcal{H} is defined as the union of all intutionistic *i*-open sets contained in \mathcal{K} and is denoted by $\mathcal{I}int_i(\mathcal{H})$. It is clear that $\mathcal{I}int_i(\mathcal{H})$ is the largest intutionistic *i*-open set, for any subset \mathcal{H} of \mathcal{K} .

Proposition 4.2. Let (\mathcal{K}, τ) be an ITS and let $\mathcal{H} \subseteq \mathcal{G} \subseteq \mathcal{K}$. Then

1. $Jint_i(\mathcal{H}) \subseteq \mathcal{H}$.

2. $Jint_i(\mathcal{H}) \subseteq Jint_i(\mathcal{G})$

3. \mathcal{H} is intutionistic *i*-open if and only if $\mathcal{H} = Jint_i(\mathcal{H})$

4. $Jint_i(\mathcal{H} \cup \mathcal{G}) = Jint_i(\mathcal{H}) \cup Jint_i(\mathcal{G})$

5. $Jint_i(\mathcal{H} \cap \mathcal{G}) = Jint_i(\mathcal{H}) \cap Jint_i(\mathcal{G})$

Definition 4.3. Let (\mathcal{K}, τ) be an ITS and let $\mathcal{H} \subseteq \mathcal{K}$. The intutionistic *i*-closure of \mathcal{H} is defined

as the intersection of all intutionistic *i*-closed sets in \mathcal{K} containing \mathcal{H} , and is denoted by $\mathcal{I}cl_i(\mathcal{H})$. It is clear that $\mathcal{I}cl_i(\mathcal{H})$ is the smallest intutionistic *i*-closed set for any subset \mathcal{H} of \mathcal{K} .

Proposition 4.4. Let (\mathcal{K}, τ) be an ITS and let $\mathcal{H} \subseteq \mathcal{G} \subseteq \mathcal{K}$. Then

1. $\mathcal{H} \subseteq \mathcal{I}cl_i(\mathcal{H})$

2. $\mathcal{I}cl_i(\mathcal{H}) \subseteq \mathcal{I}cl_i(\mathcal{G})$

3. \mathcal{H} is intutionistic i-closed if and only if $\mathcal{H} = \mathcal{I}cl_i(\mathcal{H})$

4. $\mathcal{I}cl_i(\mathcal{H} \cup \mathcal{G}) = \mathcal{I}cl_i(\mathcal{H}) \cup \mathcal{I}cl_i(\mathcal{G})$

5. $\mathcal{I}cl_i(\mathcal{H} \cap \mathcal{G}) = \mathcal{I}cl_i(\mathcal{H}) \cap \mathcal{I}cl_i(\mathcal{G})$

Proposition 4.5. Let \mathcal{G} be any subset in a Intutionistic topological space (\mathcal{K}, τ) , then the listed characteristics are true.

(i) $Jint_i(\mathcal{U} - \mathcal{G}) = \mathcal{U} - (Jcl_i(\mathcal{G}))$

Volume 13, No. 2, 2022, p. 3182-3187 https://publishoa.com ISSN: 1309-3452

(ii) $\mathcal{I}cl_i((\mathcal{U} - \mathcal{G}) = \mathcal{U} - (\mathcal{I}int_i(\mathcal{G})))$

Proof: (i) By definition, $\mathcal{I}cl_i(\mathcal{G}) = \cap \{\mathcal{B}: \mathcal{G} \subseteq \mathcal{B}, \mathcal{B} \text{ is an intutionistic } i \text{- closed set}\}$

 $U - \mathcal{I}cl_i(\mathcal{G}) = U - \cap \{\mathcal{B}: \mathcal{G} \subseteq \mathcal{B}, \mathcal{B} \text{ is an intutionistic } i\text{- closed set}\} = \cup \{\mathcal{U} - \mathcal{B}: \mathcal{G} \subseteq \mathcal{B}, \mathcal{B} \text{ is an intutionistic } i\text{- closed set}\} = \cup \{\mathcal{K}: \mathcal{K} \subseteq \mathcal{U} - \mathcal{G}, \mathcal{K} \text{ is an intutionistic } i\text{- open set}\} = \mathcal{I}int_i(\mathcal{U} - \mathcal{G})$

(ii) The proof is similar to (i)

Definition 4.6. A subset Z of an intutionistic topological space (\mathcal{K}, τ) is called an intutionistic *i*-neighbourhood of a point p of \mathcal{K} if there exists an intutionistic *i*-open set \mathcal{H} containing p such that $p \in \mathcal{H} \subset Z$.

Definition 4.7. Let (\mathcal{K}, τ) be an ITS, $p \in \mathcal{K}$ and let $Z \in \mathcal{IS}(\mathcal{K})$.

(i) Z is called an intutionistic *i*-neighbourhood of \tilde{p} if there exists an intutionistic *i*-open set

 \mathcal{H} such that $\tilde{p} \in \mathcal{H} \subset \mathbb{Z}$.

(*ii*) Z is called an intutionistic *i*-neighbourhood of \tilde{p} if there exists an intutionistic *i*-open set

 \mathcal{H} such that $\tilde{\tilde{p}} \in \mathcal{H} \subset \mathbb{Z}$.

We denote the set of all intutionistic *i*-neighborhood of \tilde{p} (respectively \tilde{p}) by $N_i(\tilde{p})$ (respectively $N_i(\tilde{p})$)

Theorem 4.8. Every intutionistic neighborhood \mathcal{M} of $\tilde{p}(\text{respectively } \tilde{\tilde{p}})$ is an intutionistic *i*-neighborhood of $\tilde{p}(\text{respectively } \tilde{\tilde{p}})$.

Proof: Let \mathcal{M} be an intutionistic neighborhood of point $p \in \mathcal{K}$. By definition of intutionistic

neighborhood, there exists an intutionistic open set \mathcal{R} such that $p \in \mathcal{R} \subset \mathcal{M}$. Since every intutionistic open is intutionistic *i*-open, \mathcal{M} is a $\mathcal{I}i$ -neighborhood of p.

References

- [1] K Atanassov, 1986 Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 pp 87-66
- [2] D Coker 1996 A note on intuitionistic sets and intuitionistic points Turkish J. Math. 20 pp 343-351
- [3] D Coker 1997 An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets And Systems 88 pp 81-89
- [4] D Coker On Neighborhood Structures in Intutionistic Topological Spaces, Mathematica Balkanica, New Series, Vol. 12, 1998, pp 284-293
- [5] D Coker 2000 An introduction to intuitionistic topological spaces Busefal 81 pp 51-56
- [6] Y. Gnanambal On generalized preregular closed sets in topological spaces. Indian J. Pure. Appl. Math., 28(3)(1997), 351-360.
- [7] A.A. Mohammed, and S.W. Askandar, (2012), "On i-open sets", UAE Math Day Conference, American Univ. of Sharjah, April 14.
- [8] Taha H. Jassim Samer R. Yaseen Luma S. AbdualBaqi. Some Generalised Sets and Mappings in Intuionistic Topological Spaces., Journal of AL-Qadisiyah for computer science and mathematics Vol.7 No.2 Year 2015

[9] Younis J.Yaseen and Asmaa G. Raouf, On generalization closed set and generlized continuity on intuitionistic topological spaces, J. of al-anbar university for pure science, Vol.3, No.1 (2009)